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Squeezed states of a particle in magnetic field
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For a charged particle in a homogeneous magnetic field, we construct stationary squeezed states which are
eigenfunctions of the Hamiltonian and the non-Hermitian operator X̂Φ = X̂ cos Φ + Ŷ sin Φ, X̂ and Ŷ being the
coordinates of the Larmor circle center and Φ is a complex parameter. In the family of the squeezed states, the
quantum uncertainty in the Larmor circle position is minimal. The wave functions of the squeezed states in the
coordinate representation are found and their properties are discussed. Besides, for arbitrary gauge of the vector
potential we derive the symmetry operators of translations and rotations.

The problem of a charged quantum particle moving on
a plane subject to a homogeneous magnetic field is met
in various physical contexts, and it has been extensively
studied in the literature and presented in text-books [1]. A
specific feature of the problem is that the energy spectrum
given by discrete Landau levels is multiple degenerate: the
number of linearly independent eigenstates belonging to the
N-th Landau level is proportional to the area of the plane
accessible to the particle. The degeneracy is related to
the translational invariance: as a classical Larmor circle
can be put anywhere in the plane, a suibably defined
operator of translation T̂a = e

i
h a·P̂, P̂ being the generator

of translations, commutes with the Hamiltonian and upon
acting on an energy eigenfunction ψN(r) produces another
eigenstate, shefted in space: |T̂aψN(r)|2 = |ψN(r+a)|2 [2,3].
Non-collinear translations do not commute in a magnetic
field, and [P̂x, P̂y] 6= 0. The existence of two non-commuting
Hermitian operators, P̂y, each of them commuting with the
Hamiltonian leads [1] to the degeneracy.

The stationary wave functions corresponding to a degen-
erate Landau level may be chosen to be eigenfunctions
of either P̂x or P̂y (but not both simultaneously). The
eigenvalues of P̂x,y are real, and the translation operator
eiaP̂x (or eiaP̂y) applied to the corresponding eigenfunction
gives only an overall phase factor. The modulas remains
unchanged by the translations, so that the eigenstates must
be infinitely extended in the x- (or y-) direction. The wave
functions of an electron in a magnetic field first found by
Landau [1,4] give an example: factorized as eipxχ(y), they
are eigenfunctions of P̂x and are infinitely extended in the
x-direction (strip-like states).

As discussed later, in the relation

P̂ =
e
c

B× R̂, (1)

R̂ =
(
X̂, Ŷ

)
has the meaning of the operator corresponding

to the classical coordinate of the Larmor circle center (the
guiding center); χ̂ = c

eBP̂y and Ŷ = − c
eBP̂x. The variable R

has simple classical interpretation, and for this reason, it will
be used below rather than P.

Instead of X̂ or Ŷ (P̂x or P̂y), one may choose their
Hermitian linear combination X̂Φ = X̂ cos Φ + Ŷ sin Φ with
a real Φ. The corresponding eigenstates are ”strips” the
orientation of which depends on the angle Φ. A different
class of states can be obtained if the wave function is
closen to be an eigenfunction of the non-Hermitian operator
X̂Φ with a complex ”angle” Φ = Φ1 + iΦ2. By virtue
of the relation in Eg. (1), the eigenfunctions of X̂Φ are
also eigenfunctions of P̂Φ+ π

2
. In the case of a general

complex Φ, eigenvalues of the non-Hermitian operator P̂Φ+ π
2

are complex numbers, and the above argument concerning
an infinite extension of the state is not applicable; the
eigenfunctions turn out to be localized (i. e. the wave
function vanishes at infinity).

In the terminology of quantum optics (for a review see [5]
and references therein) these states belong to the class of
squeezed states, generalization of the coherent states. In
optics the squeezed state is defined as an eigenfunction
of a non-Hermitian operator, x̂ − iλ p̂, built of two non-
commuting variables, the coordinate and momentum of a
harmonic oscillator (λ being the squeeze parameter). A
distinctive feature of squeezed states is that the quantum
uncertainty in the non-commuting variables, is as minimal
as allowed by the uncertainty relation (minimum uncertainty
states). The purpose of the paper to analyze properties of
the squeezed states, eigenfunctions of X̂Φ.

Solutions of the Schrödinger equation for a charge in a
magnetic field corresponding to non-spreading wave packets
with a classical dynamics — the coherent states in the
modern terminology — were first built by Darwin as early
as in 1928 [6]. More recently, the coherent states in the
magnetic field problem have been extensively studied by
Malkin and Man’ko [7], and Feldman and Kahn [8] (see
also Ref. [9–11]). In the coherent states, the quantum
uncertainties in the X- and Y-coordinates of the Larmor
center are equal. Various generalizations to the squeezed
states have been done by Dodonov et al. [12,13] and
Aragone [14]: In the general squeezed state, the uncertainty
in one of the coordinates is reduced at the expense of the
other one so that their product remains intact.
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In the present paper, we consider stationary states,
building the squeezed states from the energy eigenfunction
belonging to a given Landau level. Being stationary, these
states are of different kind than the moving squeezed wave
packets of Ref. [12,14].

The paper is organized as follows. In Section 1, we review
some general features of the quantum problem of a charge
in a magnetic field. In Section 2, we define the squeezed
states and explicitly find the wave functions in the coordinate
representation. In Section 3, properties of the squeezed
states are analyzed. In the Appendix, we suggest a method
which allows one to construct symmetry operators for an
arbitrary gauge of the vector potential and apply the method
to the case of a homogeneous magnetic field.

1. General Properties

The Hamiltonian of a particle with mass m and electric
charge e moving in the x− y plane in a magnetic field reads

Ĥ =
1

2m

(
p̂−

e
c

A
)2
, (2)

here the vector potential A(Ax, Ay) corresponds to a ho-
mogeneous magnetic field perpendicular to the plane,
(rot A)z = B. The choise of signs in some of the below
formulae depends on the sign of eB; for definiteness, we
assume eB> 0. In terms of the ladder operators

ĉ =
1

√
2lωc

(v̂x + iv̂y) , ĉ† =
1

√
2lωc

(v̂x− iv̂y) , (3)

where ĉx,y are the non-commuting components of the
velocity operator

mv̂ = p̂−
e
c

A, [v̂x, v̂y] = i
~2

m2l2
(4)

(the cyclotron frequency ωc = |eB|
mc and the magnetic length

l =
√
~c/|eB|), the Hamiltonian Eq. (2) can be conveniently

written as

Ĥ = ~ωc

(
ĉ†ĉ +

1
2

)
,

[
ĉ, ĉ†

]
= 1. (5)

In the presence of a homogeneous magnetic field, the
translations in the x−y plane and rotations around the z-axis
remain symmetry elements. The reflection, σv, in a plane
passing through the z-axis (y0z, for definiteness), reverses
the magnetic field and is not a symmetry transformation.
However, the product σT ≡ Tσv of time–reversal T and σv,
both reversing the field, is a valid symmetry.

It is well-known that the Hamiltonian Eq. (2) may not
commute with the operators associated with the physical
symmetries because the vector field A(r) has a lower
symmetry than the corresponding magnetic field. If this is
the case, the coordinate transformation should be accompa-
nied by a certain gauge transformation which compensates
the change in A(r) [3]. A procedure of constructing the

transformation, which is valid for arbitrary gauge of the
vector potential, is presented in the Appendix.

As shown in the Appendix, the operators of finite
translations, r → r + a, are built of the generator of
translations

P̂ = p̂−
e
c

A +
e
c

B× r. (6)

The operator P̂ commutes with the Hamiltonian Eq. (2)
as manifestation of the translation invariance preserved in a
homogeneous magnetic field. The components of P̂ obey
the commutation relation[

P̂x, P̂y
]

= −i
e
c
~B. (7)

Equation (6) is valid in an arbitrary gauge of the vector
potential A. In case of the symmetric gauge, A = 1

2 (B× r),
Eq. (6) gives the expression first found by Zak [2].

Presenting P̂ in the form in Eq. (1), one indeed recognizes
in R̂ the center of the Larmor circle (the guiding center),

R̂ = r̂ +
mc
eB2

v̂× B, (8)

an integral of motion known from classical mechanics. The
following commutation relations[(

R̂
)

l
,
(
P̂
)

m

]
= i~δlm, (9)[

X̂, Ŷ
]

=
l2

i
(10)

can be readily derived from Eqs. (7), and (8).

2. Squeezed states

From Eq. (10), the X- and Y-coordinates of the Larmor
circle center are incompatible quantum variables. Given the
commutator Eq. (10), their variances obey the standard (see
e. g. [15]) unsertainly relation:

(∆X)2 (∆Y)2 > 1
4

l4,

where the variance of a variable A is defined as
(∆A)2 =

〈
(∆Â)2

〉
with ∆Â here and below standing for

∆Â = Â− 〈Â〉. If the uncertainty relation is satisfied with
the equality sign, it is said that the system is in a minimum
uncertainty state or, in other words, in a coherent or, more
generally, in a squeezed state.

We construct the stationary squeezed state, |R,N〉 as a
simultaneous eigenfunction of the Hamiltonian Eq. (2) and
the operator X̂Φ,

X̂Φ ≡ X̂ cos Φ + Ŷ sin Φ, (11)

where Φ is a complex parameter Φ = Φ1 + iΦ2.
Under a φ-rotation around the z-axis, Φ transforms to
Φ→ Φ′ = Φ− φ, and X̂Φ can be also represented as

X̂Φ = X̂′ cosh Φ2 + iŶ′ sinh Φ2, (12)

where X̂′ = X̂ cos Φ1 + Ŷ sin Φ1 and Ŷ′ = −X̂ sin Φ1

+ Ŷ cos Φ1 are the Cartesian components of the guiding
center R in the principal axes where Φ′1 = 0.
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The state |R,N〉 is found from the following system of
equations

Ĥ|R,N〉 = ~ωc

(
N +

1
2

)
|R,N〉, (13)

X̂Φ|R,N〉 = (X cos Φ + Y sin Φ)|R,N〉. (14)

The quantum numbers of a state are the Landau level
number N, and the expectation value of the guiding center
position, R(X,Y); two real parameters X and Y specify the
complex eigenvalue XΦ.

The operator X̂Φ is not Hermitian and the eigenvalue
problem may or may not have solutions among physically
admissible normalizable functions, 〈R,N|R,N〉 = 1. To find
necessary conditions for the existence of physical solutions,
we note that Eq. (14) leads to 〈R,N|∆X̂†Φ∆X̂Φ|R,N〉 = 0,
or, using the representation in Eq. (12) and Eq. (10),

(∆X′)
2

+ tanh2Φ2 (∆Y′)
2

= −l2 tanh Φ2. (15)

Observing that the l. h. s. is positive definite, we conclude
that Eq. (14) has normalizable solutions only if Φ2 < 0 (or,
more generally, eBΦ2 < 0).

The real and imaginary parts of the relation〈
R,N|(∆X̂Φ)2|R,N

〉
= 0, give

(∆Y′)
2 tanh2Φ2 = (∆X′)

2
, (16)〈

∆X̂′∆Ŷ′ + ∆Ŷ′∆X̂′
〉

= 0, (17)

(∆X′)
2
(∆Y′)

2
=

l2

4
. (18)

The last relation follows from the first two combined with
Eq. (15). Also,

(∆X′)
2

=
l2

2
| tanh Φ2|, (∆Y′)

2
=

l2

2
| coth Φ2|. (19)

According to Eq. (18), the eigenfunctions of X̂Φ indeed
belong to the class of minimum uncertainly states. From
Eq. (17), one sees that the physical meaning of Φ1 is to
show the orientation of the principal axes, along which
the quantum fluctuations of the guiding center position are
independent. It follows from Eq. (16) that Φ2 controls the
relative uncertainty of the projection of the guiding center
onto the principal axes.

To find the wave functions of the squeezed states, we first
consider the states from the Landau level N = 0, |R, 0〉 and
solve the following system of equations

ĉ|R, 0〉 = 0, (20)

X̂Φ|R, 0〉 = XΦ|R, 0〉. (21)

(Eq. (20) is equivalent to Eq. (13) for the ground state
N = 0.) To find the explicit form of the wave functions,
we choose the symmetric gauge

A =
1
2

B× r, (22)

where different directions are treated on equal footing.

In the notations

x̃Φ = (x− X) cos Φ + (y−Y) sin Φ,

ỹΦ = −(x− X) sin Φ + (y−Y) cos Φ, (23)

(ỹΦ = x̃Φ+ π
2
), the operators in Eq. (20) amd Eq. (21) take

the form

i

√
2

l
e−iΦĉ =

∂

∂ x̃Φ
+ i

∂

∂ ỹΦ
+

1
2l2

(x̃Φ + iỹΦ)

+
1

2l2 (XΦ + iYΦ), (24)

X̂Φ = x̃Φ − il 2 ∂

∂ ỹΦ
+ XΦ, (25)

where YΦ = −X sin Φ + Y cos Φ.
In the coordinate representation, Eqs. (20, 21) become a

system of linear defferential equations of the first order for
Ψ(r|0,R) = 〈r|R, 0〉. The normalized solution reads

Φ(r|0,R) = CΦ

× exp

(
−

1
2l2

(
x̃2

Φ + ix̃ΦỹΦ + ix̃ΦYΦ − iỹΦXΦ

))
, (26)

where CΦ is the normalization constant

|CΦ|
2 =

1
2πl2

√
1− exp 2i(Φ∗ −Φ). (27)

As expected, the function in Eq. (26) is normalizable and
Eq. (27) is meaningful, only if Im Φ < 0.

The normalized states for the N-th Landau level, eigen-
functions of the Hamiltonian in Eq. (5), can be now found
from

Ψ(r|N,R) =
1
√

N!

(
ĉ†
)N

Ψ(r|0,R). (28)

The calculation can be easily done with the help of the
following identity

ĉ† = e−iΦeΛ

(
l~

i
√

2

∂

∂ x̃Φ

)
e−Λ,

Λ ≡
1

2l2

(
x̃2

Φ − ix̃ΦỹΦ − ix̃ΦYΦ + iỹΦXφ
)
. (29)

After some algebra we obtain,

Ψ(r|N,R) = CΦ

(
ie−iΦ

)N

√
2NN!

× exp

(
i

e
2~c

B · (B× r)−
1

2l2
x̃Φ(x̃Φ + iỹΦ)

)
×HN

(
x̃Φ

l

)
, (30)

where HN(ξ) is the Hermite polynomial,

HN(ξ) = (−1)Neξ
2 dNe−ξ

2

dξN . In the coordinate representation,
this expression gives the wave function of the squeezed
state |R,N〉 centered at R and belonging to the N-th Landau
level (in the symmetric gauge Eq. (22)); the ”rotation
angle” Φ in Eq. (23) is a complex parameter, Im Φ < 0.

Физика твердого тела, 1998, том 40, № 8
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Figure 1. The probability density for the state N = 2, |tanh Φ2| = 0.1, Φ1 = 0 located at the origin R = 0.

Figure 2. The current density for the state N = 2, |tanh Φ2| = 0.1, Φ1 = 0 located at the origin R = 0.

3. Properties

The basic features of squeezed states can bi seen in Figs. 1
and 2, where the density and the current are plotted for
a typical state: N = 2, Φ = iΦ2, |tanhΦ2| = 0.1. The
squeezed state is localized in the sense that it has a finite
extension in both x- and y-directions. Qualitatively, the
squeezed state is a superposition of classical Larmor orbits

of radius ρN =
√

2EN
mω2 , the centers of which are positioned

in the vicinity of R with a typical deviation ∆X′ and ∆Y′.
From Eq. (19), ∆X′/∆Y′ = |tanhΦ2| < 1 so that the state is
elongated in the direction of the principal y′-axis. When Φ2

tends to zero, the elongation increases and the squeezed state
asymptotically transforms into a ”strip” (of length ∼ l/|Φ2|).

The wave function of a squeezed state from the N-th
Landau level has N isolated zeroes in the x−y plane.
The zeroes are at the points on the line Im x̃Φ = 0,
where the Hermite polynomial HH( x̃Φ

l ) has its N roots. In
the limit Φ2 → −∞, the zeroes gather together at the
point r = R. This limit, where ∆X = ∆Y = l

2 , gives
the stationary coherent state introduced by Malkin and
Man’ko [7], the angular momentum eigenstate with the
eigenvalue Lz = −~N. In the coherent states, the probability
density is rotationally invariant.

Физика твердого тела, 1998, том 40, № 8
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Figure 3. Detail of the current density for the state N = 2; |tanhΦ2| = 0.1, Φ1 = 0 located at the origin R = 0.

Figure 4. The probability density for the state N = 10; |tanhΦ2| = 0.1, Φ1 = 0 located at the origin R = 0.

In quantum optics, squeezed states can be presented as
the result of the action of the ”squeezed operator” on the
coherent state. Similar to [12], squeezed of the cylindrically
symmetric coherent states (Im Φ → −∞) is achieved by
applying

Ŝ= exp

{
i

2l2
r
(
X̂′Ŷ′ + Ŷ′X̂′

)}
, (31)

where tanh r = e2Φ2 . In optics there are certain non-linear
processes with the evolution operator in the form of Ŝ [16].
A coherent state then evolves into the squeezed state. For the
case of a particale in a magnetic field, the analogous problem

of preparation of a squeezed state has been considered
in [13].

As discussed in the Appendix, the product of the mirror
and time reversal transformations is a valid symmetry
element. As a consequence, the distribution of the density
and current are mirror symmetric (relative to the principal
axes)as also apparent in Figs. 1–4.

Within a given Landau level, the squeezed states,
eigenfunctions of a non-Hermitian operator X̂Φ, are non-
orthogonal. For the states defined in Eq. (30) with the
real positive normalization constant CΦ Eq. (27), the overlap

2 Физика твердого тела, 1998, том 40, № 8
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integral reads〈
R; Φ,N|R′; Φ′, n′

〉
= δNN′

(1− exp [2i (Φ∗−Φ)])
1/4(1− exp

[
2i
(
Φ′
∗−Φ′

)])1/2

(1−− exp [2i (Φ∗ −Φ′)])
1/2

× exp

(
ie

2~c
B · (R′ × R) +

i
2l2

(X′Φ′−XΦ′)(X′Φ∗−XΦ∗)

sin(Φ′ −Φ∗)

)
(32)

(Re(1−exp[2i(Φ∗−Φ′)])1/2 > 0). The overlap of the states
differing in the Larmor center position R or the parameter Φ
does not depend on the Landau level number N as it follows
from the Eq. (28) and the commutation relation in Eq. (5).
Therefore, the overlap integral in Eq. (32) can be calculated
using the Gaussian wave functions for N = 0 in Eq. (26).

Repeating the derivation known in the theory of coherent
states of a harmonic oscillator (see e. g. [5]), one can show
that the set of squeezed states is complete i. e. the closure
relation,

1̂ =
∞∑

N=0

∫
d2R
2πl2

|R,N〉〈R,N|, (33)

is valid. As in the harmonic oscillator case, the states
|R,N〉 with continuously varying R form an overcomplete
set within the N-th Landau level. Repeating Perelomov’s
arguments [17], one can show that the subset of states with
R’s on the sites of a periodic lattice is overcomplete if the
lattice is too dense (the unit cell area s0 < 2πl2) and is
not complete for a too dilute lattice ( s0 > 2πl2). When
s0 = 2πl2 (i. e. the flux through the unit cell equals to the
flux quantum hc

e ), the system of the functions is complete
and it remains complete even if a single state is removed; it
becomes incomplete, however, if any two states are removed.

In conclusion, stationary squeezed states of a charged par-
ticle in a homogeneous magnetic field have been constructed
and analyzed. The distinctive feature of the squeezed
states is the minimal quantum uncertainty of the position
of the Larmor circle center. The family of the squeezed
states is characterized by the squeezing parameter Im Φ
variation of which allows one to transform gradually strip-
like states (infinitely extended in the direction controlled
by Re Φ) to eigenfunctions of the angular momentum with
rotationally invariant density distribution. The squeezed
states have a rather simple structure: As it follows from
Eqs. (30) and (23), a general squeezed state can be obtained
from a Landau ”strip” by a complex angle rotation of the
coordinates. The simplicity of the construction gives the
hope that the squeezed states may turn out to be useful.

We are grateful to Jørgen Rammer for reading the
manuscript and valuable remarks. We also thank V.V. Do-
donov for drawing our attention to the references [12–14].

This work was supported by the Swedish Natural Science
Research Council.

Appendix. Symmetries operators

The physical symmetry of a system in an external mag-
netic field is controlled by the symmetry of the vector field
B(r) (among other factors). However, the Hamiltonian,
Ĥ = ĤA contains the vector potential A(r) rather than B.
The vector field A(r has a lower symmetry and, moreover,
the spatial symmetry of A(r) is gauge dependent. For this
reason, the Hamiltonian often does not commute with the
operator corresponding to a physical symmetry element. A
homogeneous magnetic field gives a simple example: the
translation invariance is preserved but the vector potential is
always r-dependent. It is well-known [3] that the symmetry
operator should include a certain gauge transformation
which compensates the change of the A-field generated by
the symmetry transformation.

To build the modified operators on a regular basis,
we suggest the following procedure. For any given
symmetry element O, it is always possible to find field
A(O)(r), rot A(O) = B, which is invariant relative to O:
OA(O) = A(O). Whatever gauge is chosen for A in Eq. (2),
the gauge transformation, Ĝ−1

O ĤAĜO , specified by

ĜO = eiξ(O), ξ(O)(r) =
e
~c

r∫
0

dr
(

A− A(O)
)
, (A1)

changes the vector potential entering the Hamiltonian from
A to A−∇rχ

(O) = A(O), i. e. Ĝ−1
O ĤAĜO = ĤA(O) . By con-

struction, O does not change the vector field A(O)(r) and,
therefore, the transformed operator Ĝ−1

O ĤAĜO commutes
with Ô, i. e. (

Ĝ−1
O ĤAĜO

)
Ô = Ô

(
Ĝ−1
O ĤAĜO

)
or

ĤA
(
ĜOÔĜ−1

O

)
=
(
ĜOÔĜ−1

O

)
ĤA.

Therefore, it is the operator

ÔA = ĜOÔĜ−1
O , (A2)

which commutes with the Hamiltonian ĤA and represents
the symmetry element O. As such, the operator ÔA depends
on the gauge chosen for the vector potential A in the
Hamiltonian, but its matrix elements are gauge invariant if
the sandwiching functions are gauge transformed in the usual
manner.

Equivalently, the symmetry operator in Eq. (A2) can be
written as

ÔA = ei(χ(O)(r)−χ(O)(Ôr))Ô, (A3)

or
ÔA = Ôei(χ(O)(Ô−1−r)−χ(O)(r)). (A4)

Below, we analyze only the case of a homogeneous
magnetic field but the method is generally applicable.

In the presence of a homogeneous magnetic field, the
translations in the x−y plane and rotations around the
z-axis remain (continuous) symmetry elements. As the

Физика твердого тела, 1998, том 40, № 8
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reflection, σv, in a plane passing through the z-axis ( yOz,
for definiteness), reverses the magnetic field, σv is not a
symmetry element. We note here that the product of time-
reversal T and σv, both reversing the field, is a symmetry
element. We denote the product by σT ≡ Tσv.

The transformation O changes the wave function as,

ψ
O
−→ Ôψ, where Ô denotes the operator associated with

O. For translations and rotations, the form of the operator
Ô is obvious; in the case of σT ,

σ̂Tψ(x, y) = ψ∗(−x, y), (A5)

and σ̂T is an anti-linear anti-unitary operator. From
Ô−1ĤAÔ ≡ ĤOA, the transformed vector field OA can
be found. Again, the result is obvious in case of rotations
and translations. Under σT , which is the mirror reflection
of the polar vector field A(r) in combination with time
reversal (A → −A), the vector potential transforms as:
σ̂TAx(x, y) = Ax(−x, y), σ̂TAy(x, y) = −Ay(−x, y).

First, we consider the operator of a finite translation
Ô = T̂a, T̂aψ(x, y) = ψ(x+ax, y+ay), a being the translation
vector. The vector potential, A(O) ≡ A(a), invariant relative
to the translation along a, A(a)(r) = A(a)(r + a), can be
taken as,

A(a) = n
(
(B× r) · n

)
, a = |a|n, (A6)

(”Landau gauge”). Using Eq. (A3), the operator of
magnetic translation reads

T̂(a)
A = e

i e
ch

x∫
x+a

dr′(A(r′)−A(a)(r′))
− e

i
h p̂·a, (A7)

p̂ = ~
i∇ being the canonical momentum. As a consequence

of the physical translational invariance, this operator com-
mutes with the Hamiltonian Eq. (2) for arbitrary gauge of
the vector potential A(r).

Up to terms linear in a, T̂(a)
A = 1+ i

~a ·
(
p̂− e

cA + e
cA(a)

)
or, using Eq. (A6), T̂(a)

A = 1 + i
~a ·

(
p̂− e

cA + e
cB× r

)
.

From here, one reads off the expression for the generator of
translations P̂ and derives Eq. (6).

This derivation of Eq. (6) links P̂ to the translational
symmetry. The same expression for P̂ can be derived in
a more intuitive manner: First, one considers the operator
of the guiding center R̂, the expression for which in Eq. (8)
can be guessed from the correspondence principle. Since
R is a classical integral of motion, R̂ must commute with
the Hamiltonian. Now, one defines P̂ by Eq. (1) and comes
immediately to Eq. (6).

Next we consider rotations i. e. O = R. The ”bare”
operator of a rotation around the z-axis is R̂ = e

i
~ (r×p̂)zφ ,

φ being the angle of the rotation. The R-invariant vector
potential is A(R) = 1

2 B×r. Applying Eq. (A2), the symmetry
operator reads:

R̂A(φ) = e
i e

ch

x∫
0

dr(A−A(R))

e
i
h (r×p)zφe

−i e
ch

x∫
0

dr(A−A(R))

. (A8)

In the limit φ → 0, R̂A(φ) ≈ 1+ i
~ L̂zφ, where the generator

of rotations L̂z is

L̂z = e
i e

ch

r∫
0

dr(A−A(R))

(r× p̂)ze
−i e

ch

x∫
0

dr(A−A(R))
.

Simplifying and using the expression for A(R), one gets

L̂z =
(

r×
(

p̂−
e
c

A
))

z
+

e
2c

(
r× (B× r)

)
z
. (A9)

For the case of a homogeneous magnetic field, this operator
commutes with the Hamiltonian for arbitrary gauge of the
vector potential and reduces to the usual angular momentum
L̂z = r× p̂ when A, B→ 0. Also, L̂z = L̂z in the symmetric
gauge A = 1

2 B× r.
The operator Lz can be written in the following identically

equivalent forms

L̂z =
1
2

eB
c

R̂2 −
mc
eB

Ĥ, (A10)

L̂z =
1
2

c
eB

P̂2 −
mc
eB

Ĥ, (A11)

Ĥ, and the (two-dimensional) vectors P̂ and R̂ are defined in
Eqs. (2), (6) and (8), respectively. One sees that the integral
of motion Lz is, actually, a function of the other conserving
quantities P (or R) and the energy H .

If the axis of the a rotation is shifted from the origin to
the point R0, the generator of the rotations denoted as L̂R0,z

reads

L̂R0,z =
1
2

eB
c

(
R̂− R0

)2
−

mc
eB

Ĥ. (A12)

Note that the vector potential enters Lz Eq. (A9) and
the generator of translations P̂ Eq. (6) only in the gauge
covariant combination p̂− e

cA so that their matrix elements
are gauge invariant.

Finally, we consider the combined mirror and time-
reversal transformation in Eq. (A5): O = σT . One can
check that σ̂T does not change the Hamiltonian in Eq. (2)
if the symmetric gauge Eq. (22) is chosen. Ultimately, this
is the reason for the mirror symmetry in the distribution of
the density and current seen in Figs 1–4.

References

[1] L.D. Landau, E.M. Lifshitz, Quantum Mechanics. Pergamon
Press, N. Y. (1977).

[2] J. Zak. Phys. Rev. 136, A776 (1964).
[3] E.M. Lifshitz, L.P. Pitaevskii. Statistical Physics. Pergamon

Press (1980). Pt 2.
[4] L.D. Landau. Z.Phys. 64, 629 (1930).
[5] W.M. Zhang, D.H. Feng, R. Gilmore. Rev. Mod. Phys. 62, 867

(1990).
[6] G.C. Darwin. Proc. Roy. Soc. (Lond.) 117, 258 (1928).
[7] I.A. Malkin, V.I. Man’ko. Zh. Eksp. Teor. Fiz. 55, 1014 (1968).
[8] A. Feldman, A.H. Kahn. Phys. Rev. B 1, 4584 (1970).
[9] S.T. Pavlov, A.V. Prokhorov. Fiz. Tver. Tela 32, 11, 3451

(1990).

2∗ Физика твердого тела, 1998, том 40, № 8



1412 M. Ozana, A.L. Shelankov

[10] E.I. Rashba, L.E. Zhukov, A.L. Efros. Phys. Rev. B 55, 5306
(1997).
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