Краткие сообщения

12

Измерение коэффициента температуропроводности поверхностных слоев непрозрачных твердых тел

© В.И. Туринов

(Поступило в Редакцию 20 февраля 1996 г.)

Рассмотрен способ определения послойно коэффициента температуропроводности a и толщины подповерхностных слоев d непрозрачных твердых тел из измерений разности фаз сигналов двух центрированных кольцевых p-n-переходов фотодиодов и при последовательном изменении коэффициента углового увеличения оптической системы устройства, в котором источник излучения с распределением плотности мощности в сечении луча по закону Гаусса создает на поверхности тела тепловой объект в виде концентрических тепловых волн, изменяющихся по гармоническому закону. Проведена оценка ограничений по диапазону частот и минимальному угловому увеличению, в которых справедливы соотношения для расчета a и d.

В развитии способа измерения коэффициента температуропроводности, согласно схемы, изложенной в [1], рассмотрим тепловую задачу, появляющуюся при облучении образца сфокусированным излучением, меняющимся по гармоническому закону $Q=Q_1(1/2)(1+m\cos\omega\tau)$, где Q_1 — плотность мощности излучения ($\mathrm{Br/cm^2}$), m — коэффициент глубины модуляции, далее полагаем для простоты $m=1,\ \omega=2\pi f$ — частота излучения, τ — время. Под действием излучения на поверхности образца формируется тепловая волна (тепловой объект), разбегающаяся симметрично от места нагрева. Допустим, распределение Q_1 в сечении луча описывается по закону Гаусса $Q_1=Q_0\exp(-\rho^2/2\rho_0^2)$, как это характерно для излучений лазеров, электронного луча, струй плазмы и ряда других источников.

Для полубесконечного тела (при условии охлаждения за счет теплопроводности) задача для тепловых волн на поверхности в полярной системе координат имеет вид

$$\frac{\partial T}{\partial \tau} = a \frac{\partial^2 T}{\partial \rho^2} + \frac{a}{\rho} \frac{\partial T}{\partial \rho}, \quad 0 < \tau < \infty, \tag{1}$$

$$T-t_0 \to 0$$
 при $\rho \to \infty$,

$$\frac{\partial (T - t_0)}{\partial \rho} = \frac{Q_0}{\lambda} \exp(-\rho^2 / 2\rho_0^2) \cos \omega \tau, \qquad (2)$$

где a — коэффициент температуропроводности, λ — коэффициент теплопроводности, t_0 — температура поверхности тела при $\rho \to \infty$.

Проведя в (1) и (2) преобразование Лапласа по τ с параметром s, получим решение для изображения [2]

$$T_L - \frac{t_0}{s} = \frac{Q_1}{\lambda} \frac{sI_0\left(\sqrt{\frac{s}{a}}\rho\right)}{(s^2 + \omega^2)I_1\left(\sqrt{\frac{s}{a}}\rho_0\right)},\tag{3}$$

где $I_{\nu}(\mu)$ — модифицированные функции Бесселя.

Применяя к (3) теорему разложения (простые корни $s=\pm i\omega$ и μ_n), придем к решению для оригинала

функции

$$T - t_0 = \frac{Q_1 \sqrt{a}}{2\lambda \omega^2} \left[\frac{i\omega \sqrt{i\omega} I_0 \left(\sqrt{\frac{i\omega}{a}}\rho\right) e^{i\omega\tau}}{I_1 \left(\sqrt{\frac{i\omega}{a}}\rho_0\right)} + \frac{(-i\omega)\sqrt{-i\omega} I_0 \left(\sqrt{\frac{-i\omega}{a}}\rho\right) e^{-i\omega\tau}}{I_1 \left(\sqrt{\frac{-i\omega}{a}}\rho_0\right)} \right]. \tag{4}$$

Соотношение (4) справедливо для установившегося периодического состояния распределения температуры поверхности тела при $\tau \to \infty$ (пренебрегаем суммой членов, соответствующих корням бесселевых функций μ_n).

Проведем анализ приближенных решений задачи, представляющих практический интерес при измерении теплофизических параметров образцов согласно схемы [1]. Допустим, что, как и в [1], тепловой объект, оптическая система (в простейшем случае линза) и кольцевые p-n-переходы фотодиода центрированы и размер $\rho_0 < r_1/K$, где K — коэффициент углового увеличения оптической системы, r_1 — малый радиус первого кольцевого p-n-перехода.

1. В соотношении (4) разложим $I_{\nu}(\mu)$ в асимптотический ряд

$$I_0(z) \approx (1/\sqrt{2\pi z})e^{-z}\left(1+\frac{1}{8z}=\ldots\right),$$

$$I_1(x) \approx (1/\sqrt{2\pi x})e^{-x}\left(1-\frac{3}{8x}+\ldots\right)$$

при больших значениях z и x и ограничимся первым членом. Приближенное решение для оригинала (4) примет

вид

$$T - t_0 = \frac{Q_1}{\lambda 2^{3/2}} \sqrt{\frac{\rho_0}{\rho}} \sqrt{\frac{2a}{\omega}} \exp[-(\varphi - \varphi_0)]$$

$$\times \cos\left[\omega \tau - (\varphi - \varphi_0) + \frac{\pi}{4}\right], \quad \varphi_i = \rho_i \sqrt{\frac{\omega}{2a}}. \quad (5)$$

Для первого и второго p-n-переходов координаты центров колец теплового объекта, которые "видит" фотодиод, положим равными $\rho_i=(r_i+R_i)/2K$, где r_i и R_i — малые и большие радиусы кольцевых p-n-переходов, причем такие, что поля зрения их не перекрываются. Сигналы p-n-переходов фотодиода, например, для спектрального диапазона $8\dots 14$ мкм при $T\leqslant 600\,\mathrm{K}$ (диапазон Рэлея—Джинса) описываются зависимостями $U_i=A_iR_d^{(i)}(T-t_0)$, где $R_d^{(i)}$ — дифференциальное сопротивление p-n-переходов, A_i — коэффициент пропорциональности [1]. Длины волн λ_n периодических колебаний температуры на поверхности образца, которые укладываются целое число раз на отрезке $\rho_2-\rho_1$, равны

$$\rho_2 - \rho_1 = 2\pi n \sqrt{\frac{2a}{\omega_n}} = n\lambda_n, \tag{6}$$

где $n = 1, 2, 3, \dots$

При n = 1 волна имеет максимальную длину.

Подставляя в (6) соответствующие выражения для ρ_2 и ρ_1 , находим

$$a_n = \frac{\omega_n}{2} \left[(r_2 + R_2 - r_1 - R_1) / n4\pi K \right]^2,$$
 (7)

т. е. коэффициент температуропроводности определяется по измеренным частотам ω_n максимумов гармонических сигналов на первом и втором кольцевых p-n-переходах фотодиода при разности фаз 2π .

Полагая в $I_1(x)$ второй член асимптотического ряда меньше первого в е раз, оценим диапазоны изменения $\omega'_{\min} \geqslant (3e/8)^2 (a/2\rho_0^2)$, в котором справедливо приближенное решение (5). Это условие перекрывается более жестким условием $\mu^2 \geqslant 4(\nu+1)$ [3], из которого следует $\omega_{\min} \geqslant 8a/2\rho_0^2$. Так как толщина слоя d образца, с которого "снимается" информация о коэффициенте а, пропорциональна длине тепловой волны, то по ω'_{\min} , согласно (6), находим $d_{\max} \leqslant 11\pi \rho_0/e$ (при n=1) и $K_{\min} \geqslant (3e/8)^2[(r_2+R_2)-(r_1+R_1)]/\pi
ho_0$. Измерим (при $K_{\min} = \mathrm{const}$) последовательность ω_n от n=1 (при $\omega_1\geqslant \omega_{\min}')$ до n=K и рассчитаем соответствующие последовательности $d_n = d_{\text{max}}/n$ и a_n согласно (6) и (7). Величины a_n являются усредненными значениями по d_n . Используя правило моментов, проведем корректировку и уточним значения $a_n^{(0)} = \left[(a_n^{(1)} + \varepsilon_{n+1}) (a_n^{(1)} - \varepsilon_{n+1}) \right]^{1/2},$ $\varepsilon_{n+1} = \left| a_n - a_{n+1} \frac{d_{\max}}{n+1} \right|, a_n^{(1)} = \left[(a_n^{(2)} + \varepsilon_{n+2}) (a_n^{(2)} - \varepsilon_{n+2}) \right]^{1/2},$ и т.д. до n+m=K, где $a_n^{(0)}$ — уточненное значение коэффициента температуропроводности п-го внутреннего слоя толщиной $d_{n, n+1} = d_{\max}/n(n+1)$. Для структурирования по a нижнего слоя толщиной $d_{\rm max}/2$ изменим коэффициент увеличения K настолько, чтобы измерить коэффициент a самого нижнего слоя заданной толщины $d_{\max} - d_{\max}^{(1)}$, где $d_{\max}^{(1)}$ рассчитывается по (6) при n=1 и $K=K_1$. Коэффициент a_1 находим усреднением $a_1=(a_1^{(0)}+a_1^{(1)})/2$. Измеряя ω_n при $K_1=$ const, получим новую последовательность $d_n^{(1)}$ и $a_n^{(1)}$, которые служат для более тонкого структурирования по a верхних слоев аналогично описанному выше. Необходимая последовательность K_p выбирается исходя из цели исследования. Массив данных $a_n^{(m)}$ и $d_n^{(m)}$ подвергается корреляционной обработке с целью выявления, в каком слое расположена или сколько слоев охватывает неоднородность по коэффициенту a (дефектность), с представлением в конечном виде термографических изображений подповерхностных слоев при сканировании образца с определенным шагом [4].

Для расширения диапазона K_{\min} (с целью увеличения глубины послойного сканирования) удержим в $I_0(z)$ и $I_1(x)$ первые два члена асимптотического ряда. Тогда приближенное решение (4) запишется так:

$$T - t_0 = \frac{Q_1}{\lambda\sqrt{2}} \left(\frac{\rho_0}{\rho}\right)^{3/2} \sqrt{\frac{2a}{\omega}} \exp[-(\varphi - \varphi_0)]$$

$$\times \cos[\omega \tau - (\varphi - \varphi_0) + \Psi],$$

$$\Psi = \arctan\left\{ \left[8(\varphi_0 + 8\rho_0 \rho) - \frac{3}{2} \left(\frac{2a}{\omega}\right) \right] / \left[8(3\varphi_0 - 8\rho_0 \rho) + \frac{3}{2} \left(\frac{2a}{\omega}\right) \right] \right\}, \tag{8}$$

$$\rho_2 - \rho_1 = 2\pi n \sqrt{\frac{2a}{\omega}} - (\Psi_2 - \Psi_1) \sqrt{\frac{2a}{\omega}}. \tag{6}'$$

Разлагая $\operatorname{arctg}[(b-c)/(1+bc)]$ в степенной ряд и пренебрегая членами порядка малого параметра ρ_0 , приведем выражение (6') к виду

$$(\rho_2 - \rho_1) \left[1 + \frac{1}{(\rho_2 + \rho_1)} \sqrt{\frac{2a}{\omega_n}} \right] = 2\pi n \sqrt{\frac{2a}{\omega_n}}, \quad (6'')$$

из которого коэффициент a определяется по измеренным ω_n итерацией для предельного значения d''_{max} . При увеличении ω_n выше ω'_{min} переходим снова к соотношению (6).

Соотношения (6') и (8) справедливы при $\omega_{\min}'' \geqslant 0.61 a/(2\rho_0^2)$, т.е. $\omega_{\min}'/\omega_{\min}'' \approx 1.7$. Следовательно, частотная полоса увеличивается в ~ 1.7 раз, а d_{\max} — в 1.3 раз путем уменьшения в 1.3 раз K_{\min} . Учет дальнейших членов асимптотического ряда приводит к усложнению формул для расчета коэффициента a по измеренным частотам ω_n , несущественному выигрышу по d_{\max} , на практике к появлению фазовых сдвигов, требующих схемных решений при уменьшении K_{\min} и поэтому нецелесообразен.

2. В соотношении (4) z и x малы, $x^2 \leqslant 4(\nu+1)/e$. Разлагая $I_{\nu}(\mu)$ в степенной ряд и удерживая первые два члена $I_0(z) \approx 1 + (z/2)^2$, $I_1(x) \approx (x/2) \left[1 + \frac{1}{2!} \left(\frac{x}{2}\right)^2\right]$,

130 *В.И. Туринов*

получим приближенное выражение (4) в следующем виде:

$$T - t_0 = \frac{Q_1}{\lambda} \frac{4a}{\rho_0} \cos(\omega \tau - \Phi),$$

$$\Phi = \operatorname{arctg}\left[\left(\frac{4}{\varphi_0^2} + \frac{1}{2}\varphi^2\right) / \left(1 - 2(\rho/\rho_0)^2\right)\right], \quad (9)$$

где Φ — фазовый сдвиг между сигналом на p-n-переходе и опорным напряжением источника излучения.

Положим в (9) $\Phi_2 - \Phi_1 = \arctan[(b-c)/(1+bc)] = 2\pi$, откуда tg $\arctan \Omega = \tan 2\pi = 0$ и $a = \pm i\omega \rho_0^2/4\sqrt{2}$, т.е. для заданных условий z и x в диапазоне частот $\omega \leqslant \omega_{\max} = (8/e)(a/2\rho_0^2)$ отсутствуют длины тепловых волн, кратные $\rho_2 - \rho_1$. Разлагая $\arctan \Omega$ в степенной ряд и пренебрегая членами порядка выше второго по ρ_i , находим приближенное выражение для измеренной разности фаз $\Delta \Phi \approx 3(\varphi_2^2 - \varphi_1^2)/(1+3\varphi_1^2\varphi_2^2)$, из которого определяем коэффициент a_g , длину тепловой волны

$$\lambda_g = \sqrt{8\pi}\sqrt{rac{a_g}{\omega_g}}$$

(через коэффициент теплоусвоения $\sqrt{a_g/\omega_g}$ [2]) и толщину слоя $d_g\approx 1/\lambda_g$. Изменяя частоту ω_g и коэффициент увеличения K, получаем последовательность $a_g^{(m)}$ и $d_g^{(m)}$ аналогично изложенному выше и соответствующее термографическое изображение подповерхностных слоев.

Отличие способа в разделе 2 от способа в разделе 1 состоит в том, что частота ω_g меняется плавно, а ω_n дискретно и она обусловливает набор $a_n^{(m)}$ и $d_n^{(m)}$. Недостаток способа в разделе 2 заключается в том, что измерения проводятся вблизи центра теплового объекта, где влияние аппаратурных погрешностей на измерения выше, так же как намного больше градиент температуры, и усреднение по a_g происходит дополнительно по широкому диапазону температуры по сравнению со способом, приведенным в разделе 1, где измерения проводятся на "хвосте" тепловой волны.

При изменении K, строго говоря, меняются участки поверхности, с которых фотодиод принимает излучение. Поэтому данным способом предпочтительно исследовать образцы с послойно однородным коэффициентом a, например многослойные металлические покрытия на платах гибридных схем для выявления дефектности межслойных соединений. Либо изменять K так, чтобы происходило частичное перекрытие двух соседних участков поверхности при последовательном изменении K и получалось усредненное изображение коэффициента a в каждом слое.

Список литературы

- [1] Туринов В.И. // ЖТФ. 1992. Т. 62. Вып. 8. С. 175-180.
- [2] *Лыков А.В.* Теория теплопроводности. М.: Высшая школа, 1967. 599 с.
- [3] Ватсон Г.Н. Теория бесселевых функций. Ч. 1. М.: ИЛ, 1949. 798 с.
- [4] *Берников Е.В., Гапонов С.С., Туринов В.И.* // Тез. докл. VII Всесоюз. конф. "Фотометрия и ее метрологическое обеспечение". М.: ВНИИОФИ, 1990. С. 114.