Индуцированная примесная фотопроводимость в кристаллах Si- и Ge-силленитов

© Т.В. Панченко

Днепропетровский государственный университет, 320625 Днепропетровск, Украина

(Поступила в Редакцию 30 июня 1997 г.)

В нелегированных и легированных ионами Al, Ga, Cr, Cu, Mn и V кристаллах $\mathrm{Bi}_{12}\mathrm{SiO}_{20}$ и $\mathrm{Bi}_{12}\mathrm{GeO}_{20}$ в оптическом диапазоне $0.5-3.5\,\mathrm{eV}$ при температурах $85-95\,\mathrm{K}$ и $285-295\,\mathrm{K}$ исследованы спектральное распределение интенсивности и релаксации фотопроводимости, индуцированной УФ-облучением. Показано, что в коротковолновой области $2.2-3.5\,\mathrm{eV}$ она контролируется многоцентровой рекомбинацией с участием центров "быстрой" и "медленной" рекомбинации.

Кристаллы силленитов $Bi_{12}MO_{20}$ (BMO), где M = Si, Ge, Ti, — сложный объект для исследования неравновесных процессов в связи с богатым спектром локальных состояний запрещенной зоны. Полезную информацию о схемах электронных переходов дает индуцированная примесная фотопроводимость (ИПФ). Она наблюдалась в чистых кристаллах $Bi_{12}SiO_{20}$ (BSO), $Bi_{12}GeO_{20}$ (BGO), а также в кристаллах BSO, легированных ионами Cr, Mn, Ni [1-5], и характеризуется увеличением фотопроводимости на 1-2 порядка величины с "красной границей" $h\nu_f \leqslant 2.1\,\mathrm{eV}$. Переход в состояние ИПФ сопровождается ростом дрейфовой подвижности фотоносителей [2], изменением типа люкс-амперных характеристик [3] и кинетики релаксации [4,5]. Эти эффекты нельзя объяснить в рамках простой модели [1], связывающей ИПФ с заполнением донорных уровней за счет опустошения (светом с $h\nu > 2.1\,\mathrm{eV}$) акцепторных, без учета механизма рекомбинации. На многоцентровую рекомбинацию в кристаллах ВМО указывают эффекты термической активации и гашения фотопроводимости, которые хорошо описываются с помощью *s*-центров "быстрой" и r-центров "медленной" рекомбинации [6–9].

В данной работе приведены результаты исследования ИПФ в кристаллах BSO и BGO при температурах $T_1 = 285-295\,\mathrm{K}$ и $T_2 = 85-95\,\mathrm{K}$, соответствующих механизмам быстрой или медленной рекомбинации [8,9].

Исследовались номинально чистые и легированные ионами Al, Ga, Cr, V, Cu и Mn кристаллы BSO и BGO, выращенные методом Чохральского. Содержание примеси составляло $6\cdot 10^{-3}$ (Cr), $3\cdot 10^{-2}$ (Mn), $5\cdot 10^{-2}$ (V), $3\cdot 10^{-1}$ (Cu), $4\cdot 10^{-2}$ (Ga) и $6\cdot 10^{-3}$ wt.% (Al). Образцы были приготовлены в виде полированных пластин толщиной 0.3-0.7 mm с большими плоскостями (001), на которые наносились Ag-электроды, вожженные в вакууме. Все образцы перед измерениями прогревались в темноте до 700 K.

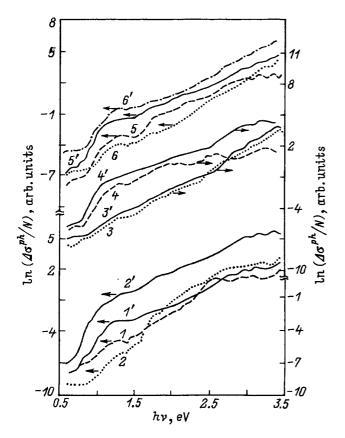
Исследовались спектральное распределение стационарной и индуцированной фотопроводимости ($\Delta\sigma^{\rm ph}(h\nu)$) в диапазоне $h\nu=0.5-3.5\,{\rm eV}$ и релаксация ИПФ. Использовался монохроматор SPM-2 с разрешающей способностью не хуже $0.02\,{\rm eV}$. Источником света служила лампа накаливания мощностью $400\,{\rm W}$, свет модулировался с частотой $12\,{\rm Hz}$. Зависимости $\Delta\sigma^{\rm ph}(h\nu)$

нормировались относительно аппаратной функции распределения потока фотонов $N(h\nu)$. Измерения проводились от низких к высоким значениям $h\nu$ во избежание неконтролируемой ИПФ. Использовались режим постоянного поля $E=100-200\,\mathrm{V\cdot cm^{-1}}$ и техника синхронного детектирования. ИПФ возбуждалась ртутной лампой в полосе $h\nu\approx3.4\,\mathrm{eV}$ (зона-зонное возбуждение).

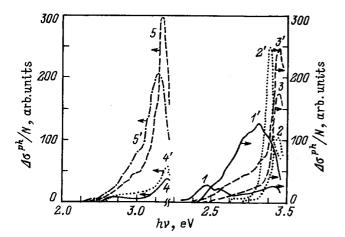
ИПФ наблюдалась (в отличие от [1-3] и в соответствии с [4,5]) во всем спектральном диапазоне. Ярко выраженным является усиление ИПФ при понижении температуры в кристаллах, легированных Cr, Mn, Cu и V (рис. 1).

Для анализа ИПФ выделим две области: длинноволновую $\Delta h\nu_1=0.5-2\,\mathrm{eV}$ (примесного поглощения) и коротковолновую $\Delta h\nu_2=2.2-3.5\,\mathrm{eV}$ (область "плеча" поглощения, обусловленного собственными дефектами, примыкающую к краю фундаментального поглощения).

В области $\Delta h \nu_1$ наблюдается ИПФ, типичная для широкозонных полупроводников и обусловленная заполнением примесных уровней. При T_1 она наибольшая в кристаллах BSO: Cu, BSO: Ga. Понижение температуры до $T_2 \approx 85-95$ К приводит к увеличению ИПФ, наиболее значительному для кристаллов BGO: Mn (рис. 1). Энергия оптической активации $E_a^{\rm Op}$, найденная по порогам примесных фотоэффектов, приведена в таблице.


Оптическая энергия активации E_a^{Op} (в eV) примесных уровней в кристаллах BSO и BGO

BSO	BGO:Al	BSO:Ga	BGO: Mn	BSO:Cr	BSO:Cu	BSO: V
0.79	0.84	0.86	0.84	0.74	0.72	0.86
1.02	1.52	1.24	1.0	1.13	0.83	1.0
1.5	2.45*	1.24	1.36	1.37	1.23	1.32
1.92	2.6*	2.2	1.52	1.48	1.5	1.43
2.22	3.0	3.13	1.92	1.93	1.9	1.52
2.45*	3.19		2.18*	2.45	2.26	1.89
2.6*	3.39		2.48*	2.55	2.52	2.23
2.86			2.55*	2.87	2.89	2.8
3.03			3.04	3.02	3.07	3.02
3.2				3.26	3.23	3.27


^{*} Полосы фоточувствительности, интенсивность которых убывает под действием УФ-подсветки.

1028 Т.В. Панченко

Релаксация фототока имеет "быструю" и две "медленные" компоненты с характерными значениями времен релаксации: $\tau_1=0.2\,\mathrm{s},\ \tau_2=62\,\mathrm{s}$ и $\tau_3=120\,\mathrm{s},\$ что указывает на участие уровней прилипания, параметры которых определены в [8,9].

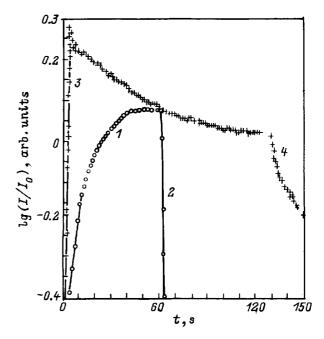

Рис. 1. Спектральное распределение стационарной (1–6) и индуцированной (1'–6') фотопроводимости кристаллов BSO (1, 1'), BSO:Cu (2, 2'), BGO:Al (3, 3'), BSO:V (4, 4'), BSO:Cr (5, 5'), BGO:Mn (6, 6'). T=90 K.

Рис. 2. Коротковолновое спектральное распределение интенсивности стационарной (1-5) и индуцированной (1'-5') фотопроводимости кристаллов BSO (1,1'), BSO: Ga (2,2'), BSO: Cr (3,3'), BSO: Cu (4,4'), BGO: Mn (5,5'). T=290 K.

В коротковолновой области $\Delta h \nu_2$ механизм ИПФ более сложный. В кристаллах BSO и BGO УФ-подсветка вызывает уменьшение фоточувствительности в полосе с $h
u_{
m max} = 2.48\,{
m eV}$ и значительный ее рост в области вблизи края поглощения ($h
u\sim 3.3\,\mathrm{eV}$), где выделяются полосы с $h\nu_{\rm max}=3$ и 3.1 eV (понижение температуры до T_2 смещает их в область больших $h\nu$). Аналогичное распределение интенсивности ИПФ наблюдается в кристаллах BSO:Cu и BSO:V. В кристаллах BGO:Mn, BSO:Cr, BGO: Al и BSO: Ga оно близко к экспоненциальному и наблюдается в более узкой прикраевой полосе (рис. 2). Принимая во внимание, что ионы Al и Ga практически полностью, а ионы Сг и Мп частично компенсируют (в роли акцепторов) оптическое поглощение и фоточувствительность ВМО в области плеча [10–12], заключаем, что спектральное распределение интенсивности ИПФ зависит от степени компенсации.

Стационарный фототок под действием прямоугольного импульса света в полосе с $h\nu_{\rm max}=2.48\,{\rm eV}$ устанавливается, подчиняясь обычной закономерности $I_{\rm max}(1-t/\tau)$, где τ имеет компоненты $\tau_1=2.5\,{\rm s}$, $\tau_2=18.5\,{\rm s}$ и $\tau_3=60\,{\rm s}$ характеризующие также и его экспоненциальный спад (рис. 3). В состоянии ИПФ механизм релаксации фотоотклика изменяется: она приобретает "вспышечный" характер, при этом установление фототока может быть описано выражением типа $I=\{A/(\tau^{-1}-B)\}\times\{\exp(-Bt)-\exp(-t/\tau)\}$, где τ изменяется в пределах $1-370\,{\rm s}$ и $A,B={\rm const.}$ После вспышки фототок не спадает до нуля, а устанавливается на уровне $I_0=0.7I_{\rm max}$. После выключения света ИПФ спадает значительно медленнее стационарной (рис. 3). Вспышечный характер релаксации свидетельствует о

Рис. 3. Кривые релаксации стационарной (1,2) и индуцированной (3,4) фотопроводимости кристаллов BSO при возбуждении прямоугольным импульсом света длительностью $60\,(1,2)$ и $130\,\mathrm{s}\,(3,4)$. $T=290\,\mathrm{K}$.

процессах оптической перезарядки примесных центров. Согласно [11], за поглощение и фоточувствительность в области $\Delta h\nu_2$ ответственны дефекты нестехиометрии: ионы $\mathrm{Bi^{3+}}$ и $\mathrm{Bi^{5+}}$ в роли акцепторов и доноров, замещающие ионы $\mathrm{Si^{4+}}$ в узлах Si-подрешетки. Поэтому возможным механизмом перезарядки являются переходы типа $\mathrm{Bi_{5^+}^{5^+}} + 2e \to \mathrm{Bi_{5^-}^{3^+}}$.

Влияние температуры на ИПФ сводится к следующему. Вблизи T_1 интегральная ИПФ ($\int \Delta \sigma^{\rm ph}(h\nu)d(h\nu)$) — наибольшая для кристаллов BSO, BGO, BSO: Ga, BGO: Al (группа A), а при T_2 — для кристаллов BSO: Cu, BGO: Mn, BSO: V, BSO: Cr (группа B, рис. 2). Такая ситуация вполне определяется эффектом температурного гашения фотопроводимости. В [9] показано, что вблизи T_1 наиболее сильное (по сравнению с нелегированными кристаллами) гашение фотопроводимости имеет место в кристаллах группы B, например в кристаллах, легированных Сг и Сu, в то время как при T_2 гасится фотопроводимость кристаллов группы A.

Таким образом, можно предложить следующий механизм ИПФ: УФ-освещение обусловливает фотохимическое превращение глубоких примесных центров донорного типа ($\mathrm{Bi}_{\mathrm{Si}}^{5+}$, например) в "очувствляющие" r-центры медленной рекомбинации акцепторного типа (возможно, ${\rm Bi_{Si}^{3+}}$). Это обусловливает ИПФ за счет увеличения времени жизни фотоносителей, ее величина нелинейно зависит от степени участия г-центров в процессах рекомбинации. Сильное температурное гашение фотопроводимости указывает на переключение с г-центров медленной на *s*-центры быстрой рекомбинации, при этом эффект ИПФ ослабляется. В [8] показано, что спектральный диапазон фотопроводимости, которая контролируется r- и s-центрами рекомбинации, имеет красную границу $\approx 2.1 \, \text{eV}$, что соответствует рассматриваемой спектральной области.

Автор выражает признательность 3.3. Янчуку за помощь в проведении экспериментов.

Список литературы

- [1] А.Я. Волосов, В.Х. Костюк, А.Ю. Кудзин, Г.Х. Соколянский. ФТТ **23**, 7, 2187 (1981).
- [2] В.Х. Костюк, А.Ю. Кудзин, Г.Х. Соколянский. ФТТ **22**, *8*, 2454 (1980).
- [3] В.П. Авраменко, А.Ю. Кудзин, Г.Х. Соколянский. ФТТ **26**, 2, 485 (1984).
- [4] И.А. Карпович, Е.Е. Колосов, Е.И. Леонов, В.М. Орлов, М.В. Шилова. Изв. АН СССР. Неорган. материалы **21**, *6*, 965 (1985).
- [5] М.В. Шилова, В.М. Орлов, Е.И. Леонов Е.Е. Колосов, И.А. Карпович. Изв. АН СССР. Неорган. материалы 22, 1, 103 (1986).
- [6] И.С. Захаров, И.А. Петухов, В.М. Скориков, М.Г. Кистенева. Изв. вузов. Физика, *6*, 85 (1985).
- [7] И.С. Захаров. ФТТ **27**, *4*, 1062 (1985).
- [8] Т.В. Панченко, З.З. Янчук. ФТТ 38, 7, 2018 (1996).
- [9] Т.В. Панченко, З.З. Янчук. ФТТ 38, 10, 3042 (1996).

- [10] Т.В. Панченко, Н.А. Трусеева. УФЖ 29, 8, 1186 (1984).
- [11] Т.В. Панченко, В.Х. Костюк, С.Ю. Копылова. ФТТ 38, 1, 155 (1996).
- [12] Т.В. Панченко, А.Ю. Кудзин, В.Х. Костюк. Изв. АН СССР. Неорган. материалы **19**, *7*, 1144 (1983).