Оптическая спектроскопия фторида бария с пространственно-временным разрешением

© В.Ф. Штанько, Е.П. Чинков

Томский политехнический университет, 634004 Томск, Россия

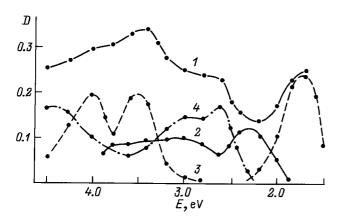
(Поступила в Редакцию 3 декабря 1997 г.)

Методом оптической спектроскопии с пространственно-временным разрешением исследованы спектрально-кинетические характеристики переходного поглощения и быстро затухающего свечения в кристалле BaF_2 при воздействии импульса ускоренных электронов наносекундной длительности. Обнаружено пространственно неоднородное создание первичных продуктов радиолиза и установлена взаимосвязь этих процессов с исходными свойствами кристалла BaF_2 .

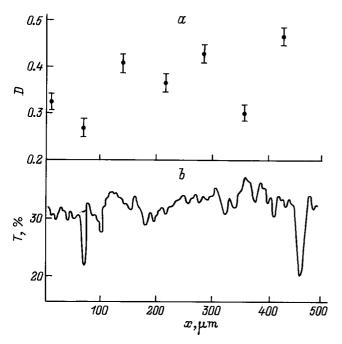
Под действием ионизирующей радиации в номинально чистых кристаллах флюорита при температурах не выше комнатной эффективно создаются автолокализованные экситоны (АЭ), которые представляют в виде различных конфигураций близко расположенных F, H-пар [1–4]. Обычно в спектрах выделяют электронный и дырочный компоненты поглощения АЭ [1]. Однако это деление весьма условно, поскольку в ряду CaF₂, SrF₂, BaF₂ заметно возрастает поглощение в спектральной области, расположенной между этими компонентами. Собственное свечение флюоритов связывают с излучательными переходами из синглетных и триплетных состояний АЭ [1]. В ВаГ₂ синглетное свечение не обнаружено, но, как и в некоторых щелочно-галоидных кристаллах [5], наблюдается быстро затухающее свечение (БС) $(\tau < 1 \, \text{ns})$ в ультрафиолетовой области спектра. Причем выход БС в ВаF₂ значительно выше, чем в СаF₂ и SrF₂. Авторы [6] приписывают БС остовно-валентным переходам, а авторы [5] — синглетной люминесценции АЭ с нерелаксированным дырочным ядром. Эффективность создания близко расположенных (автолокализованных экситонов) и пространственно разделенных F, H-пар, а также выход БС зависят от температуры и плотности возбуждения [1–7]. Далее мы покажем, что эти характеристики в значительной мере определяются предысторией кристалла.

Целью настоящей работы является исследование переходного поглощения и быстро затухающего свечения в номинально чистых кристаллах BaF_2 методом импульсной спектроскопии с пространственно-временным разрешением.

1. Эксперимент


Метод импульсной спектроскопии описан в [8], методика прецизионных измерений рассмотрена в [4]. Максимальная энергия ускоренных электронов 0.28 MeV, длительность импульса (тока) на полувысоте 12 ns, временное разрешение 7 ns. Кристаллы, выращенные методом Стокбаргера в ГОИ (Санкт-Петербург), выкалывались из одного блока в виде пластинок размером $8 \times 8 \times 0.5 \,\mathrm{mm}$ с учетом направления роста. Облучению

диафрагмированным пучком подвергались поверхность образца $\sim 3.75 \, \text{mm}^2$. Плотность энергии $(0.2 \, \text{J} \cdot \text{cm}^{-2})$ измерена калориметрическим методом, отклонение по облучаемой поверхности ±5%. Частота следования импульсов облучения выбрана $\sim 10^{-3}\,\mathrm{Hz}$. В настоящей работе использованы как обычно применяемые геометрии измерений (образец расположен под некоторым углом к направлению распространения электронов [8]), так и геометрия с нормальным падением пучка электронов на образец. Регистрация спектров переходного поглощения и быстро затухающего свечения осуществлялась со всей глубины пробега электронов в образце ($\sim 250 \, \mu \text{m}$) как со всей облучаемой поверхности ($\sim 3.75 \, \text{mm}^2$), так и с микрозон размером $25 \times 38 \,\mu\text{m}$. Распределение светосуммы люминесценции (спектральная область 300-400 nm выделена с помощью светофильтров) зарегистровано с фокальной плоскости, расположенной на глубине $\sim 100 \, \mu \text{m}$ от облучаемой поверхности, фотографическим способом с помощью микроскопа МПД-1 с использованием мелкозернистой фотопленки типа "Микрат". Фотометрирование снимков проводилось на микрофотометре МФ-2 с разрешением $\sim 0.3 \times 0.5 \, \mu \text{m}$.

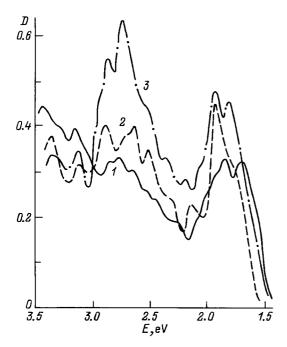

2. Экспериментальные результаты

Спектр переходного поглощения BaF_2 , выколотого из нижней части блока и измеренного с использованием обычной схемы измерений (образец располагался под углом 55° к направлению распространения электронов), представлен на рис. 1 (кривая I). Характерный вид спектра качественно согласуется с данными [5]. Релаксация наведенного поглощения описывается экспоненциальной зависимостью с несколькими постоянными времени. Причем с постоянной $250 \pm 50 \, \mathrm{ns}$ описывается $\sim 95\%$ спада оптической плотности в области электронного компонента. Спектральное распределение временных составляющих, выделенных графическим анализом кинетик релаксации поглощения для фиксированных энергий квантов без учета сложной структуры спектра, представлено на рис. 1 кривыми 2-4.

Распределение интенсивности наведенного поглощения вдоль произвольной координаты (x) по облучае-

Рис. 1. Спектр переходного поглощения кристалла BaF_2 , измеренный при 295 K спустя 10 ns после окончания импульса электронов (1), и спектральное распределение временных составляющих (2–4) в релаксации наведенного поглощения: 2-60 ns, $3-250\pm50$ ns, $4-400\pm50$ ns. Образец расположен под углом 55° к направлению падения электронов пучка.

Рис. 2. Пространственное распределение интенсивности наведенного поглощения (a) и светосуммы люминесценции (b) вдоль произвольных координат x по облучаемой поверхности в кристалле BaF_2 при 295 К. a — измерено в перпендикулярной геометрии спустя 10 пѕ после окончания импульса на $1.90\,\mathrm{eV}$ с разрешением $25\times38\,\mu\mathrm{m};\ b$ — пропускание фотопленки T измерено с разрешением $0.3\times0.5\,\mu\mathrm{m}$. Фотографирование в собственном свечении кристалла (спектральная область $300-400\,\mathrm{nm}$ выделена с помощью светофильтров) выполнено с фокальной плоскости, расположенной на глубине $\sim100\,\mu\mathrm{m}$ от облучаемой поверхности.

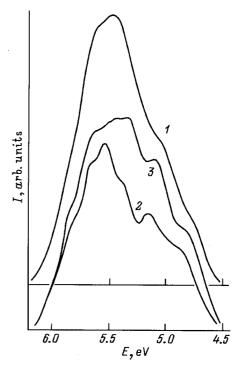

мой поверхности образца измерено в перпендикулярной геометрии спустя 10 пs после окончания импульса электронов на фиксированной длине волны (1.90 eV) с разрешением $25 \times 38 \, \mu \mathrm{m}$. Результаты представлены на рис. 2, a. Распределение светосуммы люминесценции вдоль произвольного направления по облучаемой поверхности, измеренное по почернению фотопленки с разрешением $\sim 0.3 \times 0.5 \, \mu \mathrm{m}$, представлено на рис. 2, b.

Спектры переходного поглощения кристалла ВаF₂, выколотого из верхней части блока, измеренные в перпендикулярной геометрии с произвольно выбранных, но одинаковых по площади микрозон, представлены на рис. 3 кривыми *2, 3*. Кривой 1 представлен спектр переходного поглощения, измеренный в той же геометрии, но с площади $\sim 3.75\,\mathrm{mm}^2$. Спектры БС, измеренные в перпендикулярной геометрии с тех же самых микрозон, что и поглощение, представлены на рис. 4 кривыми 2, 3. Расстояние между микрозонами $\sim 430 \, \mu \text{m}$. Для сравнения приведен спектр БС (кривая 1), измеренный в обычной геометрии с облучаемой поверхности $\sim 3.75 \, \text{mm}^2$. Интенсивность БС микрозон примерно на три порядка ниже, чем всей облучаемой поверхности. Анализ полученных данных позволяет установить следующие закономерности: во-первых, в спектрах как быстро затухающего свечения, так и переходного поглощения наблюдается сложная структура; во-вторых, интенсивность, спектральный состав переходного поглощения и быстро затухающего свечения, а также распределение светосуммы люминесценции в значительной мере определяются координатами облучаемой области кристалла.

3. Обсуждение результатов

Нарушение условия дисперсности создания АЭ обычно связывается с появлением дополнительных каналов стока электронных возбуждений в дефектной решетке. При этом эффективность создания автолокализованных экситонов в ненарушенных участках решетки уменьшается [9]. Хорошо известно [10], что в кристаллы Ва F₂ гомологическая катионная приместь может входить в высокой концентрации. Спектральный анализ наших образцов прямо показывает присутствие примесей кальция и стронция. Кроме того, наблюдается качественное совпадение спектральных распределений составляющих с постоянными времени $60\,\mathrm{ns}$ и $400\,\pm\,50\,\mathrm{ns}$ в BaF_2 (кривые 2, 4 на рис. 1) с распределением электронных и дырочных компонентов поглощения АЭ в SrF₂ и CaF₂ соответственно [1,4]. Применение метода Аленцева-Фока [11] для анализа структуры спектров переходного поглощения во флюоритах позволило также выявить совпадение спектральных положений максимумов ряда полос в этих кристаллах (подробный анализ будет дан в отдельной работе). Следовательно, можно предполагать образование фазовых включений CaF₂ и SrF₂ в BaF₂.

Резкое неоднородное по пространству изменение интенсивностей селективных полос (рис. 2, a и 3) в области


Рис. 3. Спектры переходного поглощения кристалла BaF_2 , измеренные в перпендикулярной геометрии при 295 K спустя 10 ns после окончания импульса. I — с облучаемой поверхности $3.75~\mathrm{mm}^2$, 2, 3 — с одинаковых по площади $(25\times38~\mu\mathrm{m})$ микрозон, удаленных друг от друга на расстояние $\sim430~\mu\mathrm{m}$.

электронного компонента поглощения АЭ $(\sim 1.90\,\mathrm{eV})$ предполагает значительное влияние исходной структуры кристалла ВаF₂ на распределение АЭ по конфигурациям. (Обычно считается [1,5], что создание АЭ происходит в ненарушенной решетке ВаГ2.) Данные, представленные на рис. 3 (кривые 2, 3), свидетельствуют также о том, что и эффективность создания дефектов в фазовых включениях является функцией координат. Причем наблюдается явная пространственная корреляция процессов создания дефектов в основной матрице и в фазовых включениях (рис. 2, a и 3). Поскольку локализация электронных возбуждений осуществляется на стадии свободных электронов и дырок и весьма чувствительна к изменениям кристаллического потенциала решетки [12], следует полагать, что создание АЭ в решетке ВаF2 происходит в окрестности расположения дефекта. Этим, по-видимому, и объясняется неоднородное по пространству изменение эффективности создания автолокализованных экситонов и их распределение по конфигурациям.

Выше на основе интегральных спектрально-кинетических измерений (рис. 1) предполагалось, что гомологическая катионная примесь в BaF_2 образует фазовые включения. Измерения с пространственным разрешением (рис. 2, a и 3) предполагают возможность образования буферного слоя, т.е. переходной области от фаз CaF_2 или SrF_2 к решетке BaF_2 . Во-первых, распределение временных составляющих в релаксации переходного поглощения в BaF_2 (кривые 2, 4 на рис. 1) несколько уширено по сравнению со спектральным распределением

компонентов поглощения АЭ в номинально чистых кристаллах CaF_2 и SrF_2 . Во-вторых, эффективность создания автолокализованных экситонов как в номинально чистом кристалле, так и в его фазовом включении должна быть функцией температуры кристалла и плотности возбуждения. Однако интенсивность наведенного поглощения в области $2.2-4\,\mathrm{eV}$ в BaF_2 (кривая 3 на рис. 3) практически в 3 раза превышает таковую в кристаллах SrF_2 и CaF_2 при одинаковых условиях облучения. Следовательно, можно предположить, что гомологическая примесь не образует чистой фазы, поскольку имеется эффективный канал стока электронных возбуждений.

Пространственно неоднородное создание первичной дефектности в BaF_2 можно также выявить на основе изучения распределения светосуммы собственного свечения. Обычно считается [1,5], что оно возникает из тех же энергетических состояний АЭ, что и поглощение. Как следует из данных, представленных на рис. 2, b, распределение светосуммы по облучаемой поверхности представляет собой сложную картину. На фоне больших фрагментов (до $100~\mu m$) с примерно одинаковым распределением светосуммы люминесценции имеются сравнительно узкие ($\sim 10~\mu m$) области. Оптические микронеоднородности в кристалле BaF_2 также хорошо видны по эффектам двойного лучепреломления на локальных полях напряжений в скрещенных поляризаторах. Имеются они и в других кристаллах флюорита [13].

Рис. 4. Спектры быстро затухающего свечения кристалла BaF_2 , измеренные при 295 К. I — в геометрии, при которой образец расположен под углом 55° к направлению падения электронов пучка, 2, 3 — в перпендикулярной геометрии с тех же микрозон, с которых измерено наведенное поглощение (см. кривые 2, 3 на рис. 3).

Недавно показано [14], что синхронное с электронным облучением оптическое довозбуждение АЭ в области электронных компонентов сопровождается как в СаF₂, так и в ВаF2 селективными по спектру изменениями интенсивности быстро затухающего свечения, что явно противоречит модели остовно-валентных переходов. Поскольку создание первичной дефектности в ВаГ2 обнаруживает явную зависимость от исходной структуры кристалла, представляло интерес проследить за изменением в интенсивности и спектре БС на основе измерений с пространственно-временным разрешением (рис. 4). Сравнение данных, представленных на рис. 3 и 4, однозначно свидетельствует о пространственной корреляции процессов создания первичной дефектности и возбуждения БС. Резкая пространственная неоднородность протекания этих процессов предполагает, что их эффективность в значительной степени определяется исходной структурой решетки. Полученные в настоящей работе данные свидетельствуют о наличии развитой дефектной структуры кристаллов ВаF₂ и хорошо согласуются с выводами [10]. Поскольку уровень исходной дефектности в CaF₂ и SrF₂ значительно ниже, чем в Ва F₂ [10], наблюдается резкое различие в выходах БС в этих матрицах.

Таким образом, данные настоящей работы можно рассматривать в качестве альтернативных аргументов модели БС не только в рамках модели остовно-валентных переходов [6], но и как разновидности "горячей" люминесценции АЭ [5]. В совокупности с данными по сублинейной плотностной зависимости эффективности создания как близко расположенных (автолокализованных экситонов), так и пространственно разделенных F, H-пар [3,5,7] полученные результаты позволяют предположить прямую связь процессов создания первичной дефектности с исходными свойствами кристаллов со структурой флюорита. Метод импульсной спектроскопии с пространственным разрешением является информативным методом изучения первичных продуктов радиолиза в реальных кристаллах.

Список литературы

- R.T. Williams, M.N. Kabler, W. Hayes, J.P.H. Stott. Phys. Rev. B14, 2, 725 (1976).
- [2] Н.Н. Ершов, Н.Г. Захаров, П.А. Родный. Опт. и спектр. **53**, *1*, 89 (1982).
- [3] Л.А. Лисицына, В.М. Лисицын, Е.П. Чинков. Изв. вузов. Физика, *1*, 13 (1995).
- [4] Е.П. Чинков, В.Ф. Штанько. ФТТ 39, 7, 1197 (1997).
- [5] И.П. Денисов, В.А. Кравченко, А.В. Маловичко, В.Ю. Яковлев. ФТТ 31, 7, 22 (1989).
- [6] М.Ю. Александров, В.Н. Махов, П.А. Родный, Т.И. Сырейщикова, М.Н. Якименко. ФТТ 26, 9, 2865 (1984).
- [7] В.Ф. Штанько, В.И. Олешко. ЖТФ 59, 3, 99 (1989).
- [8] Э.Д. Алукер, В.В. Гаврилов, Р.Г. Дейч, С.А. Чернов. Быстропротекающие радиационно-стимулированные процессы в щелочно-галоидных кристаллах. Зинатне, Рига (1987). 183 с.

- [9] Л.А. Лисицына, В.М. Рейтеров, В.М. Лисицын, Е.П. Чинков, Л.М. Трофимова. Опт. и спектр. **55**, *5*, 875 (1983).
- [10] W. Hayes, A.M. Stoneham. In: Crystals with the Fluorite Structure / Ed. W. Hayes. Oxford. (1974). Ch. 4. P. 185–280.
- [11] М.В. Фок. Тр. ФИАН 59, 3 (1972).
- [12] В.И. Корепанов, В.М. Лисицын, Л.А. Лисицына. Изв. вузов. Физика, 11, 94 (1996).
- [13] L. Dressler. Cryst. Res. Technol. 21, 4, K53 (1986).
- [14] В.Ф. Штанько, Е.П. Чинков. Письма в ЖТФ **23**, *21*, 45 (1997).