01;09

Колебания в системе двух модельных автогенераторов на вакуумных микротриодах с однонаправленной связью

© А.А. Короновский, В.И. Пономаренко, Д.И. Трубецков

Институт радиотехники и электроники РАН (Саратовский филиал) Саратовский государственный университет (ГосУНЦ "Колледж")

Приведены результаты численного исследования поведения двух модельных автогенераторов с вакуумными микротриодами, связанных друг с другом однораправленной связью. Показано, что поведение таких автогенераторов (каждый из которых, являясь системой с одной степенью свободы, может демонстрировать только периодические колебания) является довольно сложным: в системе возможны не только периодические и квазиопериодические, но и хаотические колебания. Построена карта режимов на плоскости управляющих параметров расстройка частоты — величина связи.

В работе [1] была высказана мысль о возможности создания новых нелинейных активных вакуумных сред с автоэмиссионными вкраплениями. Естественным шагом на пути реализации такой среды является исследование "среды-модели" — цепочки или решетки из связанных автогенераторов в микровакуумном исполнении [2–4].

В настоящей работе сделан первый шаг по указанному направлению: в численном эксперименте исследуется поведение двух автогенераторов с однонаправленной связью. Схема подключения автогенераторов приведена на рис. 1. Каждый из генераторов идентичен автогенератору, описанному в [2,4]: анодный ток вакуумного микротриода зависит от напряжения на сетке (при фиксированном анодном напряжении) в соответствии с законом Фаулера–Нордгейма [5,6], записанным в виде:

$$I_a(U) = A^* F^2 (aU+b)^2 \exp\left(-\frac{B^* \varphi^{3/2}}{F(aU+b)}\right)$$
$$= A(oU+b)^2 \exp\left(-\frac{B}{aU+b}\right), \tag{1}$$

55

Рис. 1. Схема подключения двух автогенераторов с вакуумными микротриодами с однонаправленной связью.

где A^* и B^* — постоянные параметры, φ — работа выхода, F — фактор усиления поля, a и b — геометрические постоянные, $A = A^*F^2$, $B = (B^*\varphi^{3/2})/F$. Так как нелинейная характеристика активного элемента не имеет насыщения, то в цепь обратной связи каждого из генераторов в качестве диссипативного элемента введен диод с нелинейной экспоненциальной характеристикой [2–4]. Вольт-амперная характеристика диода имеет вид [7]:

$$I_R(U) = I_0 \left(\exp\left(\frac{U_e}{k_B T}\right) - 1 \right), \qquad (2)$$

где I_0 — теоретический обратный ток диода, k_B — постоянная Больцмана, Т — температура, e — заряд электрона.

В соответствии с законами Кирхгофа, для двух автогенераторов, связанных однонаправленной связью и подключенных так, как это изображено на рис. 1, можно записать следующие уравнения:

$$U_{i} = L_{i} \frac{dI_{L_{i}}}{dt} + M_{i} \frac{dI_{a_{i}}}{dt}, \quad i = 1, 2;$$

$$I_{C_{i}} = -C_{i} \frac{dU_{C_{i}}}{dt}, \quad i = 1, 2;$$
 (3)

$$I_{C_1} = I_{R_1}(U_1) + I_{L_1};$$

 $I_{C_2} = I_{R_2}(U_2) + I_{L_2} + I_{CB}.$

Приводя уравнения (3) к безразмерному виду, получим систему обыкновенных нелинейных дифференциальных уравнений, описывающих динамику рассматриваемой системы:

$$\frac{dx_1}{d\tau} = \alpha \{ -i_r(x_1) - \beta [y_1 - \gamma i_a(x_1)] \},
\frac{dy_1}{d\tau} = x_1,$$
(4)
$$\frac{dx_2}{d\tau} = -i_r(x_2) - y_2 + i_a(x_2) - s(x_2 - x_1),
\frac{dy_2}{\tau} = x_2,$$

57

где $t = \tau \sqrt{L_2 C_2}$; τ — безразмерное время; $x_{1,2} = U_{1,2}/U_m$ — безразмерные динамические переменные, соответствующие напряжению на сетке вакуумного микротриода в первом и втором автогенераторах соответственно; $y_{1,2} = \int x_{1,2}(\tau) dt$; $\rho = \sqrt{L_2/C_2}$ — безразмерный параметр, характеризующий второй автогенератор; $U_m = B/a$, $\sigma = b/B$ — параметры, характеризующие вакуумный микротриод; $i_a(x) = \mu(x + \sigma)^2 \exp(-1/(x + \sigma))$ — безразмерная нелинейная характеристика вакуумного микротриода, $s = \rho/R_c$ — безразмерный параметр связи автогенераторов; $k = eU_m/(k_bT)$, $g_0 = I_0 \rho e/(k_bT)$ — параметры диода, играющего роль нелинейного диссипативного элемента; $i_r(x) = g_0(\exp(kx) - 1)/k$ — безразмерная вольт-амперная характеристика диода; $\mu = AaBM_2/\sqrt{L_2C_2}$ — безразмерный параметр обратной связи второго автогенератора; $\alpha = C_2/C_1, \ \beta = L_2/L_1, \ \gamma = M_1/M_2$ безразмерные параметры рассогласования автогенераторов. Заметим, что вид безразмерных уравнений (4) был выбран таким образом, чтобы безразмерные параметры, введенные для одного автогенератора с вакуумным микротриодом (см. [2,4]), сохранили свой вид, а уравнения, разделяющиеся при $s \to 0$ на две независимые подсистемы, оказались бы тождественными уравнению из работ [2,4].

При выводе уравнений (4) предположено, что и вакуумные микротриоды, и диоды в обоих автогенераторах идентичны, иными словами, что $I_{a_1}(U) = I_{a_2}(U)$, а $I_{R_1}(U) = I_{R_2}(U)$. Будем считать далее, что

Рис. 2. a — двупараметрическая карта режимов колебаний первого автогенератора в зависимости от значений управляющих параметров α и s; b — отображение последования, полученное в точке со значениями управляющих параметров $\alpha = 0.95$, s = 0.435, наглядно иллюстрирующее переход к хаосу через перемежаемость; c — фрагмент отображения, приведенного на рис. 2, b.

 $L_1 = L_2, M_1 = M_2$ и соответственно $\beta = 1, \gamma = 1$. В этом случае два автогенератора, связанные между собой, будут отличаться только лишь величиной емкости, а параметр α , отражающий рассогласование автогенераторов, будет в этом случае равен квадрату отношения собственных частот *LC*-контуров генераторов.

В ходе исследования поведения двух вышеописанных автогенераторов с однонаправленной связью построена карта режимов колебаний второго автогенератора на плоскости управляющих параметров $\alpha - s$ ("рассогласование автогенераторов — величина связи") (рис. 2, *a*). Данная карта построена на основе семейства бифуркационных диаграмм, полученных при численном моделировании системы (4) методом Рунге-Кутты четвертого порядка (с шагом по времени h = 0.01) при адиабатически медленном изменении управляющих параметров α и s. Остальные параметры системы, по аналогии с [2,4], были выбраны следующими: $\sigma = 4.5, k = 10, g_0 = 0.54, \mu = 0.2$. Заметим, что при построении двупараметрической карты режимов на основе семейства бифуркационных диаграмм использована методика, изложенная в [8], в рамках которой каждая бифуркационная диаграмма строилась дважды: в первом случае управляющий параметр увеличивался, а во втором уменьшался. Значения параметра, при котором происходил переход от одного режима колебаний к другому, для обеих бифуркационных диаграмм сравнивались между собой, и если эти два значения различались, то это свидетельствовало о неоднозначном поведении системы в данной области управляющих параметров, и на карте режимов это отображалось гистерезисной складкой.

Как видно из рис. 2, а, карта режимов на плоскости управляющих параметров α и *s* имеет довольно причудливый вид: при малой величине параметра связи во втором автогенераторе реализуются квазипериодические колебания. (Заметим, что поскольку связь однонаправленная, то в первом генераторе все время реализуются только периодические колебания). С увеличением параметра связи происхолит резкий скачок от квазипериодических колебаний либо к хаотическим ($\alpha > 1.0$), либо к периодическим ($\alpha < 1.0$), что соответствует не плоскости управляющих параметров складке и переходу на другой лист. С дальнейшим увеличением параметра связи *s* происходит переход либо от периодических колебаний к хаотическим ($\alpha < 1.0$), либо, наоборот, от хаотических к периодическим ($\alpha > 1.0$). В случае, когда оба автогенератора идентичны (т.е. $\alpha = 1$), в системе, при перемещении по плоскости управляющих параметров в направлении увеличения величины параметра связи, отсутствуют как квазипериодические колебания при малом параметре связи, так и хаотические колебания при больших значениях s. В то же время, двигаясь по карте режимов из области хаотических колебаний ($\alpha > 1$) при фиксированном параметре *s* в

направлении уменьшения α , можно, как видно из рис. 2, *a*, попасть в область хаотических колебаний и при $\alpha = 1$.

Особого внимания заслуживает вопрос о сценарии перехода от периодических колебаний к хаотическим. Как показывает проведенное исследование, в обоих случаях, и при $\alpha < 1.0$ (с увеличением параметра s) и при $\alpha > 1.0$ (с уменьшением параметра связи), переход от периодических колебаний к хаотическим происходит через перемежаемость: анализ временны́х реализаций колебаний второго генератора показывает чередование ламинарных и турбулентных фаз, причем длительность турбулентных фаз во временных реализациях увеличивается по мере увеличения надкритичности. Более строгим доказательством перехода к хаосу через перемежаемость является вид отображения последования $x_{1\min_{i+1}} = f(x_{1\min_i})$, которое показано на рис. 2, *b*. Это отображение получено для системы (4) вблизи точки бифуркации при значениях управляющих параметров $\alpha = 0.95$, s = 0.435, а на рис. 2, *с* детально показан фрагмент этого отображения, наглядно иллюстрирующий факт перехода к хаосу через перемежаемость: на диаграмме отчетливо виден "коридор" между графиком отображения и прямой $x_{1\min_{i+1}} = x_{1\min_i}$, соответствующий ламинарным фазам временных реализаций. При уменьшении параметра связи *s* происходит касание графика отображения и прямой, что соответствует касательной бифуркации и возникновению периодических колебаний.

Стоит отметить также, что в области хаотических колебаний существуют и листы периодических колебаний, переход к хаосу из которых может осуществляться также через каскад бифуркаций удвоения периода.

Таким образом, в рамках данной работы исследована динамика новой радиофизической системы — двух генераторов с однонаправленной связью, в качестве активных элементов которых включены вакуумные микротриоды с автоэлектронной эмиссией. Полученные результаты расширяют также представления о возможном поведении генераторов, связанных друг с другом.

Работа выполнена при поддержке РФФИ, грант No 96-02-16753.

Список литературы

- [1] *Трубецков Д.И., Рожнев А.Г., Соколов Д.В.* Лекции по сверхвысокочастотной вакуумной микроэлектронике. Саратов: Изд-во ГосУНЦ "Колледж", 1996. 238 с.
- [2] Пономаренко В.И., Трубецков Д.И. // ДАН. 1994. Т. 337. № 5. С. 602-604.
- [3] Пономаренко В.И., Трубецков Д.И. // Изв. вузов. ПНД. 1994. № 6. С. 56-65.
- [4] Trubetskov D.I., Mchedlova E.S., Anfinogenov V.G., Ponomarenko V.I., Ryskin N.M. // Chaos. V. 6. N 3. 1996. P. 358–367.
- [5] Asano T. // IEEE Trans. on ED. 1991. V. ED-38. N 10. P. 2392-2394.
- [6] Orwis W.J., McConaghy C.F., Ciarlo D.R., Yee J.H., Hee E.W. // IEEE Trans. on ED. 1989. ED-36. № 11. P. 2651–2658.
- [7] Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М: Наука, 1977. 672 с.
- [8] Андрушкевич А.В., Кипчатов А.А., Красичков Л.В., Короновский А.А. // Изв. вузов. Радиофизика. Т. XXXVIII. 1995. N 11. С. 1195–1203.