01;07

Динамика дислокаций и дисклинаций поля маломодового волокна IV. Формирование оптического вихря

© А.В. Воляр, Т.А. Фадеева, Х.М. Решитова

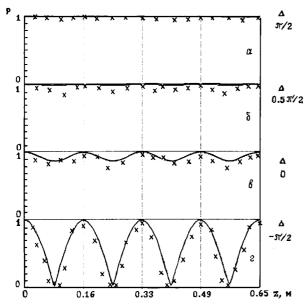
Симферопольский государственный университет

Поступило в Редакцию 11 ноября 1996 г.

Экспериментально и теоретически изучаются физические механизмы процесса формирования оптического вихря в поле маломодового волокна. В оптическом волокне с параболическим профилем показателя преломления формирование оптического вихря связано с взаимодействием циркулярно поляризованных вращающихся чисто краевых дислокаций циркулярно поляризованных четных и нечетных СР₁₁ мод. В ступенчатом волокне формирование оптического вихря также связано с одновременным распространением четных и нечетных мод. Поля этих мод изменяют свою структуру по длине волокна и не выражаются через вращающиеся краевые дислокации. Экспериментально найдено, что устойчивый вихрь не изменяет своей величины степени поляризации поля на длинах волокна свыше 10 м. Неустойчивый вихрь, для которого произведение спина и топологического заряда всегда меньше нуля, периодически распадается и восстанавливается на длине биений 0.65 м.

Отмечается, что устойчивый оптический вихрь нельзя сформировать ортогонально поляризованными LP_{11} модами. Это связано с тем, что оптический вихрь переносит дополнительный момент импульса, как и CP_{11} моды, а LP_{11} моды не переносят дополнительного момента импульса поля.

Гладкие лазерные поля в свободном пространстве не могут формировать устойчивые вихри. Формирование вихря протекает, например, в активной среде лазерного резонатора [1] или при прохождении лазерного излучения через компьютерно-синтезированную голограмму [2]. В работе [3] нами было показано, что поля собственных мод оптических волокон являются носителями оптических вихрей противоположных топологических зарядов. Но в поле многомодового волокна присутствуют одновременно как оптические вихри с противоположными зарядами, так и чисто краевые или смешанные типы дислокаций [4].


Целью настоящей работы явилось экспериментальное и теоретическое изучение физического механиза формирования единичных оптических вихрей в поле маломодового волокна.

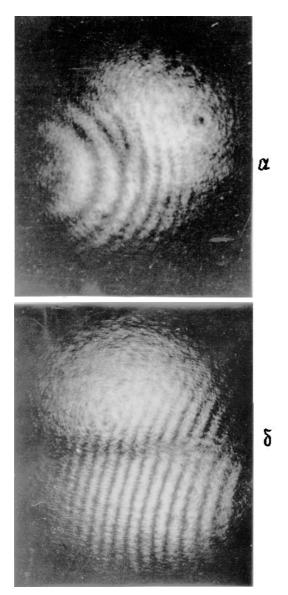
1. В полях собственных мод волокна для чисто винтовых дислокаций нельзя раздельно рассматривать топологический заряд l и спин соответствующего базиса фотонов σ_z , задвааемый базисными векторами круговой поляризации \hat{e}^+ и \hat{e}^- [3]. Устойчивым CV_1 вихрям с азимутальным числом |l| = 1 соответствует пара состояний: $(l = +1, \hat{e}^+)$ и $(l=1,\hat{e}^-)$. Для неустойчивых вихрей IV_1 характерны квантовые состояния: $(l=-1, \hat{e}^+)$ и $(l=+1, \hat{e}^-)$. В неоднородной среде волокна образование вихря связано с наличием двух циркулярно поляризованных четной и нечетной $\mathrm{CP}^{ev}_{11},\,\mathrm{CP}^{od}_{11}$ мод. В третьей части данной работы было показано, что в параболическом волокне циркулярно-поляризованные СР₁₁ моды представляют собой вращающиеся чисто краевые дислокации поля. Ось такой дислокации совершает полный оборот вокруг оси волокна на длине биений. СР₁₁ моды четырежды вырождены: дважды по направлению циркуляции и дважды по четности. Сложение четных и нечетных СР₁₁ мод с одноименной циркуляцией и фазовой задержкой $\pm \pi/2$ порождает нераспадающийся вихрь. Устойчивость вихрей в параболическом волокне определяется равенством поляризационных поправок как для TE_{01} и TM_{01} мод, так и для четной и нечетной HE_{21} моды.

Несколько иной механизм формирования свойствен вихрям ступенчатого волокна. В таком волокне поляризационные поправки TE_0 и TM_{01} мод не равны друг другу и оптические вихри разделяются на устойчивые и неустойчивые. Предположим, что CP_{11} моды не имеют точной циркулярной поляризации. Отклонение состояния поляризации будем выражать через разность фаз Δ между ортогональными линейными LP_{11} полями.

Поля эллиптически поляризованных EV_1 вихрей можно записать в виле:

$$\mathbf{e}_{t} = \left(\hat{\mathbf{x}}\left[\cos\varphi\left[\cos\delta\beta z - \sin\delta\beta z \exp\{i\Delta\}\right]\right] + i\sin\varphi\left[\cos(\delta\beta + \Delta\beta)z - \sin(\delta\beta + \Delta\beta)z \exp\{i\Delta\}\right] \exp\{i\Delta\beta z\}\right] + \hat{\mathbf{y}}\left[\cos\varphi\left[\cos(\delta\beta + \Delta\beta)z \exp\{i\Delta\} + \sin(\delta\beta + \Delta\beta)z\right] \exp\{i\Delta\beta z\}\right] + i\sin\varphi\left[\sin\delta\beta z + \cos\delta\beta z \exp\{i\Delta\}\right]\right] F_{1}(R),$$
(1)

Рис. 1. Зависимости степени поляризации P поля $\mathrm{EP}_{11}^{ev}\pm i\mathrm{EP}_{11}^{od}$ мод от длины z оптического волокна: $a-\Delta=\pi/2;\ b-\Delta=0.5\pi/2;\ b-\Delta=0;\ c-\Delta=-\pi/2.$ Сплошные линии — теоретические кривые, крестики — экспериментальные точки.


где $F_1(R)$ — радиальные функции полей; $\delta\beta$ — разность постоянных распространения HF_{21} и TM_{01} мод; $\Delta\beta$ — разность постоянных распространения LP_{11_y} и LP_{11_z} мод. Для правоциркулярной поляризации $\Delta=\pi/2$ и поле (1) преообразуется в поле устойчивого вихря:

$$\mathbf{e}_{t}(\mathrm{CV}_{+1}^{+}) = \mathbf{e}^{+} \exp\{+i\varphi\} F_{1}(R). \tag{2}$$

Для левоциркулярной поляризации $\Delta = -\pi/2$ и поле (1) преобразуется в неустойчивый вихрь IV_1 :

$$\mathbf{e}_{t}(\mathrm{IV}_{+1}) = \left[\hat{\mathbf{e}} \exp\{+i\varphi\} \cos \Delta \beta z - i\hat{\mathbf{e}}^{+} \exp\{-i\varphi\} \sin \Delta \beta z\right] F_{1}(R). \quad (3)$$

На рис. 1, a представлено семейство кривых зависимости степени поляризации P от длины волокна z для различных значений разности фаз

Рис. 2. Интерференция поля оптических вихрей с линейно поляризованным опорным пучком для $\Delta \beta z = \pi/4$: a — устойчивый вихрь, δ — неустойчивый вихрь.

 Δ . Характерно, что слабые возмущения циркулярно поляризованного поля эллиптической поляризацией (кривая 2) вызывают небольшие осцилляции степени поляризации P и разрушения вихря не происходит. Вихрь становится неустойчивым для линейно поляризованной чисто винтовой дислокации возбуждающего поля, а при $\Delta = -\pi/2$ оптический вихрь распадается на две связанные ортогонально циркулярно поляризованные волны.

2. Экспериментально исследовалась зависимость степени поляризации P оптического вихря от длины волокна z при различных значениях разности фаз Δ . Маломодовое оптическое волокно с радиусом сердцевины $ho_0=3.5$ мкм и волноводным параметром V=3.6 (см. I часть работы) возбуждалось полем оптического вихря. Для получения вихря циркулярно поляризованное лазерное излучение проходило компьютерную голограмму винтовой дислокации с топологическим зарядом m=1 [2], после которого выделялся оптический вихрь с топологическим зарядом +1. Состояние поляризации лазерного вихря регулировалось с помощью электрооптического поляризационного модулятора посредством изменения управляющего напряжения на кристалле ниобата лития. Экспериментальные точки на рис. 1 иллюстрируют зависимость P(z). Для малых значений величины разности фаз Δ степень поляризации лежит в пределах погрешности эксперимента и приближается к значению 0.9. Наибольшие вариации величины P наблюдаются для разности фаз $\Delta = -\pi/2$, т. е. в случае l = 1 и левоциркулярно поляризованного на входе поля. Отметим, что максимальным значениям P соответствует правоциркулярная поляризация, а минимальным значениям P соответствует линейная поляризация. Такое квантовое состояние характерно для неустойчивого вихря IV₁. При интерференции поля излучения волокна длиной 18 см ($\Delta \beta z = \pi/4$) с линейно поляризованным опорным пучком в случае устойчивого вихря наблюдается "вилка" (рис. 2, a) с топологическим зарядом, совпадающим с зарядом падающего вихря. В случае неустойчивого вихря на этой длине наблюдается чисто краевая дислокация (рис. $2, \delta$).

Механизм формирования устойчивого вихря примечателен синхронностью дисклинационных процессов в двух одинаково циркулярно поляризованных CP_{11} модах. В третьей части данной статьи отмечалось, что в CP_{11} моде в волокне со ступенчатым профилем показателя преломления наблюдаются периодические преобразования, например правоциркулярно поляризованного поля с краевой дислокацией в поле с винтовой

дислокацией, заряда l=1, и неоднородной по сечению линейной поляризацией, и наоборот. Происходит перекачка момента импульса поляризации волны в момент импульса дислокации. Поэтому если на входе волокна знаки топологического вихря и циркуляции поляризации совпадают, то перекачка, происходящая в составляющих вихрь CP_{11} модах, не изменяет ни состояния поляризации, ни знака топологического заряда и вихрь остается устойчивым при распространении в волокне. Однако если знаки заряда l и циркуляции поляризации противоположны, то преобразования в составляющих вихрь CP_{11} модах приводят к тому, что на половине длины биений CP_{11} моды в сечении волокна возникнет вихрь с ортогональными к падающему циркуляцией поляризации и знаком топологического заряда. Такой вихрь оказывается неустойчивым.

Особо отметим, что из одинаково поляризованных четной и нечетной LP $_{11}$ мод нельзя сформировать линейно поляризованный устойчивый вихрь. Это связано с тем, что во-первых, чисто краевые дислокации поля не вращаются, а следовательно, такое поле не переносит дополнительного момента импульса, во-вторых, постоянные распространения этих мод различны. CP_{11} моды переносят дополнителный момент импульса и способны сформировать оптический вихрь.

Работа выполнена при частичной поддержке Международной Соросовской программы поддержки образования в области точных наук (ISSEP), грант N PSU062108.

Список литературы

- [1] Harris M., Hill C.A., Vaughan J.M. // Opt. Comm. 1994. V. 106. P. 161–166.
- [2] Basistiy I.V., Soskin M.S., Vasnetsov M.V. // Optics Comm. 1995. V. 119. P. 604–612.
- [3] Воляр А.В., Фадеева Т.А. // Письма в ЖТФ. 1996. Т. 22. В. 8. С. 63-67.
- [4] Зельдович Б.Я., Пилипецкий Н.Ф., Шкунов В.В. Обращение волнового фронта. М: Наука, 1985. 247 с.