Исследование критического тока в пленках YBaCuO в процессе облучения нейтронами реактора в низкотемпературной гелиевой петле при температурах $25-300\,\mathrm{K}$

© Р.Ф. Коноплева, Б.А. Борисов, И.В. Назаркин, В.А. Чеканов

Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук, 188350 Гатчина, Ленинградская обл., Россия

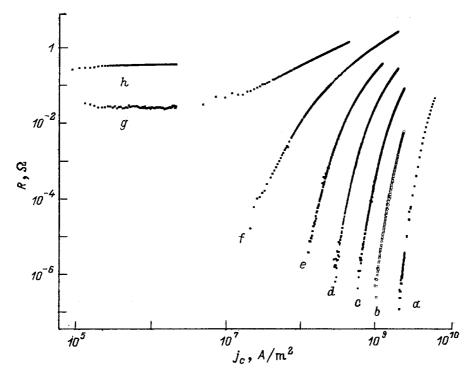
E-mail: krf@Inpi.spb.su

(Поступила в Редакцию 24 апреля 1998 г.)

Проведены исследования изменения температурных и дозовых зависимостей вольт-амперных характеристик (BAX) и критического тока j_c YBaCuO-пленок на подложках из MgO и SrTiO3 в процессе облучения нейтронами при температурах $25-80\,\mathrm{K}$. Обнаружено различное поведение транспортных свойств пленок YBaCuO на подложках MgO (M1) и SrTiO3 (S1). Показано, что пленки M1 имеют гранулированную структуру, и рассмотрение их транспортных свойств проведено на основе теории протекания по слабым межгранульным связям. Пленки S1 являются монокристаллическими, а их транспортные свойства анализируются с помощью теории резистивного состояния, связанного с термоактивацией абрикосовских вихрей. Показано, что скорость деградации критической температуры T_c пленок Sl в 3.5 раз меньше, чем пленок M1. Дозовая зависимость j_c имеет экспоненциальный характер $j_c = j_c(0) \exp(-k\Phi)$, где k связано с числом смещенных атомов на нейтрон и имеет одинаковое значение для пленок M1 и S1 независимо от температуры облучения. Из анализа BAX сделаны оценки величины энергии пиннинга и найдено, что отношение U/kT лежит в пределах 20-25 и не зависит от флюенса нейтронов. Показано, что радиационное разупорядочение приводит к изменению механизма пиннинга: от пиннинга на границах разориентированных кристаллов к пиннингу на пространственных неоднородностях, по-видимому, радиационной природы.

Известно, что токонесущая способность и магнитные свойства ВТСП-материалов определяются взаимодействием вихрей магнитного потока с дефектами кристалла — центрами пиннинга. Введение центров пиннинга для повышения плотности критического тока ВТСП-материалов обычно осуществляется методом текстурирования. Однако направленно и точно дозировано можно вводить заданную концентрацию центров пиннинга радиационным методом — облучением нейтронами, протонами или ионами. Образующиеся при этом протяженные центры пиннинга имеют размеры, превышающие длину когерентности ξ , поэтому обладают наибольшей силой пиннинга, обусловливающей изменение плотности критического тока j_c . Зависимость токонесущей способности и магнитных свойств ВТСП-материалов от центров пиннинга дает возможность с помощью радиационного воздействия направленно изменять систему слабых связей, управляя степенью разупорядочения ВТСП за счет введения дефектов различной концентрации и типа, детально изучать механизмы, определяющие поведение j_c , и природу высокотемпературной сверхпроводимости.

В настоящее время анализ зависимости j_c от температуры, величины и направления внешнего магнитного поля проводится в рамках представлений гранулированного сверхпроводника, состоящего из системы зерен, слабо связанных посредством джозефсоновских контактов. Возникновение резистивности в такой системе обусловлено разрушением слабых связей внешним магнитным полем. Наряду с этим механизм возникновения резистивности может быть вызван и термоактивационным "срывом" абрикосовских вихрей с центров пиннинга и


их вязким течением. Поэтому для выяснения механизмов возникновения и развития резистивного состояния в ВТСП и факторов, определяющих поведение и значение j_c , необходимо проводить исследования в условиях, когда вклад одного из механизмов доминирует. Такие условия могут быть реализованы при исследовании поведения j_c и магнитных свойств в процессе облучения нейтронами при достаточно низких температурах, когда термоактивационные процессы минимальны. Для этой цели была использована низкотемпературная гелиевая петля (НГП), разработанная и созданная на реакторе ВВР-М ПИЯФ РАН [1,2]. НГП позволяет проводить исследования в широкой области изменения температуры (25–300 K) и флюенсов нейтронов (до 10^{19} cm $^{-2}$).

1. Методика эксперимента

Для исследования j_c использовались пленки YBaCuO, полученные методом магнетронного распыления на подложках MgO (M1) и SrTiO $_3$ (S1) с ориентацией оси c по нормали к подложке. Толщина пленки составляла величину $d\sim 0.2\,\mu\mathrm{m}$. Измерения BAX и зависимости сопротивления от температуры R(T) проводились на постоянном токе по четырехзондовой схеме на мостиках шириной $w=100\,\mu\mathrm{m}$ и длиной $l=2\,\mathrm{mm}$, сформированных методом фотолитографии. Контакты изготовлялись термическим распылением в

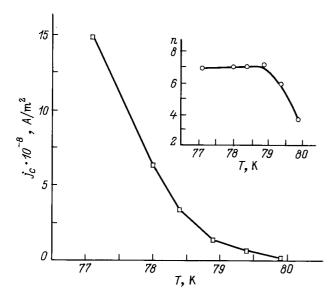
1 1961

 $^{^1}$ Авторы выражают благодарность за предоставление пленок М1 Ф.Ф. Кармоненко (СПб. ГЭТУ) и пленок S1 С.Ю. Климову (ИФМ, г. Н. Новгород).

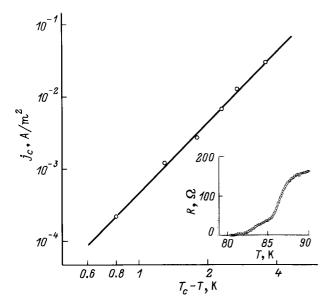
Рис. 1. ВАХ необлученной пленки М1 при различных температурах. T (K): a — 77.1, b — 77.9, c — 78.4, d — 78.9, e — 79.4, f — 79.9, g — 80.4, h — 80.9.

вакууме серебра или золота к пленкам М1 и S1 соответственно. Сопротивление контактов не превышало $0.5\,\Omega$. Пленки М1 имели $T_c=84\,\mathrm{K},\ \Delta T_c\cong4\,\mathrm{K},\ j_c=10^5\,\mathrm{A/cm^2},\$ а для пленок S1 $T_c\cong91\,\mathrm{K},\ \Delta T_c\cong1\,\mathrm{K},\ j_c\cong5\cdot10^7\,\mathrm{A/cm^2}$ при 20 К. Исследование пленок проводилось в низкотемпературной гелиевой петле реактора ВВР-М ПИЯФ [1] с интенсивностью быстрых нейтронов $(E>0.1\,\mathrm{MeV})\sim1\cdot10^{13}\,\mathrm{cm^{-2}\cdot s^{-1}}$ до флюенсов $\Phi\sim5\cdot10^{18}\,\mathrm{cm^{-2}}$ при температурах 25–300 К. В процессе измерения ВАХ температура поддерживалась с точностью $\pm0.1\,\mathrm{K}.$ Магнитное поле было направлено перпендикулярно плоскости пленки (вдоль плоскости c).

2. Экспериментальные результаты и их обсуждение


1) Транспортные свойства необлученных YBaCuO-пленок

а) П л е н к и н а MgO-п о д л о ж к а х. Зависимости $R(j_c)$ при различных температурах для необлученных пленок M1 приведены на рис. 1. Ход зависимости $R(j_c)$ позволяет предположить, что пленки M1 являются гранулированными, а их транспортные свойства определяются слабыми межгранульными связями, представляющими собой сеть джозефсоновских контактов. Диссипация энергии (а следовательно, и активное сопротивление) в такой джозефсоновской среде возникает в момент, когда токи через межгранульные связи


превышают их критические значения, при этом сами гранулы остаются сверхпроводящими. В работах [3,4] из рассмотрения протекания по разупорядоченной трехмерной сетке сверхпроводников с различными значениями локальных критических токов межгранульных слабых связей (при условии их однородного распределения) для ВАХ в случае малых напряжений получено выражение

$$V \cong (j - j_c)^n, \tag{1}$$

где j — плотность тока, показатель степени n > 1 и зависит от размерности системы и типа межгранульных связей, а так же от температуры и внешнего магнитного поля. С ростом температуры и магнитного поля параметр n падает, приближаясь к омическому значению $n\cong 1$. Аналогичное выражение для ВАХ вблизи j_c получено в [5] с помощью машинного моделирования. ВАХ, описываемые выражением (1), наблюдались в ряде экспериментальных работ как для керамических ВТСП-образцов [6], так и для гранулированных ВТСПпленок [7], при этом параметр n менялся в широких пределах 1 < n < 4. Результаты аппроксимации ВАХ необлученной пленки М1 зависимостью (1) показали, что начальные участки ВАХ достаточно хорошо описываются формулой (1). Температурные зависимости j_c и параметра n, полученные из аппроксимации по формуле (1), представлены на рис. 2. Показатель степени п, значение которого оказалось несколько большим (~ 7) , чем в других работах [6,7], уменьшается при приближении к температуре T_c .

Рис. 2. Температурная зависимость плотности критического тока и показателя степени n (на вставке) в формуле (1) пленки М1. j_c определялась из аппроксимации ВАХ зависимостью (1).

Рис. 3. Температурная зависимость плотности критического тока необлученной пленки M1 (в масштабе формулы (2)), $x=3.3, T_c=80.7\,\mathrm{K}$. На вставке — зависимость R(T) в области перехода.

Как известно, температурная зависимость критического тока системы джозефсоновских контактов описывается выражением вида

$$j_c \cong (T_c - T)^x. \tag{2}$$

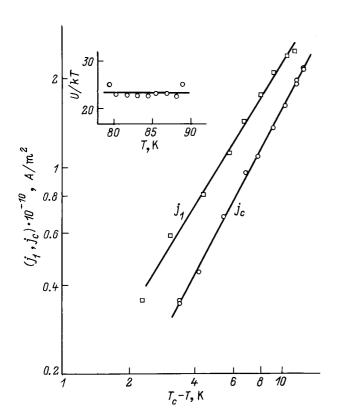
Величина параметра x определяется типом межгранульных связей (S–I–S, S–N–S, S–N–I–N–S). Так, для системы контактов типа S–I–S из теории Амбегаокара—Баратова [8] следует значение x=1. Для систе-

мы контактов S-N-S-типа в [9] получен аналогичный закон (2) с x = 2. В большинстве работ экспериментальные температурные зависимости критического тока для YBaCuO-систем довольно хорошо описываются выражением (2). Однако приведенные в ряде работ значения параметра x ($x \cong 3.5$) [10] превосходят величины, предсказываемые теоретически для системы контактов типа S-I-S, S-N-S, S-N-I-N-S, что может быть связано с более сложной структурой межгранульных контактов, неучитываемой теоретическими моделями (например, несимметрия N-I-N-слоев). В нашем эксперименте температурная зависимость критического тока пленки М1 (рис. 3) также хорошо описывается законом (2), однако полученное значение параметра x = 3.3 превышает значения, предсказываемые указанными выше моделями. Рассчитанная из (2) величина критической температуры T_c хорошо совпадает с температурой нуля сопротивления на зависимости R(T) (вставка на рис. 3).

b) Пленки на SrTiO3-подложках. На ВАХ необлученных пленок S1 в отличие от пленок M1 в широком интервале температур при токе через образец $I > 0.5 \,\mathrm{A}$ наблюдается эффект переключения, наличие которого позволяет предположить, что исследуемые пленки являются монокристаллическими. Механизм разрушения током сверхпроводимости таких моноблочных мостиков связан с началом кинетического распаривания на краю пленки [11], а критический ток — с началом движения вихрей. Оценка физического предела j_c , определяемого условием достижения на краю пленки плотности тока распаривания $J(w/2) = \Phi_0/(3\sqrt{3}\pi\mu_0\lambda^2\xi)$ с учетом связи $J(w/2) = I(2\pi\lambda^2 wd)$ [12] (где Φ_0 квант магнитного потока, λ — глубина приникновения магнитного поля, ξ — длина когерентности), дает для $w = 100 \,\mu\text{m}, d = 0.2 \,\mu\text{m}, \lambda = 10^3 \,\text{Å}, \xi = 20 \,\text{Å},$ значение $j_c \approx 3 \cdot 10^7 \,\mathrm{A/cm^2}$, что по порядку величины соответствует экспериментальным величинам. Полученные значения j_c и J(w/2) позволяют связать механизм разрушения током сверхпроводимости моноблочных мостиков действительно с началом кинетического распаривания на краю пленки [11]. Все это позволило для анализа ВАХ монокристаллических пленок S1 использовать модель сплошной среды и резистивного состояния, связанного с термоактивацией абрикосовских вихрей [13]. В этой модели предполагалось, что поле, индуцированное присутствием вихря с центром пиннинга, есть

$$E \sim \tau^{-1} = \omega_0 \exp[-(U - \alpha j)/kT],$$
 (3)

где τ^{-1} — время пребывания вихря в связанном на центре состоянии, ω_0 — частота попыток, U — энергия связи, αj — работа, совершаемая вихрем под действием силы Лоренца при протекании тока с плотностью j. В общем случае необходимо рассмотреть более детальную модель ВАХ, учитывающую переход от режима редкого срыва вихря к режиму его практически свободного течения под действием силы Лоренца. Учитывая возможность


обратного захвата вихря центром, для ВАХ имеем [14]

$$E = Bv \left[1 + \left(\frac{v}{\omega_0 \lambda} \right) \frac{\exp(U/kT)}{\exp(\alpha j/kT)} - \exp(-\alpha j/kT) \right]^{-1}, \tag{4}$$

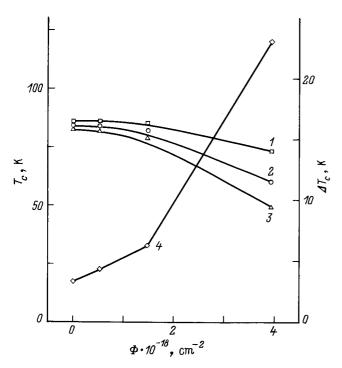
где v— скорость движения вихря, $B=\mu_0 H$ — внешнее магнитное поле, которое предполагается полностью проникающим в пленку. В пределе, когда время пребывания вихря в связанном состоянии τ превышает время в состоянии дрейфа τ_a ($\tau_a\ll \tau$), и при не слишком малых токах $j\gg kT/\alpha$ ВАХ имеет экспоненциальную зависимость [12]

$$E = B\omega_0 \lambda \exp\left[-(U - \alpha j)/kT\right] + B\nu_c, \tag{5}$$

где v_c — скорость крипа магнитного потока. В выражении (5) величины U и α не зависят от B. Привлекая к описанию ВАХ выражение (5), мы предполагаем, что существует область достаточно малых магнитных полей, когда коллективными эффектами можно пренебречь и рассматривать отдельный вихрь. Это означает, что критический ток практически не изменяется с полем, что свидетельствует в пользу применимости приближения независимых вихрей. ВАХ в этой области магнитных полей описываются экспоненциальной зависимостью вида $V \sim \exp(j_c/j_1)$, причем параметр j_1 от поля не зависит.

Рис. 4. Зависимость j_c и j_1 от температуры для необлученной пленки S1. На вставке — зависимость отношения U/kT от температуры, $B=50\,\mathrm{mT}$.

В полях $B > 80 \,\mathrm{mT}$ экспоненциальный характер BAX исчезает.


В нашем эксперименте полученные зависимости $j_c(B)$ хорошо описываются классической формулой

$$j_c(B) = j_c(0)(1 + B/B_0)^{-1}.$$
 (6)

На вставке к рис. 4 представлена температурная зависимость величины U/kT, полученная из аппроксимации ВАХ по формуле (5) (при условии справедливости $U/kT\gg 1$). Найденная величина $U/kT\approx 25$ соответствует значениям 15 < U/kT < 50, приводимых в работе [14]. Температурные зависимости j_c (определяемого по уровню $1 \mu V$) и $j_1 = kT/\alpha$ (рис. 4) хорошо согласуются с формулой (2). Зависимость вида (2) может давать различные механизмы пиннинга. Так, для пиннинга на нормальных включениях и на пространственных неоднородностях с размерами порядка длины свободного пробега x = 2 [12], для пиннинга на границах разориентированных кристаллитов x = 1.5 [15]. В нашем случае температурные зависимости j_c и j_1 до облучения хорошо аппроксимируются выражением (2) при x = 1.5и 1.2 соответственно. Полученные экспериментальные зависимости $j_c(T)$ и значения x=1.5, по-видимому, обусловлены пиннингом вихря плоской границей зерен, а слабая температурная зависимость энергии пиннинга U/kT указывает на трехмерный характер потенциала пиннинга [14].

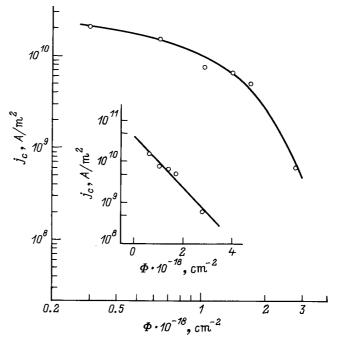
2) Влияние облучения на транспортные свойства YBaCuO-пленок

а) Пленки на МдО-подложках. Зависимости $T_c(\Phi)$ и $j_c(\Phi)$ пленки M1, полученные в процессе облучения при $T = 25 \, \text{K}$ различными флюенсами нейтронов, приведены на рис. 5, 6. Видно, что происходит монотонная деградация сверхпроводящих свойств (уменьшение T_c и j_c) с ростом флюенса нейтронов. При флюенсе $\sim 4.5 \cdot 10^{18} \, \text{cm}^{-2}$ на BAX в области малых токов появляется омический участок, однако с ростом тока опять наблюдается нелинейность, характерная для сверхпроводящего состояния. Деградация критического тока в этой области флюенсов определяется не только изменением свойств сверхпроводящих гранул и слабых джозефсоновских связей между ними, но и уменьшением эффективного сечения сверхпроводящего пути для транспортного тока. Тогда как деградация T_c и изменение формы резистивного перехода зависят от изменения свойств гранул и межгранульных связей. На рис. 5 представлены дозовые зависимости температуры начала $T_c^{0.9}$, конца $T_c^{0.1}$, середины $T_c^{0.5}$ и ширины ΔT_c сверхпроводящего резистивного перехода. Средняя скорость деградации критической температуры пленки M1 $T_c^{0.5}$ $(\Delta T/\Delta \Phi)$ составила величину $9.2 \cdot 10^{-18} \,\mathrm{K} \cdot \mathrm{cm}^2$. Известно, что в гранулированных материалах начало резистивного сверхпроводящего перехода определяется появлением сверхпроводимости в объеме гранул, а конец — появлением сверхпроводимости по слабым межгранульным

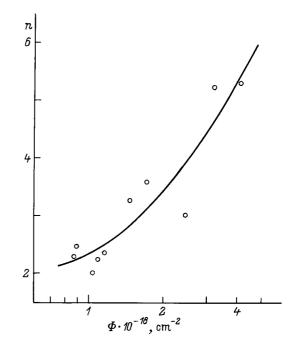
Рис. 5. Зависимость температуры начала $T_c^{0.9}(1)$, середины $T_c^{0.5}(2)$, конца $T_c^{0.1}(3)$ и ширины $\Delta T_c(4)$ сверхпроводящего перехода пленки M1 от флюенса быстрых нейтронов.

связям. Следовательно, облучение нейтронами приводит к более сильному изменению свойств межгранульных связей по сравнению с объемом самих гранул.

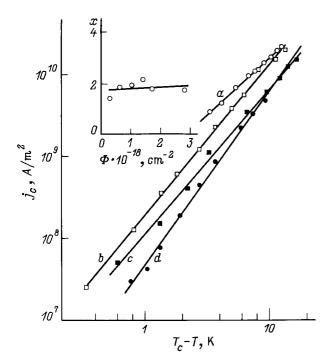
На основе теории протекания с использованием формулы (1) были обработаны ВАХ пленки М1, снятые при различных дозах нейтронного облучения. Полученные дозовые зависимости плотности критического тока j_c и показателя степени n приведены на рис. 6, 7. Как видно из рисунков, наблюдается сильный рост показателя степени n с дозой нейтронного облучения, что указывает на значительную модификацию свойств слабых межгранульных связей в результате радиационного воздействия.


Зависимость $j_c(\Phi)$ имеет экспоненциальный характер вида

$$j_c(\Phi) = j_c(0) \exp(-k\Phi), \tag{7}$$


где $j_c(0)$ — плотность критического тока до облучения, коэффициент k равен $7\cdot 10^{-19}\,\mathrm{cm}^2$. Такой вид дозовой зависимости критического тока должен иметь место в случае, когда токонесущая способность материала определяется только долей сверхпроводящей фазы. При условии, что в сверхпроводящей области плотность критического тока j_c^s не зависит от облучения $(j_c^s(\Phi)=j_c^s(0)=\mathrm{const})$, для зависимости $j_c(\Phi)$ легко получить выражение (6) [16]. В этом случае коэффициент k связан с числом смещенных атомов на нейтрон.

b) Пленки на $SrTiO_3$ -подложках. Зависимости $T_c(\Phi)$ и $j_c(\Phi)$ в процессе облучения при температуре 25 К для пленок S1 имели такой же характер, как и для пленки M1. Следует отметить, что


для пленок S-типа рост ширины перехода ΔT_c с ростом флюенса нейтронного облучения в 3 раза меньше, чем для пленок M-типа. Средняя скорость деградации критической температуры $T_c^{0.5}$ для пленки S1 составила величину $2.5 \cdot 10^{-18} \, \mathrm{K} \cdot \mathrm{cm}^2$, что в 3.5 раза меньше, чем для пленок M1. Результаты аппроксимации температурных зависимостей плотности критического тока

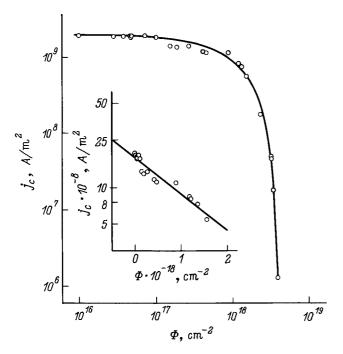

Рис. 6. Дозовая зависимость плотности критического тока пленки M1. На вставке — аппроксимация дозовых зависимостей выражением (6).

Рис. 7. Дозовая зависимость показателя степени n при аппроксимации ВАХ пленки М1 по формуле (1).

Рис. 8. Аппросимация зависимостей $j_c(T)$ пленки S1 по формуле (2) и зависимость показателя степени x (на вставке) при различных флюенсах нейтронов. Φ (10^{18} cm $^{-2}$): a = 0.3, b = 0.64, c = 1.4, d = 1.7.

Рис. 9. Дозовая зависимость плотности критического тока пленки S1 при $T=80\,\mathrm{K}$. На вставке — аппроксимация дозовой зависимости выражением (6).

пленки S1 при различных флюенсах быстрых нейтронов по формуле (2) представлены на рис. 8. Плотность критического тока определялась из BAX по отсечке на

уровне $1~\mu V$. Как видно из этого рисунка, зависимость $j_c(T)$ довольно хорошо аппроксимируется степенным законом с показателем степени $x\cong 2$, при этом параметр x не зависит от флюенса нейтронов (вставка на рис. 8). Зависимость $j_c(\Phi)$ пленки S1 (при $80~\mathrm{K}$) приведена на рис. 9. С ростом флюенса критический ток убывает по экспоненциальному закону (7) (вставка на рис. 9). Параметр $k=1\cdot 10^{-18}~\mathrm{cm}^2$ незначительно превышает значения, полученные для пленок M1.

Анализ ВАХ пленок S1, снятых при различных флюенсах нейтронов, проводился на основании модели резистивного состояния, связанного с термоактивацией абрикосовских вихрей [13]. Расчеты, выполненные с использованием формулы (5), показали, что величина энергии пиннинга U не зависит от флюенса, а отношение U/kT лежит в пределах 20-25, как и для пленок М1. Аналогичный результат был получен и в [17] при облучении монокристаллов YBaCuO протонами с энергией 3 meV. Можно ожидать, что при большой плотности центров пиннинга становится приемлемой теория коллективного пиннинга [18], из которой следует, что дозовая зависимость энергии пиннинга должна иметь вид $U \sim 1/\Phi$, что не согласуется с полученной в эксперименте независимостью энергии пиннинга от флюенса и свидетельствует о неприменимости модели трехмерного коллективного пиннинга.

Таким образом, наблюдаемое различное поведение транспортных свойств пленок YBaCuO на подложках MgO(M1) и $SrTiO_3(S1)$ в первую очередь определяется их кристаллической структурой, обусловленной структурой подложки и технологией изготовления. Показано, что пленки М1 представляют собой гранулированную систему, а их транспортные свойства определяются слабыми межгранульными связами, представляющими собой сеть джозефсоновских контактов, хорошо описываемых теорией протекания [3,4]. Пленки типа S1 являются монокристаллическими, для описания их транспортных свойств возможно использовать модель сплошной среды, когда резистивное состояние связано с термоактивацией абрикосовских вихрей [13]. Различный характер кристаллической структуры пленок M1 и S1 определил и различную степень деградации этих пленок в процессе низкотемпературного облучения нейтронами. Показано, что в случае S1-пленок разупорядочение приводит к изменению механизма пиннинга: от пиннинга на границах разориентированных кристаллитов в необлученных пленках к пиннингу (по-видимому, радиационной природы) на пространственных неоднородностях с размерами порядка длины свободного пробега после облучения нейтронами. Такое изменение механизма пиннинга в монокристаллических пленках YBaCuO привело не к ожидаемому росту j_c с флюенсом нейтронов, а только к деградации j_c во всей области изменения флюенса нейтронов (от $3 \cdot 10^{17}$ до $3 \cdot 10^{18}$ cm $^{-2}$). Отсутствие максимума на зависимости $j_c(\Phi)$, по-видимому, может быть связано с высоким структурным совершенством исследованных пленок.

Как было показано в работе [19], немонотонный характер зависимости $j_c(\Phi)$ с максимумом при флюенсе нейтронов $\Phi \sim 2 \cdot 10^{17} \, \mathrm{cm}^{-2}$ наблюдается только в сильно гранулированных материалах, к числу которых можно отнести керамические материалы, а также несовершенные пленки и монокристаллы.

Таким образом, для повышения критического тока ВТСП-материалов за счет разупорядочения, созданного облучением быстрыми нейтронами реактора, необходимо использовать гранулированные материалы с размером зерен более $8-10~\mu \mathrm{m}$.

Работа поддерживается Межотраслевой научно-технической программой "Нейтронные исследования вещества".

Список литературы

- А.К. Пустовойт, Б.А. Борисов, Р.Ф. Коноплева, Г.Д. Порсев, В.А. Чеканов, С.О. Боханов, М.В. Чудаков. Препринт ЛИЯФ, № 1749 (1991).
- [2] Р.Ф. Коноплева, Б.Л. Оксенгендлер, А.К. Пустовойт, Б.А. Борисов, В.А. Чеканов, М.В. Чудаков. СФХТ 6, 3, 568 (1993).
- [3] E. Guyon, S. Ronx, A. Hansen, D. Bidean, J.-P. Troadee, H. Crapo. Rep. Prog. Phys. 53, 4, 373 (1990).
- [4] A.D. Caplin, S.S. Bungre, S.M. Cassidy, J.R. Laverty, Z.X. Chen. Physica A168, 268 (1990).
- [5] М.И. Гуревич, Е.З. Мейлихов, О.В. Тальковская, В.В. Яньков. СФХТ 1, 1, 80 (1988).
- [6] E. Babič, M. Prester, Biškup. Solid State Commun. 77, 11, 849 (1991).
- [7] P. England, T. Venkatesan, X.D. Wu, A. Inam. Phys. Rev. B38, 10, 7125 (1988).
- [8] V. Ambegaocar, A. Baratoff. Phys. Rev. Lett. 10, 1, 468 (1963).
- [9] S. Greenspoon, J.T. Smith. J. Can. Phys. 49, 1350 (1971).
- [10] L.H. Allen, P.R. Broussard, J.H. Claassen, S.A. Wolf. Appl. Phys. Lett. 53, 14, 1338 (1988).
- [11] М.М. Гайдуков, Е.Ф. Гацура, Е.К. Гольдман, Л. Ковалевич, А.Б. Козырев, А.Ю. Попов, Т.Б. Самойлова. СФХТ 3, 10, 2191 (1990).
- [12] А.И. Ларкин, Ю.Н. Овчинников. ЖЭТФ **61**, *3(9)*, 1221 (1971).
- [13] P.W. Anderson, Y.W. Kim. Rev. Mod. Phys. 36, 39 (1964).
- [14] А.В. Безвинер, С.В. Гапонов, М.А. Калинин, В.Я. Козырев, Л.А. Мадо, М.Д. Стриковский. СФХТ 3, 10(2), 2332 (1990).
- [15] С.В. Гапонов, Г.Г. Каминский, Е.Б. Клюенков, Д.В. Кузин, В.И. Мацуй, А.М. Пан, В.Г. Прохоров, М.Д. Спинковский. ЖЭТФ 95, 6, 2191 (1989).
- [16] D. Weaver, M.E. Reeves, D.B. Chrisey, G.P. Summers, W.L. Olson, M.M. Eddy, T.W. James, E.J. Smith. J. Appl. Phys. 69, 2, 1119(L) (1991).
- [17] L. Civale, A.D. Marwick, M.W. McElfresh, T.K. Worthington, A.P. Molozemoff, F.H. Hiltzberg, J.R. Thompson, M.A. Kink. Phys. Rev. Lett. 65, 9, 1164 (1990).
- [18] M.V. Feigelman, V.M. Vinokur. Phys. Rev. **B41**, 13, 8986 (1990).
- [19] Р.Ф. Коноплева, И.В. Назаркин, В.А. Чеканов. Перспективные материалы, 6, 34 (1997).