## Механизмы диссипации в джосефсоновской среде на основе ВТСП под действием магнитного поля

© Д.А. Балаев, С.И. Попков, К.А. Шайхутдинов, М.И. Петров

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: smp@iph.krasn.ru

## (Поступила в Редакцию 3 июня 2005 г.)

Приведены результаты экспериментального исследования влияния магнитного поля (0–60 kOe) на вид зависимостей R(T) композитов  $Y_{3/4}Lu_{1/4}Ba_2Cu_3O_7 + CuO$ . Данные композиты представляют собой сеть джозефсоновских переходов туннельного типа, в которых несверхпроводящий компонент (CuO) формирует границы (барьеры) между ВТСП-кристаллитами. Зависимости R(T) композитов имеют двухступенчатую структуру, характерную для гранулярных сверхпроводников: резкий скачок сопротивления при критической температуре ВТСП-кристаллитами. Полученные зависимости R(T) проанализированы в рамках модели Амбегаокара–Гальперина (АГ) для тепловых флуктуаций в джозефсоновских переходах и модели термоактивационного течения потока (крипа потока). Наблюдается кроссовер указанных механизмов с ростом магнитного поля. В диапазоне слабых магнитных полей  $0-10^2$  Oe зависимости R(T) хорошо описываются выражением, следующим из модели АГ. В диапазоне сильных полей  $10^3 - 6 \cdot 10^4$  Oe диссипация следует закону Аррениуса  $R \sim \exp(-U(H)/T)$ , характерному для модели крипа потока с температурнонезависимой энергией пиннинга U(H). Определены величины эффективной энергии джозефсоновской связи и пиннинга, соответствующие режимам АГ и течения потока.

PACS: 74.81.Fa, 74.50.+r

Исследование влияния магнитного поля на транспортные свойства высокотемпературных сверхпроводников (ВТСП), начатое вскоре после их открытия [1-5], продолжает оставаться актуальным (см., например, [6–15]), поскольку процессы диссипации и разрушения сверхпроводимости транспортным током и магнитным полем в ВТСП-материалах весьма многообразны и могут быть вызваны множеством причин [16]. В поликристаллических ВТСП резистивный переход имеет двустадийный характер [1,8-12,17]: резкий скачок электросопротивления *R*, который заметно уширяется только в сильных (10-60 kOe) магнитных полях и отражает переход ВТСП-кристаллов в сверхпроводящее состояние, а также затянутый "хвост" зависимости R(T), уширяющийся уже в слабых (десятки эрстед) полях, который определяется протеканием транспортного тока через трехмерную сеть межкристаллитных границ. Эти границы являются слабыми связями джозефсоновского типа, что и определяет высокую чувствительность электросопротивления поликристаллов ВТСП к слабым магнитным полям. К сети джозефсоновских контактов, реализующихся в гранулярных ВТСП, применим термин "джозефсоновская среда" [18].

Для описания транспортных свойств гранулярных ВТСП в магнитных полях был предложен ряд механизмов (см., например, [16]). В настоящей работе мы рассматриваем диапазоны применимости двух из них: модели Амбегаокара–Гальперина (АГ) [19] и механизма крипа магнитного потока [20]. В модели АГ [19] тепловые флуктуации в джозефсоновском переходе приводят к разрушению фазовой когерентности между двумя сверхпроводниками, образующими джозефсоновский переход. При этом разность фаз волновых функций сверхпроводников изменяется скачком — "проскальзывает" на  $2\pi$ , что приводит к появлению ненулевого падения напряжения на контакте. К аналогичному результату приводит рассмотрение термоактивационного движения вихрей в джозефсоновской среде, что было впервые показано в работе [3]. Перескоки вихрей через потенциальные барьеры также вызывают проскальзывание фазы на  $2\pi$  и появление добавочного сопротивления, что также описывается в рамках модели АГ [3]. Отношение энергии джозефсоновской связи

$$E_J(T) = \hbar I_C(T)/e \tag{1}$$

(где  $I_C(T)$  — температурная зависимость критического тока джозефсоновского перехода в отсутствие флуктуаций) к величине  $k_BT$  является мерой подавления сверхпроводящих свойств джозефсоновского перехода. В случае малого транспортного тока  $j \ll I_C$  модель АГ предсказывает следующее выражение для сопротивления, вызванного тепловыми флуктуациями [19]:

$$R = \{I_0(E_J(T)/2k_BT)\}^{-2},$$
(2)

где *I*<sub>0</sub> — модифицированная функция Бесселя. Представим (2) в виде

$$R = \{I_0(C(H)J_C(T)/2T)\}^{-2},$$
(3)

где  $J_C(T) = I_C(T)/I_C(0 \text{ K})$ , C(H) — параметр, характеризующий "силу" джозефсоновской связи, зависящий от приложенного магнитного поля,

$$C(H) = \hbar I_C(H, 0 \operatorname{K}) / k_B e = E_J(H, 0 \operatorname{K}) / k_B.$$
(4)

Модель АГ применялась для описания транспортных свойств как одиночных джозефсоновских перехо-

дов [21,22], так и поликристаллических ВТСП [8,23–25] и ВТСП-композитов [16,26] в магнитных полях. В двух последних случаях трехмерная сеть джозефсоновских переходов заменяется эффективным контактом; правомочность такого подхода обсуждалась в работах [16,23,25].

Кроме механизма АГ термоактивационное движение вихрей также описывается моделью крипа магнитного потока [20]. Зависимость R(H, T) в этой модели выражается законом Аррениуса [2]

$$R = R_0 \exp\left(-U(H, T)/k_B T\right), \tag{5}$$

где  $R_0$  — предэкспоненциальный множитель, U(H, T) полевая и температурная зависимость потенциала пиннинга, т.е. средняя величина энергетического барьера, который преодолевает вихрь (или связка вихрей) магнитного потока при движении в межгранульном пространстве, что в конечном счете приводит к появлению электросопротивления. Результаты ряда экспериментов на поликристаллических ВТСП (вторая часть зависимости R(T)) были интерпретированы в рамках указанного подхода [4,11,12,27]. В некоторых случаях наблюдается "классическое" температурно-независимое поведение U(H, T) = U(H) [4,27].

Однако в указанных работах, посвященных поликристаллам и композитам, использованные диапазоны полей, на наш взгляд, не достаточны для выявления полной картины поведения транспортных свойств джозефсоновской среды в магнитном поле. Данные по R(T)были измерены и анализировались в следующих диапазонах: 0–130 Oe [23], 0–75 Oe [25], 0–3.5 kOe [26], 1–17 kOe [8] (в рамках модели АГ); 0.3–20 kOe [11], 0–10 kOe [12], 0–300 Oe [27] (в рамках модели крипа потока).

В настоящей работе приводятся результаты измерений и интерпретация зависимостей R(T) композитов из ВТСП  $Y_{3/4}Lu_{1/4}B_2Cu_3O_7$  и оксида меди CuO в диапазоне магнитных полей от 0 до 60 kOe. Двухфазные композиты на основе ВТСП представляют собой искусственно созданную сеть джозефсоновских переходов [28,29]. Роль материала, формирующего барьеры между сверхпроводящими гранулами (т. е. джозефсоновскую связь) в композитах, выполняет несверхпроводящий компонент причем "силу" (энергию джозефсоновской связи) можно регулировать соотношением объемов компонентов. Поскольку при температурах ниже 100 K сопротивление CuO велико (>  $10^8 \Omega \cdot cm$ ), в композитах из ВТСП и CuO реализуется сеть контактов туннельного типа

Композиты были приготовлены методом быстрого спекания, описанным в работе [28]. Температурный режим: 2 min при 910°С, затем 3 h при 350°С. Транспортные свойства образцов в отсутствие магнитного поля приведены в работе [28]. Обозначим далее композиты как YBCO + VCuO, где V — концентрация CuO (в vol.%) в композите; содержание сверхпроводника — 100% — V. Зависимости R(T) измерялись стандартным четырехзондовым методом в режиме отогрева образца, предварительно охлажденного до 4.2 К. Магнитное поле H



**Рис. 1.** Температурные зависимости электросопротивления образца YBCO + 30CuO, измеренные в диапазоне магнитных полей 0-183 Oe (a) и 1-60 kOe (b).

прикладывалось перпендикулярно направлению тока, образцы охлаждались в нулевом поле. Величина плотности транспортного тока составляла  $j \sim 0.03$  A/cm<sup>2</sup>, что соответствовало значению, меньшему 1% от критического тока образцов при 4.2 К ( $j_C(4.2 \text{ K}) = 3-6 \text{ A/cm}^2$ ). Это, по нашему мнению, обеспечивало условие  $j \ll j_C$ . Уменьшение величины плотности измерительного тока ниже указанной величины уже практически не влияло на вид зависимости R(T). Увеличение j, напротив, вело к уширению резистивного перехода.

На рис. 1,2 приведены зависимости R(T) композитов YBCO + 30CuO, YBCO + 15CuO в координатах lg $R-T^{-1}$ . Видно, что в полях, меньших ~ 200 Oe (рис. 1, *a* и 2, *a*), эти зависимости не имеют линейного участка, а в больших полях (1, 10, 60 kOe для образца YBCO + 30CuO (рис. 1, *b*) и 0.4, 1.1, 5.0 kOe для образца YBCO + 15CuO (рис. 2, *b*)) они, напротив,



**Рис. 2.** Температурные зависимости электросопротивления образца YBCO + 15CuO, измеренные в диапазоне магнитных полей 0-180 Oe (*a*) и 0.4-5.0 kOe (*b*).

линейны в широком интервале температур. Это указывает на выполнение закона (5) при приблизительно температурно-независимой энергии пиннинга. Подобно тому как это было сделано авторами ряда работ (см., например, [11,25]), можно найти функциональную зависимость U(T) в виде  $U(T) = (1-T/T_C)^q$  в слабых магнитных полях. Действительно, можно определить, что  $q \approx 2.9$  при H = 0 Oe,  $q \approx 2.3$  при H = 38 Oe,  $q \approx 2.2$  при H = 79 Oe,  $q \approx 1.6$  при H = 180 Oe для этого образца (причем такой подход не позволяет описать область малых значений сопротивления  $R/R(T_C) < 10^{-2}$ ). Однако далее показано, что возможен другой подход к описанию R(T) композитов в диапазоне слабых (< 200 Oe) магнитных полей.

Для описания экспериментальных R(T) в рамках модели АГ необходимо определить зависимость  $J_C(T)$ . Мы использовали классическую зависимость Амбегаокара-Баратова (АБ) [30] для туннельного джозефсоновского перехода. Ранее именно она была использована при описании R(T) композитов ВТСП + СиО в отсутствие магнитного поля [28] в рамках модели АГ. Таким образом, кроме слабо варьируемых параметров:  $R(T_{CI})$  — сопротивления барьеров, разделяющих ВТСПкристаллиты (величина второй ступени R(T)), и величины ТСЈ — критической температуры, при которой все ВТСП-кристаллиты уже перешли в сверхпроводящее состояние, остается только один подгоночный параметр — C(H), определяемый выражением (4). На рис. 3,4 приведены результаты подгонки экспериментальных зависимостей R(T) в магнитных полях по модели АГ с помощью выражения (3) для композитов YBCO + 30CuO и YBCO + 15CuO соответственно. Оси X, Y и Z соответствуют температуре, магнитному полю и сопротивлению, нормированному на значение R в начале перехода ВТСП-кристаллитов ( $T_C = 93.5 \,\mathrm{K}$ ), неизменному для всех композитов. Зависимости R(T)композитов характеризуются двухступенчатой структурой (см. выше). Теория АГ описывает температурное поведение второй, плавной части R(T). Наблюдается хорошее согласие между экспериментом и теоретическими кривыми для полей до ~ 150 Ое. Оно сохраняется и в диапазоне малых значений R, на три порядка меньших величины  $R(T_{CJ})$ , что хорошо видно из рис. 3, b и 4, b, на которых данные по сопротивлению приведены в логарифмической шкале. Обращает на себя внимание несовпаление эксперимента и теории АГ в полях, бо́льших  $\sim 150 \,\text{Oe}$  (см. зависимости R(T) при H = 180 Ое на рис. 3, а и 4, а). В полях 0.4, 1, 5, 10 и 60 kOe это расхождение для исследованных образцов увеличивается и достигает  $\sim 100\%$ .

На основании результатов, приведенных выше, можно заключить, что в полях до  $\sim 10^2 \, {
m Oe}$  диссипация в сети джозефсоновских переходов происходит по сценарию модели АГ, а в сильных магнитных полях, бо́льших  $\sim 10^3$  Oe, имеет место крип магнитного потока, в этом случае R определяется выражением (5). Такая картина представляется авторами реалистичной, и существует несколько возможных объяснений такого поведения на качественном уровне. Во-первых, согласно широко признанной модели джозефсоновской среды [18], уже в нулевом поле мейсснеровское состояние в подсистеме межкристаллитных границ является разрушенным: магнитное поле проникает в образец в виде малоподвижных сетчатых гипервихрей, размеры которых уменьшаются, а их число растет с увеличением поля. При достижении некоторого поля Н<sub>J</sub> гипервихри трансформируются в вихри Джозефсона [7,18]. В работе [7] это поле Н<sub>1</sub> было сопоставлено с полем необратимого поведения зависимости намагниченности от магнитного поля *H*<sub>irr</sub> в магнитных измерениях. Значения *H*<sub>irr</sub> из работы [7] и других экспериментов на иттриевой ВТСПсистеме [9,31] составляют десятки эрстед в районе 77 К. Ясно, что в окрестности H<sub>J</sub> или H<sub>irr</sub>, где происходит YBCO + 30CuO



**Рис. 3.** a — температурные зависимости электросопротивления композита YBCO + 30CuO в зависимости от приложенного магнитного поля (точки). Сплошные линии — результаты наилучшей подгонки по модели АГ [19]: с помощью выражения (3) при значениях C(H), равных 1760, 1080, 860, 620 при возрастании поля. b — то же в логарифмической шкале по R.  $R(T_{CJ})$  и  $T_{CJ}$  — параметры, использованные для построения теоретических зависимостей R(T).

перестройка структуры вихрей, можно ожидать и изменения характера магнитосопротивления сети слабых связей. В образцах, исследованных в настоящей работе, величина  $H_{\rm irr}$  составляет  $\approx 38$  Ое при 77 К — как по данным электрических (R(H)), так и по данным магнитных измерений. Возможно, что ввиду разброса геометрических параметров сети джозефсоновских переходов в композитах YBCO + CuO смена характера магнитосопротивления оказывается трудноопределимой.

Во-вторых, при некоторой величине магнитного поля  $H_{C1g}$  для кристаллитов начинается процесс проникновения поля уже в сверхпроводящие гранулы, причем значение  $H_{C1g}$  в районе 77 К также может составлять десятки и сотни эрстед [9,13,15,18]. Становится вероятным процесс взаимодействия двух вихревых подсистем: джозефсоновские вихри из слабых переходят в гранулы в виде абрикосовских вихрей (и наоборот). Эти процессы могут отразиться и на температурном поведении сопротивления сети слабых связей, что видно в эксперименте.

И наконец, как было отмечено в работе [16], формально механизмы АГ и крипа потока различаются только выбором потенциала пиннинга, в модели АГ потенциал периодический (уравнение поведения джозефсоновского контакта эквивалентно описанию броуновской частицы в периодическом потенциале [19]), тогда как в модели крипа потока нет строгих ограничений на расположение центров пиннинга относительно друг друга. С ростом магнитного поля вследствие действия силы Лоренца



**Рис. 4**. *а* — температурные зависимости электросопротивления композита YBCO + 15CuO в зависимости от приложенного магнитного поля (точки). Сплошные линии — результаты наилучщей подгонки по модели АГ [19]: с помощью выражения (3) при значениях C(H), равных 3000, 1980, 1500, 1150, 1000, 820 при возрастании поля. *b* — то же в логарифмической шкале по *R*.

изменяется профиль координатной функции потенциала пиннинга, уменьшается сила пиннинга как градиент потенциала. Это приводит к тому, что в больших полях остаются только самые глубокие центры пиннинга. Следовательно, в больших полях (>  $10^3$  Oe) создаются условия, близкие к модели крипа потока. В диапазоне полей  $10^2 - 10^3$  Oe, видимо, имеет место сосуществование обоих механизмов или происходит кроссовер от поведения, описываемого в рамках модели АГ, к режиму крипа потока.

Из наклонов графиков  $\lg R(T^{-1})$  (рис. 1, *b* и 2, *b*) определяется энергия пиннинга джозефсоновских вихрей в межгранульном пространстве U(H). В то же время на основании результатов наилучшей подгонки экспериментальных зависимостей R(T) в рамках теории АГ (значений C(H)) можно получить среднюю энергию джозефсоновских связей в сети переходов  $E_I(H, 0 \text{ K})$ . Из (4) следует  $E_I(H, 0 \text{ K}) = k_B C(H)$ . Величины  $E_J(H, 0 \, \text{K})$  и U(H) приведены для композитов в двойной логарифмической шкале на рис. 5. Точки для режимов АГ и крипа потока ложатся на прямые. Это указывает на степенной закон зависимостей U(H) и  $E_I(H) \sim H^{-n}$ . Для области полей  $\sim 10-2 \cdot 10^2$  Ос  $E_I(H) = H^{-0.38}$ YBCO + 30CuO и  $E_J(H) = H^{-0.39}$ образца для образца YBCO + 15CuO. В диапазоне полей для  $10^3 - 6 \cdot 10^4$  Oe  $U(H) = H^{-0.2}$  для YBCO + 30CuO. Для образца YBCO + 15CuO в диапазоне полей  $0.4 \cdot 10^3 - 5 \cdot 10^3$  Ос  $U(H) = H^{-0.25}$ . Показатели степени для режима АГ близки к значениям, найденным при подобной обработке R(T) в рамках модели АГ для поликристаллов  $YBa_2Cu_3O_7$  [25,26] (n = 0.3 - 0.5) и  $Bi_{1.7}Pb_{0.2}Sb_{0.1}Sr_2Ca_2Cu_3O_{10}$  [23] (n = 0.33) (также в слабых полях до ~ 200 Ое), причем в [23] полученный показатель степени объясняется на основании усреднения фраунгофферовской зависимости  $J_C(H)$ джозефсоновских переходов при учете разброса физических параметров межкристаллитных границ в ВТСПполикристалле [32]. Смена показателя степени *п* для различных режимов, обнаруженная в данной работе, также свидетельствует в пользу того, что в переходной области  $10^2 - 10^3$  Ое происходит смена механизма диссипации.

Некоторые авторы для процедуры подгонки экспериментальных зависимостей R(T) с помощью модели АГ использовали феноменологическую зависимость  $E_J(T) = (1 - T/T_{CJ})^{\alpha}$ , а следовательно, и  $J_C(T)$  [8,21–23,25,26]. Мы получали согласие эксперимента и теории, несколько худшее, чем на рис. 3,4, при  $\alpha = 0.65 - 0.75$ , т.е. в том случае, когда функция  $a(1 - T/T_{CJ})^{\alpha}$  (где a — константа) в области высоких температур  $0.7T/T_{CJ} \le T \le 1T/T_{CJ}$  может аппроксимировать зависимость АБ (непосредственно вблизи Тсл, т.е. при 0.93  $T/T_{CJ} \le T \le 1T/T_{CJ}$ , зависимость АБ линейна,  $\alpha = 1$  [30]). Однако для образца YBCO + 45CuO даже при H = 0 сопротивление появляется уже при  $\approx 12 \,\mathrm{K} \approx 0.13 T/T_{CJ}$ , и температурный "хвост" R(T)удовлетворительно описывается в рамках модели АГ именно с использованием зависимости  $J_C(T)$  из модели



**Рис. 5.** Зависимости от магнитного поля эффективной джозефсоновской энергии связи  $E_J(H, 0 \text{ K})$ , вычисленные при условиях наилучшей подгонки в рамках модели АГ (см. рис. 3, 4) из C(H) (выражение (4)), и энергии пиннинга вихрей U(H), полученные из наклонов графиков lg  $R(T^{-1})$  (см. рис. 1, 2) по выражению (5), для композитов YBCO + 15CuO и YBCO + 30CuO.



**Рис. 6.** Температурная зависимость электросопротивления композита YBCO + 45CuO при H = 0,  $j = 0.003 \text{ mA/cm}^2$  (точки). Сплошная линия — наилучшая подгонка в рамках модели АГ (выражение (3)) при значении C = 280 с использованием  $J_C(T)$  из модели АБ.

АБ (рис. 6). Значит, несогласие эксперимента и теории в области низких температур  $(0.1T/T_{CJ} \le T \le 0.5T/T_{CJ})$  для полей более ~ 150 Ое не является следствием того, что в этой области  $J_C(T)$  подчиняется другому закону. Использование зависимости  $J_C(T)$  из модели АБ для описания резистивного перехода сети джозефсоновских контактов туннельного типа в рамках модели АГ представляется авторам логичным.

Таким образом, в настоящей работе на основании измерений зависимостей R(T) как в слабых  $(H \sim 0-200 \text{ Oe})$ , так и в сильных магнитных полях  $(H \sim 10-60 \text{ kOe})$  сделан вывод о смене механизмов

диссипации в сети джозефсоновских переходов с увеличением магнитного поля. Ранее при подобных исследованиях резистивного состояния джозефсоновских сред в магнитных полях (видимо, из-за использования меньших интервалов магнитных полей) авторы ограничивались рассмотрением только одного механизма диссипации [8,11,12,23–25,27]. Результаты обработки экспериментальных зависимостей в рамках R(T) моделей АГ и крипа потока указывают на то, что в диапазоне полей ~  $0.5 \cdot 10^{-1} - 10^2$  Ое диссипация происходит по механизмов диссипации, а в сильных магнитных полях (~  $10^3 - 6 \cdot 10^4$  Ое) электросопротивление обусловлено крипом магнитного потока.

Авторы благодарят А.В. Митина за полезные дискуссии. Один из авторов (Д.А. Б.) признателен Л. Ичкитидзе за обсуждение результатов.

## Список литературы

- M.A. Dubson, S.T. Herbet, J.J. Calabrese, D.C. Harris, B.R. Patton, J.C. Garland. Phys. Rev. Lett. 60, 1061 (1988).
- [2] T.T.M. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak. Appl. Phys. Lett. 54, 763 (1989).
- [3] M. Tinkham. Phys. Rev. Lett. 61, 1658 (1988).
- [4] J.D. Hettinger, A.G. Swanson, J.S. Brooks, Y.Z. Huang, L.Q. Chen, Zhong-Xian Zhao. Supercond. Sci. Technol. 1, 349 (1989).
- [5] Б.А. Аронзон, Ю.В. Гершанов, Е.З. Мейлихов, В.Г. Шапиро. СФХТ 2, 83 (1989).
- [6] С.И. Волков, Ю.Е. Григорашвили, Л.П. Ичкитидзе. Изв. вузов. Электроника 4-5, 128 (2000).
- [7] Н.Д. Кузьмичёв. ФТТ **43**, *11*, 1934 (2001).
- [8] H. Shakeripour, M. Akhavan. Supercond. Sci. Technol. 14, 234 (2001).
- [9] D. Daghero, P. Mazzetti, A. Stepanescu, P. Tura. Phys. Rev. B 66, 184 514 (2002).
- [10] L. Burlachkov, E. Mogilko, Y. Schlessinger, Y.M. Strelniker, S. Havlin. Phys. Rev. B 67, 104 509 (2003).
- [11] M.R. Mohammadizadeh, M. Akhavan. Supercond. Sci. Technol. 16, 234 (2003).
- [12] H. Khosroabadi, V. Daadmehr, M. Akhavan. Physica C 384, 169 (2003).
- [13] В.В. Деревянко, Т.В. Сухарева, В.А. Финкель. ФТТ **46**, 1740 (2004).
- [14] А.А. Суханов, В.И. Омельченко. ФНТ 30, 604 (2004).
- [15] P. Mune, F.C. Fonesca, R. Muccillo, R.F. Jardim. Physica C 390, 363 (2003).
- [16] R.J. Soulen, Jr., T.L. Francavilla, W.W. Fuller-Mora, M.M. Miller. Phys. Rev. B 50, 478 (1994).
- [17] А.В. Митин. СФХТ 7, 62 (1994).
- [18] Э.Б. Сонин. Письма в ЖЭТФ 47, 415 (1988).
- [19] V. Ambegaokar, B.I. Halperin. Phys. Rev. Lett. 22, 1364 (1969).
- [20] P.W. Anderson. Phys. Rev. Lett. 9, 309 (1962).
- [21] R. Gross, P. Chaudhari, D. Dimos, A. Gupta, G. Koren. Phys. Rev. Lett. 64, 228 (1990).
- [22] J. Gao, Yu.M. Boguslavskij, B.B.G. Klopman. J. Appl. Phys. 72, 575 (1992).

- [23] A.C. Wright, K. Zhang, A. Erbil. Phys. Rev. B 44, 863 (1991).
- [24] A.C. Wright, T.K. Xia, A. Erbil. Phys. Rev. B 45, 5607 (1992).
- [25] C. Caffney, H. Petersen, R. Bednar. Phys. Rev. B 48, 3388 (1993).
- [26] H.S. Gamchi, G.J. Russel, K.N. R. Taylor. Phys. Rev. B 50, 12950 (1994).
- [27] E. Babic, I. Kusevic, S.X. Dou, H.K. Liu, O.Y. Hu. Phys. Rev. B 49, 15 312 (1994).
- [28] М.И. Петров, Д.А. Балаев, К.А. Шайхутдинов, К.С. Александров. ФТТ 41, 969 (1999).
- [29] М.И. Петров, Д.А. Балаев, К.А. Шайхутдинов. С.И. Попков. Письма в ЖЭТФ 75, 166 (2002).
- [30] V. Ambegaokar, A. Baratoff. Phys. Rev. Lett. 10, 486 (1963);
   11, 104 (1963).
- [31] K.Y. Chen, Y.J. Quian. Physica C 159, 131 (1989).
- [32] R.L. Peterson, J.W. Ekin. Phys. Rev. B 37, 9848 (1988).