Влияние межподзонного поглощения в валентной зоне на пороговые характеристики длинноволновых лазеров на основе InAs

© Н.А. Гунько, Г.Г. Зегря, Н.В. Зотова, З.Н. Соколова, Н.М. Стусь, В.Б. Халфин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 2 апреля 1997 г. Принята к печати 10 апреля 1997 г.)

Проведен микроскопический анализ механизма внутризонного поглощения излучения дырками с переходом их в спин-орбитально отщепленную зону. Показано, что такой механизм внутризонного поглощения существенно влияет на пороговые характеристики и квантовую эффективность гетеролазеров на основе InAs. Подробно проанализированы зависимости пороговых характеристик лазера от температуры и параметров лазерной гетероструктуры с учетом нового канала внутризонного поглощения дырками.

1. Введение

В последнее время созданы совершенные длинноволновые лазеры на основе InAs [1], однако рабочие температуры и квантовая эффективность у этих лазеров оказываются гораздо более низкими, чем у коротковолновых лазеров, излучающих на длинах волн, не превышающих 1.5 мкм [2]. В работе [3] показано, что низкая рабочая температура длинноволновых лазеров связана с сильной межзонной оже-рекомбинацией, которая, однако, не объясняет квантовой эффективности этих лазеров при 77 К.

Предельная рабочая температура длинноволновых лазеров зависит от скорости безызлучательных каналов рекомбинации неравновесных носителей, но также зависит и от величины коэффициента внутризонного поглощения излучения [4]. Анализ показал, что механизм внутризонного поглощения излучения существенно зависит от реальной зонной структуры полупроводника. Особенностью зонной структуры InAs и близких к нему по составу твердых растворов является близость значений ширины запрещенной зоны Е_g и спин-орбитального расщепления Δ . Поэтому генерируемое в лазере излучение с $\hbar\omega \sim E_g$ должно испытывать сильное поглощение дырками в валентной зоне, которые при этом возбуждаются в спин-орбительно отщепленную (so) зону. Поглощение света дырками с переходом их в so-зону будем называть внутризонным поглощением в валентной зоне (ВП). В лазерах на основе InAs на частоте генерации ВП должно быть сильнее, чем в лазерах на основе четверных твердых растворов InGaAsP/InP, в которых, несмотря на большое различие E_g и Δ , указанный механизм потерь является существенным [5].

Цель настоящей работы — исследование ВП в InAs и изучение влияния этого механизма потерь на характеристики длинноволновых лазеров на основе InAs. В работе показано, что ВП является одной из причин низкой квантовой эффективности лазеров на основе InAs и близких по составу твердых растворов. Нами рассмотрены рекомбинационные процессы в InAs и рассчитаны коэффициенты ВП, связанные с переходами тяжелых и легких дырок в *so*-зону. Аналогичные коэффициенты для случая невырожденных дырок вычислялись в [6]. Однако ВП в применении к длинноволновым лазерам ранее не рассматривалось.

Оказалось, что в лазерах на основе InAs и близких к нему по составу твердых растворах, ВП может быть сравнимо с величиной усиления света при межзонных переходах из зоны проводимости в валентную зону и может сильно влиять на величину порогового тока длинноволновых лазеров, излучающих на длинах волн 3–3.5 мкм, и на их предельную рабочую температуру. Это подтверждается проведенными в данной работе экспериментальными исследованиями характеристик гетеролазеров на основе InAs.

Работа состоит из четырех разделов: введения, двух частей и выводов. Во втором разделе приводятся расчеты коэффициентов ВП с участием тяжелых и легких дырок и расчет коэффициента усиления света. Вычисления выполнены в первом приближении по отношению внутризонной энергии дырок к ширине запрещенной зоны. Получены аналитические выражения для коэффициентов ВП и усиления излучения. Также произведен учет внутризонной релаксации по импульсу для поглощения и усиления излучения. Затем расчеты коэффициента ВП повторены с использованием точной модели Кейна.

В третьем разделе статьи рассматривается влияние ВП на характеристики длинноволновых гетеролазеров с активной областью из InAs. Производится сравнение полученных теоретических зависимостей с нашими экспериментальными результатами.

В четвертом разделе обсуждаются результаты работы и даются рекомендации по улучшению характеристик длинноволновых лазеров.

2. Расчет коэффициентов ВП и усиления света

а) Вычисление коэффициентов внутризонного поглощения и коэффициента усиления света проводилось в четырехзонной модели Кейна, вполне применимой в случае InAs, где из-за близких значений E_g и Δ волновые векторы всех участвующих в поглощении частиц оказываются малыми. Коэффициент поглощения α и коэффициент усиления света *g* выражаются через мнимую часть диэлектрической проницаемости ε'' :

$$\alpha = -g = \frac{\omega}{c\sqrt{\varepsilon_{\infty}}}\varepsilon''(\omega), \tag{1}$$

где ε_{∞} — высокочастотная диэлектрическая проницаемость, c — скорость света.

Согласно [7],

$$\varepsilon''(\omega) = \lim_{q \to 0} \frac{4\pi^2 e^2}{q^2} \int \frac{d^3k}{(2\pi)^3} |M(\mathbf{k}, \mathbf{q})|^2 \times (f_1 - f_2) \delta(E_1 - E_2 - \hbar\omega), \qquad (2)$$

где **q** — волновой вектор фотона, **k** — волновой вектор частицы, e — заряд электрона, E_1 , E_2 , f_1 , f_2 — энергии и фермиевские функции распределения носителей заряда, $M(\mathbf{k}, \mathbf{q})$ — матричный элемент перехода между блоховскими волновыми функциями начального и конечного состояний. Указанный матричный элемент для межзонных переходов из зоны проводимости (c) в валентную зону определяется следующим образом:

$$M(\mathbf{k},\mathbf{q}) = \sum_{i=h,l} \int \Psi_i^*(\mathbf{k}+\mathbf{q},\mathbf{r}) e^{iqr} \Psi_c(\mathbf{k},\mathbf{r}) d\mathbf{r}, \quad (3)$$

где i = h соответствует тяжелым, а i = l — легким дыркам.

В модели Кейна квадрат модуля матричного элемента удобно выразить через операторы проектирования на электронные состояния Λ^c , на состояния тяжелой Λ^h и легкой дырки Λ^l и на состояния в *so*-зоне Λ^{so} . Для межзонных переходов

$$|M(\mathbf{k}, \mathbf{q})|^{2} = \sum_{i=h,l} \operatorname{Sp} \Lambda^{i}(\mathbf{k}_{i} + \mathbf{q}) \Lambda^{c}(\mathbf{k}_{i})$$
$$= \sum_{i=h,l} B^{ic}(\mathbf{k}_{i}, \mathbf{q}), \qquad (4)$$

где *B*^{hc} и *B*^{lc} — интегралы перекрытия периодических частей блоховских волновых функций зоны проводимости с подзонами тяжелых и легких дырок.

Для внутризонных переходов с участием *so*-зоны матричный элемент имеет вид, аналогичный (3), $\Psi_c(\mathbf{k}, \mathbf{r})$ заменяется на $\Psi_{so}(\mathbf{k}, \mathbf{r})$. Квадрат модуля матричного элемента для внутризонных переходов равен

$$|M(\mathbf{k}, \mathbf{q})|^{2} = \sum_{i=h,l} \operatorname{Sp} \Lambda^{i}(\mathbf{k}_{i} + \mathbf{q}) \Lambda^{so}(\mathbf{k}_{i})$$
$$= \sum_{i=h,l} B^{iso}(\mathbf{k}_{i}, \mathbf{q}),$$
(5)

где *B*^{hso} и *B*^{lso} — интегралы перекрытия so-зоны с подзонами тяжелых и легких дырок.

Операторы проектирования вычислялись в работе [8] в трехзонной модели Кейна, а в [9] — в четырехзонной

Физика и техника полупроводников, 1997, том 31, № 11

модели. В работе [9] получено, что интеграл перекрытия зоны тяжелых дырок и *so*-зоны имеет вид

$$B^{hso}(\mathbf{k}_{so},\mathbf{q}) = \frac{3}{4} \frac{\hbar^4}{m_{so}^2 \Delta^2} [\mathbf{k}_{so},\mathbf{q}]^2, \tag{6}$$

где $[\mathbf{k}_{so}, \mathbf{q}]$ — векторное произведение волновых векторов дырки в *so*-зоне и фотона, $\mathbf{q} = |\mathbf{k}_h - \mathbf{k}_{so}|$, \mathbf{k}_h — волновой вектор тяжелой дырки, m_{so} — эффективная масса дырки в *so*-зоне. В [9] также был вычислен интеграл перекрытия зон проводимости и тяжелых дырок

$$B^{hc}(\mathbf{k}_{c},\mathbf{q}) = \frac{3}{2} \frac{\hbar^{2}(E_{g} + \Delta)}{m_{c}E_{g}(3E_{g} + 2\Delta)} \frac{[\mathbf{k}_{c},\mathbf{q}]^{2}}{k_{c}^{2}}, \qquad (7)$$

k_c, *m*_c — волновой вектор и эффективная масса электрона в зоне проводимости.

В InAs характерные волновые векторы \mathbf{k}_c и \mathbf{k}_{so} малы по сравнению с $k_g = \sqrt{E_g m_c}/\hbar$. Тогда из выражений (6) и (7) следует, что B^{hso} имеет дополнительную по сравнению с B^{hc} малость, пропорциональную $(k_{so}/k_g)^2$. Это является следствием того факта, что переходы между зоной проводимости и валентной зоной являются разрешенными, а переходы между подзонами валентной зоны запрещены при $\mathbf{k} = 0$.

Интеграл перекрытия зон проводимости и легких дырок, полученный в работе [7], имеет вид

$$B^{lc}(\mathbf{k}_{l},\mathbf{q}) = \frac{\hbar^{2}(E_{g} + \Delta)}{2m_{c}E_{g}(3E_{g} + 2\Delta)} \frac{k_{l}^{2}q^{2} + 3(\mathbf{k}_{l},\mathbf{q})^{2}}{k_{l}^{2}} \qquad (8)$$

(**k**_{*l*}, **q**) — скалярное произведение волновых векторов легкой дырки и фотона.

Выражение для интеграла перекрытия зоны легких дырок и *so*-зоны впервые получено в данной работе:

$$B^{lso}(\mathbf{k}_{l},\mathbf{q}) = \frac{\hbar^{4}}{4m_{so}^{2}\Delta^{2}E_{g}} \left[(7E_{g} + 4\Delta)(\mathbf{k}_{l},\mathbf{q})^{2} + \frac{(3E_{g} + 2\Delta)^{2}}{E_{g}}k_{l}^{2}q^{2} \right].$$
(9)

Интегралы перекрытия (6)–(9) вычислены в предположении о малости волнового вектора фотона по сравнению с волновыми векторами электронов и дырок, а также малости энергий частиц в соответствующих зонах по сравнению с E_g и Δ .

При вычислении коэффициента ВП мы подставляли в (2) $|M(\mathbf{k}, \mathbf{q})|^2$ из (5) и считали, что степень вырождения тяжелых и легких дырок произвольна, а заселением *so*зоны пренебрегали. Поэтому

$$f_1 - f_2 = \left[1 + \exp\left(\frac{\hbar^2 k_i^2}{2m_i T} - \frac{\zeta_h}{T}\right)\right]^{-1}$$

где i = h или l, m_i — эффективная масса дырок в валентной зоне, ζ_h — уровень Ферми дырок, отсчитываемый вниз от края валентной зоны. Проинтегрировав (2) по углам и по **k** с учетом δ -функции, получим выражения для коэффициентов ВП при переходах в *so*-зону как из зоны тяжелых дырок α_h^{so} , так и из зоны легких дырок α_l^{so} :

$$\alpha_h^{so} = A \frac{M_{so,h}^{5/2} (\hbar\omega - \Delta)^{3/2}}{1 + \exp\left[\frac{M_{so,h}}{m_h} \frac{\hbar\omega - \Delta}{T} - \frac{\zeta_h}{T}\right]},$$
(10)

$$\alpha_l^{so} = A \frac{17E_g^2 + 20E_g\Delta + 6\Delta^2}{3E_g^2} \frac{M_{so,l}^{5/2}(\Delta - \hbar\omega)^{3/2}}{1 + \exp\left[\frac{M_{so,l}}{m_l} \frac{\Delta - \hbar\omega}{T} - \frac{\zeta_h}{T}\right]},$$

где

$$A = \frac{2\sqrt{2}e^2}{c\sqrt{\varepsilon_{\infty}}\hbar^2} \frac{E_g}{\Delta^2 m_{so}^2}, \quad M_{so,i} = \frac{m_{so}, m_i}{\pm (m_i - m_{so})},$$

i = h или l, (+) относится к h.

Из выражений (10) следует, что поглощение света тяжелыми дырками с возбуждением их в *so*-зону осуществляется только в области $\hbar \omega > \Delta$, а поглощение света легкими дырками — только при $\hbar \omega < \Delta$.

Из сравнения α_h^{so} и α_l^{so} видно, что поглощение света тяжелыми дырками из-за высокой плотности состояний для тяжелых дырок оказывается в десятки раз более сильным, чем поглощение легкими дырками. Это иллюстрирует рис. 1, на котором приведена частотная зависимость коэффициента ВП в InAs для температур 77 и 155 К. Частотная зависимость α_h^{so} также приведена на рис. 2 (кривые l'-3'). Из рисунков видно, что максимальные значения α_h^{so} практически не зависят от

Рис. 1. Частотная зависимость коэффициента внутризонного поглощения в валентной зоне InAs для T = 77 (1-4) и 155 К (1'-4') с участием тяжелых дырок α_h^{so} (при $\hbar \omega > \Delta$) и легких дырок α_l^{so} (при $\hbar \omega < \Delta$). 1, 1', 3, 3' — расчет по формуле (10); 2, 2', 4, 4' — расчет по формуле (17). 1, 1', 2, 2' соответствуют концентрации носителей $6 \cdot 10^{17}$ см⁻³; 3, 3', 4, 4' — концентрации 3 $\cdot 10^{17}$ см⁻³.

Рис. 2. Частотные зависимости коэффициентов усиления (1-3) и внутризонного поглощения в валентной зоне (1'-3') для InAs. При T = 77 K (1, 1'), при 100 K (2, 2'), при 155 K (3, 3'). Концентрация носителей для всех кривых — $3 \cdot 10^{17} \text{ см}^{-3}$.

температуры при постоянной концентрации дырок. В то же время частотный интервал расширяется с ростом температуры, а частота максимума α_h^{so} увеличивается.

Особо следует отметить, что в рамках четырехзонной модели Кейна в InAs не существует переходов дырок из тяжелой зоны в легкую при поглощении фотона с энергией порядка E_g , потому что одновременное выполнение законов сохранения энергии и импульса для таких переходов возможно только в прямозонных полупроводниках с $\Delta \geq 1.5E_g$.

Для оценки влияния ВП на характеристики длинноволновых лазеров мы сравнили коэффициенты поглощения (10) с коэффициентом усиления g, вычисленным в [7]. Для нахождения коэффициента усиления подставляем в выражение (2) $|M(\mathbf{k}, \mathbf{q})|^2$ из (4). Электроны в зоне проводимости и дырки в валентной зоне в общем случае считаем вырожденными, поэтому

$$f_1 - f_i = \frac{1 - \exp\left[\frac{\hbar\omega - E_g}{T} - \frac{\zeta_c + \zeta_h}{T}\right]}{\left\{1 + \exp\left[\frac{\hbar\omega - E_g}{T} - \frac{\zeta_c}{T}\right]\right\} \left\{1 + \exp\left[\frac{m_c}{m_i}\frac{\hbar\omega - E_g}{T} - \frac{\zeta_h}{T}\right]\right\}}$$
(11)

где i = h, l, а ζ_c — уровень Ферми электронов, отсчитанный вверх от края зоны проводимости.

Проинтегрировав (2) по углам и по \mathbf{k} с учетом δ -функции по энергии получим выражение для коэффициента усиления света для перехода электронов в зону тяжелых и в зону легких дырок:

$$g = g^{ch} + g^{cl}$$

= $A \frac{m_{so}^2 (E_g + \Delta) \Delta^2}{m_c E_g (3E_g + 2\Delta)} \sqrt{\hbar \omega - E_g} \sum_{i=l,h} \mu_{ci}^{3/2} (f_1 - f_i), \quad (12)$

где $\mu_{ci} = m_c m_i / (m_c + m_i)$; А определено в (10).

Физика и техника полупроводников, 1997, том 31, № 11

за температурной зависимости E_g . Мы считали, что в InAs E_g зависит от температуры линейно и составляет 0.41 эВ при 77 К и 0.354 эВ при 300 К, а Δ от температуры не зависит [10]; $E_g = \Delta = 0.39$ эВ при 155 К. Следует отметить, что с ростом концентрации носителей значения g возрастают, а максимум кривой смещается в коротковолновую область. Из рис. 2 видно, что при 77 К max(g) в несколько раз превосходит по величине max (α_h^{so}) . Кроме того максимумы сильно смещены по частоте и в области max(g) ВП мало. При 100 К значение max(g) уменьшается, а положения максимумов приходятся на один частотный интервал. Поэтому ВП на частоте max(g) уже оказывается существенным.

При 155 К значения максимумов g и α_h^{so} близки, но в области $\max(g)$ усиление преобладает над ВП вследствие смещения $\max(\alpha_h^{so})$ в коротковолновую область, а $\max(g)$ — в длинноволновую. Следует отметить, что при T > 155 К E_g становится меньше Δ и поглощение света тяжелыми дырками пропадает.

Таким образом, из рис. 2 видно, что в InAs в некотором диапазоне частот и концентраций носителей при заданных значениях температуры величина α^{so} сравнима с g. Считая факторы Ферми одинаковыми в обоих случаях, мы получили из выражений (10) и (12) следующее отношение:

$$\frac{g}{\alpha_h^{so}} = \frac{2}{5} \frac{E_g}{\hbar\omega - \Delta} \frac{\sqrt{m_c} m_{so}^2}{M_{so,h}^{5/2}}.$$
 (13)

В InAs для частот $\hbar \omega \sim E_g$ при 77 К имеем $g/\alpha_h^{so} \approx 1.1$.

Большая величина ВП является следствием намного более высокой приведенной плотности состояний для переходов между зоной тяжелых дырок и *so*-зоной по сравнению с переходами между валентной зоной и зоной проводимости. Это большое отношение приведенных плотностей состояний компенсирует малую величину $(\hbar \omega - \Delta)/E_g$, возникающую вследствие того, что ВП запрещено в Г-точке зоны Бриллюэна.

На рис. 3 приведена температурная зависимость эффективного усиления на частоте максимума $(g - \alpha_h^{so})$ для InAs. Из рисунка видно, что кривые для концентрации носителей 6 · 10¹⁷ см⁻³ и 9 · 10¹⁷ см⁻³ имеют минимум при 155 К, когда ВП максимально. При больших температурах ВП резко уменьшается и практически пропадает, когда энергия кванта вследствие уменьшения ширины запрещенной зоны становится меньше Δ . Это приводит к подъему кривых в интервале температур 155–200 К. Указанный минимум проявляется также в совпадении кривых для 155 и 200 .К на вставке рис. 3, где приведены зависимости эффективного усиления от концентрации носителей для разных температур.

б) Все результаты вычисления спектров усиления и поглощения, приведенные на рис. 1–3, были получены

Рис. 3. Температурная и концентрационная зависимости эффективного усиления на частоте максимума $(g - \alpha_h^{so})$ в InAs. Температурная зависимость приведена для трех концентраций носителей: $3 \cdot 10^{17}$ см⁻³, $6 \cdot 10^{17}$ см⁻³, $9 \cdot 10^{17}$ см⁻³.

без учета внутризонной релаксации носителей. В первом приближении этот эффект можно учесть путем свертки полученных без его учета частотных зависимостей с некоторой функцией релаксации. Относительно этой функции известно, что при небольших расстройках она близка к лоренцевской, с характерной полушириной ΔE , определяемой временем внутризонной релаксации au $(\Delta E \approx \hbar/\tau)$, а при больших расстройках спадает экспоненциально по гауссовскому закону [11]. Подобная процедура с лоренцевской функцией релаксации широко используется для расчета спектров усиления и дает правильные результаты в окрестности максимума поглощения (см., например, [11] и ссылки в этой работе). Нетрудно видеть, что лоренцевская функция в принципе не может быть использована для расчета внутризонного поглощения, так как соответствующие интегралы расходятся. Вместе с тем при малых расстройках результаты мало чувствительны к виду функции релаксации.

Поэтому для приближенного учета внутризонной релаксации мы осуществляли свертку спектров ВП и усиления с гауссовской функцией, используя время внутризонной релаксации, определяемое из данных о подвижностях [12]. Мы предполагали, что подвижности носителей не зависят от концентрации, но являются функциями температуры. Расчеты показали, что учет внутризонной релаксации не приводит к каким-либо качественным отличиям в спектрах ВП и усиления и дает только небольшие количественные изменения.

в) Расчеты в пункте "а" были выполнены в первом приближении по параметру $\gamma = \frac{\hbar\omega - \Delta}{\Delta} \ll 1$. Для проверки допустимости данного приближения мы вы-

числили поправки следующего порядка по указанному малому параметру. Для интеграла перекрытия зоны тяжелых дырок с *so*-зоной ($B^{h \, so}$) мы получили следующее выражение (при $E_g \approx \Delta$):

$$B_K^{h\,so}(\mathbf{k}_{so},\mathbf{q}) = B^{h\,so}\left[1 + \frac{x}{2\Delta}\right], \quad x = \frac{\hbar^2 k_{so}^2}{2m_{so}}, \qquad (14)$$

 $B^{h\,so}$ описывается выражением (6). Из выражения (14) видно, что поправки к $B^{h\,so}$ малы по параметру γ , так как $x \sim \hbar \omega - \Delta$.

Проинтегрировав (2) по углам и по **k**, с учетом аналогичной поправки γ в δ -функции по энергии, приходим к следующему выражению для коэффициента ВП:

$$(\alpha_h^{so})_1 = \alpha_h^{so} \left[1 + \left(1 - \frac{21}{2}M \right) \frac{M}{2}\gamma \right], \qquad (15)$$

где

 $M = \frac{m_h}{m_h - m_{so}};$

 α_h^{so} дается выражением (10).

Для InAs M = 1.52 и

$$(\alpha_h^{so})_1 = \alpha_h^{so}(1+\beta), \tag{16}$$

где $\beta = -11\gamma$. Из (16) видно, что для InAs в поправке к α_h^{so} перед малым параметром γ стоит большой численный коэффициент порядка 10 и соответствующая поправка (β) оказывается существенной. Характерное значение $\hbar\omega - \Delta = \frac{3}{2}kT$, как видно из (10) и рис. 1. Для 77 К $\beta = -0.28$, а для 155 К $\beta = -0.56$, и применимость такого разложения для 155 К уже не обоснована. Поэтому мы выполнили расчет коэффициента ВП для тяжелых дырок с использованием точной модели Кейна как в интеграле перекрытия, так и в законе сохранения энергии. В этом случае коэффициент ВП можно записать в виде:

 $(\alpha_{h}^{so})^{K} = \frac{-Am_{so}^{5/2}x^{3/2}}{\left[1 + \exp\left(M_{1}\frac{x}{T} - \frac{\zeta_{h}}{T}\right)\right] \left[M_{1} + \frac{(E_{g} + \Delta)(3E_{so} + 2\Delta)}{3E_{so}^{2} + 2E_{so}(\Delta - E_{g}) - E_{g}\Delta - 3x(E_{g} + \Delta)}\right]},$ (17)

где $M_1 = m_{so}/m_h$, $E_{so} = -\Delta - \varepsilon_{so}$, ε_{so} — кейновская энергия дырки в *so*-зоне, *A* определено в (10), а *x* в (14). Связь между *x* и E_{so} задается законом сохранения энергии

$$E_{so} + M_1 x + \hbar \omega = 0 \tag{18}$$

и следующим из уравнения Кейна соотношением

$$x = \frac{E_{so} \left[E_{so}^2 + (\Delta - E_g) E_{so} - E_g \Delta \right]}{(E_g + \Delta)(3E_{so} + 2\Delta)}.$$
 (19)

Спектральные зависимости $(\alpha_h^{so})^K$ для InAs представлены на рис. 1 кривыми 2, 2', 4, 4'. Из рисунка видно, что количественные различия точной (17) и

приближенной (10) формул достаточно существенны. Расчеты по точной и приближенной формулам дают одно и то же энергетическое положение максимума ВП. Однако при использовании точной формулы (17) величина поглощения в максимуме уменьшается примерно на 30%. Кроме того, спектры поглощения расширяются в коротковолновую область, особенно при 155 К.

3. Влияние ВП на характеристики гетеролазеров

а) Изучим влияние ВП на характеристики гетеролазеров. Объектом исследования служили длинноволновые инжекционные лазеры на основе двойной гетероструктуры с активной областью из *n*-InAs.

Двойные гетероструктуры N-InAs_{1-x-v}Sb_xP_v/n-InAs/P- $\ln As_{1-x-y}Sb_xP_y$ (0.05 < x < 0.09; 0.09 < y < 0.18) выращивались на подложке n-InAs (111) методом жидкофазной эпитаксии при условии высокой пластичности подложки, когда напряжения несоответствия, вызванные рассогласованием постоянных решетки, снимаются за счет преимущественного образования дислокаций в подложке. В результате получались структурно совершенные эпитаксиальные слои с рекордно низкой плотностью дислокаций $\leq 10^{+3}$ см⁻². Эмиттер *p*-типа легировался Zn. Перепад энергий ширины запрещенной зоны и показателя преломления на гетерограницах составляли соответственно 100 мэВ и 0.03. Толщина ограничивающих слоев составляла 4-6 мкм; толщина активной области (d) менялась от 0.8 до 6 мкм. Показатель преломления активной области равнялся 3.52. Исследовались как четырехсколотые лазеры, так и лазеры с широким контактом, в которых шероховатость боковых граней была достаточна для подавления внутренних замкнутых мод. Ширина контакта варьировалась в пределах 35–200 мкм; длина резонатора (L) была 100-1500 мкм. Длина волны лазерной моды составляла 3.05 мкм (77 К), что соответствовало максимуму пика фотолюминесценции нелегированного n-InAs в активной области. Лазерная генерация наблюдалась в интервале температур 2-150 К в импульсном и непрерывном режимах с минимальными плотностями пороговых токов 60 и 100 A/см² соответственно (77 К).

Рассмотрим влияние ВП на характеристики описанных гетеролазеров. Отметим, что вследствие большой ширины активной области влияние гетерограниц на поглощение мало, и мы его не рассматриваем. Во всех расчетах этой главы использовалась точная модель Кейна. Анализ характеристик лазера выполнен в такой последовательности. Сначала определялась пороговая концентрация носителей в активной области гетеролазера n_{th} для разных значений d, L и T. Согласно [13],

$$\Gamma[\max(g - \alpha_h^{so})] = \alpha^*, \tag{20}$$

где учтены только два типа оптических потерь: ВП (α_h^{so}) и потери на выход $\alpha^* = (1/L) \ln(1/R)$, R = 0.3 — коэф-

Рис. 4. Температурные зависимости внешней дифференциальной квантовой эффективности гетеролазера с активной областью из InAs толщиной 0.8 и 1.5 мкм и с длиной резонатора 0.03 и 0.09 см.

фициент отражения зеркал лазера, Γ — фактор оптического ограничения в рассматриваемой гетероструктуре. Из расчетов видно, что наибольшее возрастание пороговой концентрации должно наблюдаться в лазерах с более тонкими активными областями ($d \leq 1$ мкм) и с короткими резонаторами (L = 0.03 см), у которых потери на выход наибольшие.

Далее вычислялась внешняя дифференциальная квантовая эффективность (η_i), определяемая как отношение потерь на выход (α^*) к суммарным потерям,

$$\eta_i = \alpha^* / (\alpha^* + \alpha_h^{so}). \tag{21}$$

На рис. 4 представлены температурные зависимости квантовой эффективности для двух значений толщины активной области гетеролазера d = 0.8, 1.5 мкм и двух значений длины активной области L = 0.03, 0.09 см. Следует отметить, что с ростом температуры в области 100–155 К ВП возрастает не только вследствие роста концентрации носителей, но и в связи с перемещением максимума усиления в область наибольшего поглощения (рис. 2). При температурах выше 155 К, когда E_g становится меньше Δ , ВП на частоте max $(g - \alpha_h^{so})$ резко уменьшается, спадая до нуля. Поэтому на всех кривых при T = 100-155 К существует минимум, обусловленный совпадением максимумов усиления и поглощения по частоте.

На рис. 5 приведены зависимости квантовой эффективности от приведенных потерь на выход 1/L для температур 77, 100 и 155 К. Параметром является толщина активной области. При 77 и 100 К квантовая эффективность, как обычно, возрастает с ростом 1/L, правда, при больших потерях на выход наблюдается сублинейная

Физика и техника полупроводников, 1997, том 31, № 11

зависимость, связанная с возрастанием ВП. При 155 К появляется аномальная зависимость $\eta_i = f(1/L)$, когда η_i падает с ростом 1/L, потому что ВП возрастает быстрее, чем потери на выход.

Мы рассчитали также температурную зависимость пороговой плотности тока J_{th} в исследуемых лазерах с активной областью из InAs (рис. 6), используя вычисленные значения для n_{th} . При определении пороговой плотности тока мы учитывали излучательную рекомбинацию и межзонную оже-рекомбинацию. При этом пороговая плотность тока описывается следующим выражением:

$$J_{th} = 1.6 \cdot 10^{-23} n_{th}^2 [B_r + (R_1 + R_2) n_{th}], \qquad (22)$$

где B_r — коэффициент излучательной рекомбинации, R_1 — коэффициент межзонного *CHHS* оже-процесса с переходом дырки в *so*-зону, R_2 — коэффициент межзонного *CHCC* оже-процесса, связанного с возбуждением электрона в зоне проводимости. Используя [14], для *CHHS*-процесса в InAs получили значение $R_1 = 4 \cdot 10^{-27}$ см⁶/с, которое практически не зависит от температуры. Также на основе данных работы [14] для InAs с учетом вырождения электронов был вычислен коэффициент *CHCC*-процесса, который при изменении температуры от комнатной до азотной уменьшался на 2 порядка: $R_2 = 3.3 \cdot 10^{-27}$ см⁶/с при 300 К и $R_2 = 2.2 \cdot 10^{-29}$ см⁶/с при 77 К.

При вычислении компоненты порогового тока, связанной с излучательной рекомбинацией, учитывалось вырождение электронов и дырок, т.е. принималась во внимание зависимость коэффициента излучательной рекомбинации *B*_r не только от температуры, но и от концентрации носителей.

Рис. 5. Зависимость внешней дифференциальной квантовой эффективности гетеролазера с активной областью из InAs толщиной 0.8 (для 155 K) и 1.5 мкм от приведенных потерь на выход для трех температур: 77, 100, 155 K.

Расчеты показали, что при 77 К излучательная компонента тока сравнима с безызлучательной (оже) компонентой [3]. С возрастанием температуры безызлучательная компонента начинает преобладать и при 155 К уже на порядок превосходит излучательную.

Из расчетов следует, что в длинных лазерах (L = 0.09 см) пороговый ток практически не зависит от толщины активной области. В коротких же лазерах (L = 0.03 см) в области температур 100–200 К пороговая плотность тока зависит от толщины активной области (рис. 6). Для d = 0.8 мкм наблюдается "полочка", связанная с "выключением" ВП при T > 155 К.

б) На рис. 6 также представлена экспериментальная температурная зависимость пороговой плотности тока для четырехсколотого лазера с толщиной активной области из InAs, равной 1.8 мкм. Указанная толщина активной области соответствует минимальному значению измеренной пороговой плотности тока. Удовлетворительное согласие теории с экспериментом получено только в области температур 77-100 К. При больших температурах экспериментальные значения пороговой плотности тока существенно превышают теоретические. Расхождение теории с экспериментом при более высоких температурах, в рамках нашей модели, связано с пренебрежением эффектами разогрева носителей заряда и токов утечки. В исследуемых структурах возможны три механизма разогрева носителей: 1) разогрев за счет инжекции носителей через гетерограницы; 2) разогрев,

Рис. 6. Экспериментальная и теоретические температурные зависимости пороговой плотности тока для гетеролазера с активной областью из InAs. Сплошные линии — расчет для различных гетероструктур: I — толщина активной области d = 0.8 мкм, длина резонатора L = 0.03 см; 2 — d = 1.5 мкм, L = 0.03 см; 3 — четырехсколотая гетероструктура с d = 1.8 мкм; экспериментальные данные (треугольники) приведены для четырехсколотой гетероструктуры с d = 1.8 мкм.

Рис. 7. Экспериментальная (треугольники) и теоретическая (сплошная линия) зависимости пороговой плотности тока гетеролазера с активной областью из InAs толщиной d = 1.8 мкм от приведенных потерь на выход для 77 К.

обусловленный оже-возбуждением; 3) разогрев за счет внутризонного поглощения излучения. Анализ влияния механизмов разогрева на пороговые характеристики таких лазеров и на их предельную рабочую температуру является предметом отдельного исследования. Возможно также существование неучтенных механизмов внутреннего поглощения, имеющих сильную температурную зависимость, например, связанных с наличием гетерограниц [15]. Дополнительным указанием на существование механизмов внутреннего поглощения является наблюдаемое на опыте непрерывное падение дифференциальной квантовой эффективности таких лазеров с ростом температуры [16].

На рис. 7 приведены теоретические и экспериментальные значения пороговой плотности тока в зависимости от приведенных потерь на выход при 77 К в лазере на основе той же гетероструктуры, что и на рис. 6. Наблюдается хорошее согласие между экспериментальными и теоретическими данными, однако, для случая малых потерь на выход теория дает несколько завышенные значения пороговой плотности тока.

4. Обсуждение результатов и выводы

Приведенное в работе исследование показало, что механизм ВП существенно влияет на характеристики гетеролазеров с длиной волны излучения 3–3.5 мкм с активной областью из InAs или близких к нему по составу твердых растворов. При учете ВП получены аномальные зависимости дифференциальной квантовой эффективности гетеролазеров от температуры, а также

от приведенных потерь на выход (для некоторых температур). ВП увеличивает пороговую плотность тока. Для уменьшения влияния ВП на пороговую плотность тока и для увеличения предельной рабочей температуры таких лазеров предпочтительны лазеры с длинными резонаторами и более широкими активными областями.

В работе показано, что в полупроводниках типа $A^{\rm III}B^{\rm V},$ так же как и в Ge [6], коэффициент ВП тяжелыми дырками в десятки раз превосходит коэффициент ВП легкими дырками. Однако поглощение света тяжелыми и легкими дырками происходит в разных частотных диапазонах: тяжелыми дырками при $\hbar \omega > \Delta$, а легкими при $\hbar \omega < \Delta$. Для подавления механизма сильного поглощения тяжелыми дырками надо использовать полупроводники с E_g < Δ . Это условие может быть достигнуто либо изменением температуры, либо путем использования твердых растворов определенного состава. В InAs E_g становится меньше Δ при T > 155 K. В твердых растворах In_yGa_{1-y}As_{1-x}Sb_x вблизи InAs при любых температурах $E_g < \Delta$, а в InAs_{1-x}Sb_x при x < 0.1и температурах вблизи 77 К $E_g > \Delta$. Следует отметить, что в полупроводниках с $E_g < \Delta$, кроме подавления ВП, также ослабевает оже-процесс с участием so-зоны (CHHS-процесс) и уменьшается разогрев, связанный с оже-рекомбинацией.

В заключение выражаем благодарность Е.Л. Ивченко за обсуждение результатов и ценные советы, а Ю.П. Яковлеву за внимание и интерес к работе.

Экспериментальная часть работы поддержана научным фондом по теме N 4.14 "Оптика. Лазерная физика".

Список литературы

- M. Aidaraliev, N.V. Zotova, S.A. Karandashev, B.A. Matveev, N.M. Stus', G.N. Talalakin. Infr. Phys. & Techn., 37, 83 (1996).
- [2] P.J.A. Thijs, L.F. Tiemeijer, J.J.M. Binsma, T. van Dongen. IEEE J. Quant. Electron, QE-30, 477 (1994).
- [3] М.Ш. Айдаралиев, Г.Г. Зегря, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, Н.М. Стусь, Г.Н. Талалакин. ФТП, 26, 246 (1992).
- [4] G.G. Zegrya. Antimonide Related Strained Layer Heterostructures, ed. dy M.O. Manasreh (Newward, 1997).
- [5] A.R. Adams, K.C. Heasman, J. Hilton. Semicond. Sci. Technol., 2, 761 (1987).
- [6] Б.Л. Альтшулер, Е.Л. Ивченко, А.Н.Москалев, Г.Е. Пикус, Р.М. Рындин.ЖЭТФ, 85, 346 (1983).
- [7] Б.Л. Гельмонт, Г.Г. Зегря. ФТП, 25, 2019 (1991).
- [8] Б.Л. Гельмонт. ЖЭТФ, 75, 536 (1978).
- [9] Б.Л. Гельмонт, З.Н.Соколова, И.Н. Яссиевич. ФТП, 16, 592 (1982).
- [10] Numerical Data and Functional Relationships in Science and Technology, v. 17, Semiconductors, ed. by O. Madeling (1982).
- [11] Quantum Well Lasers, ed. by P. Zory (Academic Press, 1993).
- [12] Н.В. Зотова. Автореф. канд. дис. (Л., ФТИ им. А.Ф. Иоффе, 1964).

- [13] Х. Кейси, М. Паниш. Лазеры на гетероструктурах (М., Мир, 1981).
- [14] З.Н. Соколова. Автореф. канд. дис. (Л., ФТИ им. А.Ф. Иоффе, 1982).
- [15] Г.Г. Зегря. Автореф. докт. дис. (СПб., ФТИ им. А.Ф. Иоффе, 1995).
- [16] М.Ш. Айдаралиев, Н.В. Зотова, С.А. Карандашев, Б.А. Матвеев, Н.М. Стусь, Г.Н. Талалакин. ФТП, 27, 21 (1993).

Редактор В.В. Чалдышев

The influence of intervalence band absorption on threshold characteristics of long wavelength InAs-based lasers

N.A. Gun'ko, G.G. Zegrya, N.V. Zotova, Z.N. Sokolova, N.M. Stus', V.B. Khalfin

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract The microscopic analysis of intervalence band absorption (IVA) for hole transition into split-off band has been made. It was shown that IVA can heavily influence threshold characteristics and quantum efficiency of heterolasers based on InAs. A detailed study of threshold characteristics as functions of temperature and heterostructure parameters has been carried out taking into account the new hole absorption mechanism — IVA.