05;11;12

Термостабильность магнитных параметров эпитаксиальных феррит-гранатовых пленок при воздействии планарных радиальных напряжений

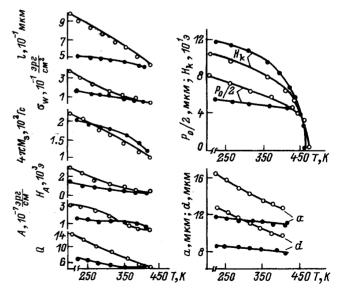
© В.Т. Довгий, Т.Г. Астафьева, Ф.Г. Барьяхтар, Г.И. Ямпольская

Донецкий физико-технический институт АН Украины, 340114 Донецк, Украина

(Поступило в Редакцию 28 мая 1996 г.)

Исследовано влияние внешнего планарного радиального давления на термостабильность магнитных параметров эпитаксиальных феррит-гранатовых пленок. Исследования проводились в интервале температур 200–500 К и внешнего механического напряжения 0–40 кГ/мм². Показано, что с помощью внешнего планарного радиального давления возможно улучшить термостабильность магнитных параметров в 1.5–2 раза, а также значительно изменить область монодоменности вблизи точки компенсации при ориентационных фазовых переходах.

Одним из важных требований, предъявляемых к материалам, содержащих цилиндрические магнитные домены, является температурная стабильность магнитных параметров [1–11]. В данной работе исследовалось влияние внешнего планарного радиального давления на термостабильность магнитных параметров ферритгранатовых пленок составов (YSmLuCa)₃(FeGe)₅O₁₂ (1), (YSmLu)₃(FeGa)₅O₁₂ (2), (YGdTm)₃(FeGa)₅O₁₂ (3), выращенных на подложках Gd₃Ga₅O₁₂ ориентации (111). Исследования проводились в интервале температур 200-500 К и внешнего механического напряжения 0-40 кГ/мм² на магнитооптических установках с использованием эффекта Фарадея. В данной работе показано, что с помощью внешнего планарного радиального напряжения можно значительно улучшить термостабильность магнитных параметров эпитаксиальных ферритгранатовых пленок.


На рис. 1 для пленки состава (YSmLuCa) $_3$ (FeGe) $_5$ О $_{12}$ приведены температурные зависимости характеристической длины l, энергии стенки σ_w , намагниченности насыщения $4\pi M_s$, поля анизотропии H_A , обменной константы A, фактора качества Q, полупериода полосовой структуры $P_0/2$, поля коллапса ЦМД H_k , периода a и диаметра ЦМД d в решетке ЦМД при внешнем напряжении $\sigma_{\rm BH}=0$ (светлые точки) и $\sigma_{\rm BH}\neq0$ (черные точки).

Температурные коэффициенты магнитных параметров, определяемые как $P=[dP/dT/P]\cdot(100\%)$, где P — любой (обобщенный) из выше перечисленных статических параметров эпитаксиальных феррит-гранатовых пленок при $\sigma_{\rm BH}=0$ и $\sigma_{\rm BH}=18$ кГ/мм², приведены в табл. 1. Температурная зависимость характеристической длины l минимальна, если изменение $4\pi M_s$ и σ_w компенсируется, т.е. $\Delta M_s/M_s=\Delta \sigma_w/2\sigma_w$ [4].

На рис. 2 и табл. 2 для состава $(YSmLu)_3(FeGa)_5O_{12}$ приведены аналогичные температурные зависимости магнитных параметров и их температурные коэффициенты.

Для эпитаксиальных феррит-гранатовых пленок состава $(YGdTm)_3(FeGa)_5O_{12}$, имеющих точку компенсации близко к комнатной температуре (~ 215 K), рис. 3 иллюстрирует изменение магнитных параметров от температуры, а табл. 3 — их температурные коэффициенты при комнатной температуре (293 K) и 353 K соответственно для исходной пленки ($\sigma_{\rm BH}=0$) и $\sigma_{\rm BH}=16$ кГ/мм².

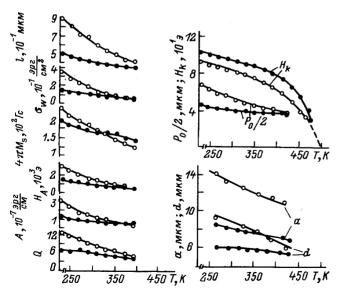
Анализ графиков для пленок первых двух составов показывает, что магнитные параметры исходных пленок $(\sigma_{\rm BH}=0)$ и находящихся под внешним напряжением $(\sigma_{\rm BH}\neq0)$ монотонно уменьшается с температурой с зависимостью, близкой к линейной (за исключением области возле точки Нееля). Термостабильность магнитных параметров пленок, находящихся под внешним

Рис. 1. Температурные зависимости магнитных параметров эпитаксиальных феррит-гранатовых пленок состава $(YSmLuCa)_3(FeGe)_5O_{12}$ при $\sigma_{BH}=0$ (светлые точки) и $\sigma_{BH}\neq 0$ (черные точки).

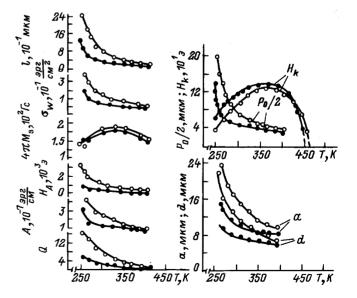
$σ$ _{вн} , κ Γ /мм ²	<i>T</i> , K	<i>l</i> _T , %/K	σ_T , %/K	M_T , %/K	H_A , %/K	A_T , %/K	H_k , %/K	$P_0/2$, %/K	a_T , %/K	d_T , %/K	K_u , %/K	$\frac{\Delta\sigma_{\scriptscriptstyle W}}{\sigma_{\scriptscriptstyle W}}/\frac{\Delta M}{M}$
0	293	-0.32	-0.82	-0.28	-0.73	-0.4	-0.17	-0.22	-0.14	-0.13	-0.92	2.7
18	293	-0.16	-0.48	-0.16	-0.29	-0.35	-0.11	-0.07	-0.07	-0.05	-0.67	2.2

Таблица 1. Температурные коэффициенты магнитных параметров для пленки состава (YSmLuCa)₃(FeGe)₅O₁₂

Таблица 2. Температурные коэффициенты магнитных параметров для пленки состава (YSmLu)₃(FeGa)₅O₁₂


$σ_{\rm BH}$, κ Γ /MM 2	<i>T</i> , K	l_T , %/K	σ_T , %/K	M_T , %/K	H _A , %/K	A_T , %/K	H_k , %/K	$P_0/2$, %/K	<i>a</i> _T , %/K	d_T , %/K	K _u , %/K	$\frac{\Delta\sigma_{\scriptscriptstyle W}}{\sigma_{\scriptscriptstyle W}}/\frac{\Delta M}{M}$
0	293	-0.43	-1.6	-0.34	-0.87	-0.94	-0.15	-0.30	-0.26	-0.22	-1.19	2.9
15	293	-0.19	-0.5	-0.16	-0.44	-0.4	-0.09	-0.12	-0.1	-0.13	-0.60	2.9

радиальным напряжением, улучшилась. Критерий температурной стабильности магнитных параметров (характеристической длины l, намагниченности насыщения $4\pi M_s$, плотности энергии границ σ_w , поля коллапса H_k , равновесного периода полосовой доменной структуры P_0) сформулирован в работах $[1,2,8]\ |P_T|\leqslant 0.2-0.3\,\%$ /К. Из приведенных таблиц видно, что температурные коэффициенты магнитных параметров для пленок, находящихся под внешним напряжением, уменьшились в 1.5-2 раза и лучше удовлетворяют критерию температурной стабильности.


Критерий малого изменения характеристической длины l [4] $\Delta M/M = \Delta \sigma/2\sigma_w$, где $\Delta M/M$ и $\Delta \sigma/\sigma_w$ — относительные изменения намагниченности насыщения и энергии доменных границ соответственно, для пленок 1-го и 2-го состава при $\sigma_{\rm BH}=0$ и $\sigma_{\rm BH}\neq0$ принимает значения $\Delta \sigma/\sigma/\Delta M/M=2.62-3.1$.

Улучшение термостабильности магнитных параметров при воздействии внешнего напряжения достигается за счет того, что изменение магнитных параметров по температуре компенсируется их изменением по напряжению.

В работе [12] показано, что значения магнитных параметров с увеличением внешнего напряжения уменьшаются (производная отрицательна), аналогичны изменения параметров и с изменением температуры. Если пленка при комнатной температуре будет находиться при некотором внешнем напряжении, которое с ростом температуры будет убывать, а с понижением температуры увеличиваться, то в некотором диапазоне температури изменение магнитных параметров по температуре и напряжению будет компенсировать друг друга $(-dP/dT = +dP/d\sigma)$. Улучшение термостабильности параметров доменной структуры обеспечивается прежде

Рис. 2. Температурные зависимости магнитных параметров эпитаксиальных феррит-гранатовых пленок состава $(YSmLu)_3(FeGa)_5O_{12}$ при $\sigma_{BH}=0$ (светлые точки) и $\sigma_{BH}\neq0$ (черные точки).

Рис. 3. Температурные зависимости магнитных параметров эпитаксиальных феррит-гранатовых пленок состава $(YGdTm)_3(FeGa)_5O_{12}$ при $\sigma_{\text{вн}}=0$ (светлые точки) и $\sigma_{\text{вн}}\neq0$ (черные точки).

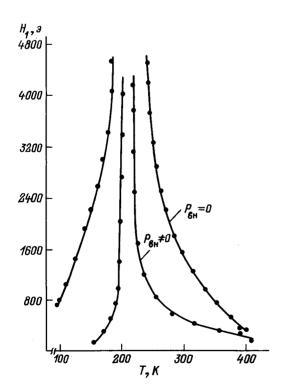

$σвн$, κ Γ /мм ²	<i>T</i> , K	l_T , %/K	σ_T , %/K	M_T , %/K	H_A , %/K	A_T , %/K	H_k , %/K	$P_0/2$, %/K	a_T , %/K	d_T , %/K	K_u , %/K
0	293	-1.91	-0.98	+0.51	-1.53	-1.08	+1.37	-1.3	-0.93	-0.93	-0.86
16		-1.38	-0.55	+0.38	-1.06	-0.62	+0.67	-0.66	-0.65	-0.68	-0.48
0	353	-1.37	-1.47	-0.11	-1.52	-1.36	+0.31	-0.75	-0.53	-0.54	-1.57
16		-0.82	-0.95	-0.08	-0.97	-0.88	+0.05	-0.41	-0.22	-0.35	-1.04
'	•	•			•	•		•			•

Таблица 3. Температурные коэффициенты магнитных параметров для пленки состава $(YGdTm)_3(FeGa)_5O_{12}$

всего за счет изменения одноосной анизотропии при воздействии внешнего напряжения.

Так как ЭФГП состава $(YGdTm)_3(FeGa)_5O_{12}$ имеет точку компенсации вблизи комнатной температуры, поэтому температурные коэффициенты магнитных параметров при 293 и 353 К у нее хуже, чем у пленок состава 1 и 2. Термостабильность магнитных параметров для пленки состава 3 при наличии внешнего планарного радиального напряжения улучшается (рис. 3 и табл. 3). В области температур, вблизи точки Нееля и точки компенсации, изменение магнитных параметров по температуре большое (прежде всего M_s и H_A) и не компенсируется их изменением по давлению.

На рис. 4 для состава (YGdTm) $_3$ (FeGa) $_5$ О $_{12}$ приведена зависимость магнитного насыщения пленки в планарном поле H_\perp от температуры вблизи точки компенсации при $\sigma_{\rm BH}=0$ и $\sigma_{\rm BH}\neq 0$. Интервал монодоменности в области точки компенсации при $\sigma_{\rm BH}=0$ составил $\Delta T=60$ K, при $\sigma\approx 25$ к Γ /мм 2 $\Delta T=10$ K ($\sigma=25$ к Γ /мм 2 соот-

Рис. 4. Зависимость магнитного насыщения пленки в планарном поле H_{\perp} от температуры вблизи точки компенсации при $\sigma_{\text{вн}}=0$ и $\sigma_{\text{вн}}\neq0$.

ветствует температуре 210 K). Таким образом, интервал монодоменности по температуре ЭФГП (состояние с однородным намагничиванием) уменьшился в 6 раз и это сужение области монодоменности связывается прежде всего с изменением одноосной анизотропии при планарном радиальном напряжении. Смещение точки компенсации незначительно $\approx 5~{\rm K}$ (определяется как середина области монодоменности по полю насыщения).

Таким образом, показано, что с помощью внешнего планарного радиального напряжения возможно улучшить термостабильность магнитных параметров ферритгранатов, а также значительно изменить область монодоменности, вблизи точки компенсации, при фазовых ориентационных переходах.

Список литературы

- Телеснин Р.В., Дудоров В.Н., Рандошкин В.В. // ФТТ. 1975.
 Т. 17. Вып. 10. С. 3015–3018.
- [2] Телеснин Р.В., Дудоров В.Н., Марченко А.Т., Рандошкин В.В. // Микроэлектроника. 1979. Т. 8. № 1. С. 84–89.
- [3] Ohta N., Ishida F., Ikeda T., Sugita Y. // J. Appl. Phys. 1980.Vol. 51. N 1. P. 589–593.
- [4] Smith D.M., Anderson A.W. // AIP Conf. Proc. 1972. Vol. 5. P. 120–124.
- [5] Dimayan M.J., Della Torre E. // J. Appl. Phys. 1972. Vol. 43. N 3. P. 1285–1287.
- [6] Dimayan M.J., Della Torre E. // J. Appl. Phys. 1972. Vol. 43.N 12. P. 5207–5209.
- [7] Yamaguchi K., Uchishiba M., Suzuki T. // IEEE Trans. Magn. 1980. Vol. MAG-16. N 5. P. 616–618.
- [8] Nielsen J.W. // IEEE Trans. Magn. 1976. Vol. MAG-12. N 4. P. 327–347.
- [9] Белов К.П., Белянчикова М.А., Левитин Р.З., Никитин С.А. Редкоземельные ферро- и антиферромагнетики. М.: Наука, 1965. С. 319.
- [10] Gualtieri D.M., Tumelty P.F., Gilleo M.A.. // J. Appl. Phys. 1979. Vol. 50. N 11. P. 7824–7826.
- [11] Kestigian M., Smith A.B., Bekebrede W.R. // J. Appl. Phys. 1978. Vol. 49. N 3. P. 1873–1875.
- [12] Барьяхтар В.Г., Довгий В.Т., Сухаревский Б.Я. и др. // ФТТ. 1983. Т. 25. Вып. 5. С. 1415–1422.