## О токопереносе в пористом p-Si и структурах Pd- $\langle$ пористый Si $\rangle$

© С.В. Слободчиков, Х.М. Салихов, Е.В. Руссу

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 9 февраля 1998 г. Принята к печати 10 февраля 1998 г.)

Исследованы механизмы токопрохождения в температурном интервале 78 ÷ 300 К в пористом *p*-Si и структурах Pd-*p*-*por*-Si. Показано, что при 78 К определяющим является дрейфовый перенос при участии глубоких ловушек с концентрацией  $N_t \approx 1.3 \cdot 10^{13} \text{ см}^{-3}$ . При более высоких температурах преобладает диффузионный механизм с  $I \sim \exp(-qV/nkT)$  и  $n = 10 \div 20$ . Процессы релаксации обратного тока и фототока (восходящая ветвь) носят затяжной характер (до  $t \simeq 100 \text{ с}$ ) и определяются влиянием ловушек с глубиной  $E_t = 0.80$  эВ. Температурный ход фототока (без смещения) связан с рекомбинацией на уровне  $E_r = 0.12$  и его величина в основном зависит от вклада базовой области диодной структуры.

Основное внимание в исследованиях пористого кремния (*por*-Si) в многочисленных публикациях посвящено фото- и электролюминесценции в слоях и, в меньшей степени, в диодных структурах. Механизм токопрохождения изучен мало. В этой связи следует упомянуть несколько работ либо почти полностью посвященных этой проблеме [1], либо частично затрагивающих ее [2]. В нашей статье [3] также частично рассматривался токоперенос в диодных структурах с разупорядоченным  $p_0$ -слоем.

В данной статье изложены новые дополнительные результаты исследования по электрическим и фотоэлектрическим свойствам пористого *p*-Si и диодных структур Pd-*p*-*por*-Si и рассмотрены особенности механизма токопрохождения.

### 1. Вольт-амперные характеристики и механизм токопереноса

Известные способы получения слоев пористого кремния с использованием раствора HF в смеси с  $C_2H_5OH$  были опробованы на кристаллах *p*-Si с  $\rho = 1 \div 10 \text{ OM} \cdot \text{см}$ . Время электрохимического травления изменялось в интервале  $10 \div 50$  мин, а плотность тока — в интервале  $20 \div 300 \text{ мA/см}^2$ . Для создания диодных структур Pd-*p*-*por*-Si использовались образцы с толстым слоем пористого кремния w = 50 мкм. Палладий осаждался на пористый слой в виде круглых контактов с площадью  $S = 3.14 \cdot 10^{-2} \text{ см}^2$  при давлении  $10^{-5}$  Тор и толщина его составляла порядка 400 Å. Омические контакты создавались путем осаждения на тыльную сторону субстрата тонкого слоя Al.

На рис. 1 представлены прямые ветви вольт-амперных характеристик (положительный потенциал на *p-por-Si*), измеренные при температурах 78, 100 и 300 К. Характерные особенности их состоят в следующем. При T = 100 и 300 К вольт-амперные характеристики могут быть описаны выражением

$$I = I_0 \exp \frac{qV}{nkT},\tag{1}$$

причем при T = 100 К n = 20, а при T = 300 К n = 10. При T = 78 К в области относительно невысокого уровня инжекции  $I \sim V^2$ , а затем, с дальнейшим повышением напряжения, ток после крутого роста снова выходит на зависимость, близкую к  $V^2$ . В отличие от [1] наблюдается, таким образом, температурная зависимость тока, причем с изменением типа зависимостей I = f(V). При T = 78 К вид вольт-амперной характеристики (BAX), естественно, заставляет предположить наличие механизма токопереноса, ограниченного объемным зарядом. При низких уровнях инжекции можно принять

$$I = \frac{10^{-13} V^2 \mu^* \varepsilon S}{w^3},$$
 (2)

где S — площадь структуры,  $\varepsilon = 3.3$  — диэлектрическая постоянная пористого кремния [1], w — толщина слоя пористого кремния.

Из выражения (2) эффективная подвижность  $\mu^* = 0.06 \text{ см}^2/\text{B} \cdot \text{с}$ , т.е. на порядок ниже, чем в работе [3]. Крутой рост тока связан с заполнением уровней ловушек, и последующая почти квадратичная зависимость соответствует безловушечной области характеристики. По критическому напряжению, соответствующему этому переходу  $V_1 = 17 \text{ B}$ , можно оценить,



**Рис. 1.** Вольт-амперные характеристики структуры Pd-*p*-*por*-Si; *T*, K: *1* — 300, *2* — 100, *3* — 78. Верхняя шкала оси абсцисс относится к кривым *1*, *2*.

согласно [4], плотность уровней ловушек

$$N_t = \frac{CV_1}{qwS}.$$
(3)

Здесь емкость C = 20 pF и  $N_t = 1.3 \cdot 10^{13} \,\mathrm{cm}^{-3}$ . Повышение температуры приводит к росту концентрации равновесных дырок в базовой области *p-por-Si* и, соответственно, к уменьшению сопротивления этой области. С другой стороны, если принять гетероструктурную версию границы por-Si-Si, то можно ожидать температурного снижения барьера на этой границе. Первый эффект приводит к перераспределению приложенного напряжения с увеличением его падения на контактных областях, что увеличивает коэффициент инжекции дырок  $I_p/I$ . К этому же результату приводит и второй эффект. В итоге возрастает диффузионная компонента тока из-за увеличения градиентов dp/dx, dn/dx. Если токоперенос, определяемый выражением (2) целиком обусловлен дрейфовым механизмом, то повышение температуры приводит к постепенной смене его на диффузионный механизм.

В этом случае в (1), согласно [5],

$$n = \operatorname{ch} \frac{w}{L}$$
 при  $w > L,$  (4)

где *L* — амбиополярная диффузионная длина.

При комнатной температуре велик коэффициент инжекции дырок  $I_p/I$  через гетерограницу Pd-por-Si в пористый слой Si и мал коэффициент инжекции электронов  $I_n/I < 1$ . При этом, как будет показано далее, имеет место захват неосновных носителей тока, причем сечения захвата электронов и дырок существенно различаются,  $s_n \gg s_p$ . Следовательно, при  $T = 300 \,\mathrm{K}$ через структуру идет в основном дырочный ток. При понижении температуры до 100 К сохраняется преобладание диффузионного токопереноса, но так как из-за температурного сдвига уровня Ферми увеличилось число активных центров захвата электронов, то при одних и тех же значениях приложенного напряжения величина тока становится меньше. Эта разница особенно заметна при более высоких смещениях, когда из-за накачки электронов увеличивается темп рекомбинации. В этом случае убывает L в (4), что приводит к росту n в (1).

Важная роль глубоких ловушек выявляется при исследовании процессов релаксации обратного тока и фототока при обратном смещении. На рис. 2 приведены



**Рис. 2.** Релаксация (нарастание) обратного тока  $I/I_0$  (кривая I) и фототока при обратном смещении  $I_{\rm ph}$  (кривая 2).

соответствующие типичные кривые нарастания тока и фототока, полученные при ступенчатом скачке напряжения  $\Delta V$ . Стационарное значение тока устанавливалось для разных образцов в течение нескольких десятков секунд, иногда достигая значений 80 ÷ 90 с. Эта инерционность связана с инерционностью процесса изменения проводимости слоя пористого *p*-Si инжекционными токами. В самом деле, при скачкообразном изменении напряжения  $\Delta V = V_2 - V_1$  ток изменяется от значения  $I_1 \simeq \sigma_1 V_2 / w$ , достигнутого сразу после скачка напряжения (когда проводимость слоя сохраняет еще немодулированное значение  $\sigma_1$ ), до значения  $I_2 \simeq \sigma(I)V_2/w$ с модулированным значением проводимости  $\sigma = \sigma(I)$ . Изменение тока  $\Delta I \simeq (\sigma - \sigma_0) \Delta V/w$  происходит за время  $\Delta t$ , длительность которого определяется особенностями механизма переноса темновых (или световых) носителей, инжектированных в пористый р-слой. Новое значение I<sub>2</sub> устанавливается за время существенно большее, чем время установления напряжения, т.е. имеет место "запаздывание" тока. При диффузионном механизме токопереноса

$$\Delta t \simeq \frac{w^2}{2D_n}.\tag{6}$$

При  $\mu_n^* = 6 \cdot 10^{-2} \text{ см}^2/\text{B} \cdot \text{с}$   $\Delta t \simeq 0.1 \text{ с}$ . Эта оценка, однако, не учитывает наличия глубоких уровней ловушек. Движение инжектированных при обратном смещении электронов можно рассматривать как непрерывный процесс захвата и освобождения ловушками, расположенными на разной глубине в запрещенной зоне Si и имеющими различные плотность и сечение захвата. Не удается объяснить процесс нарастания обратного тока и фототока моделью с однородным распределением ловушек в запрещенной зоне [6]. Можно предположить, что при скачкообразных изменениях напряжения и, соответственно, увеличении инжекции электронов возрастает пространственный заряд, что влияет на функцию распределения ловушек  $\psi(t)$ . Если считать, что самая глубокая ловушка имеет постоянную времени  $\tau_1$ , то [7]

$$\psi(t) \sim \exp\left(-\frac{t}{\tau_1}\right).$$
(7)

Тогда для кривой нарастания обратного тока или фототока следует ожидать изменения по закону

$$I = I_0 \left[ 1 - \exp\left(-\frac{t}{\tau_1}\right) \right].$$
(8)

Хорошее совпадение экспериментальной зависимости с рассчитанной по (8) наблюдается при  $\tau_1 = 20$  с (рис. 2). Этому времени соответствует глубокий уровень ловушек, величину которого можно оценить по времени теплового выброса электронов

$$\tau = \tau_0 \exp \frac{E_t}{kT}.$$
(9)

Из (9) при  $\tau_1 = 20 \,\mathrm{c} \,(\tau_0 \approx 10^{-13} \,\mathrm{c})$  получаем, что глубина уровня  $E_t = 0.80 \,\mathrm{sB}.$ 

#### 2. Фототок и фотоэдс

На рис. 3 приведена температурная зависимость фототока короткого замыкания (V = 0) изученных диодных структур в интервале 110 ÷ 300 К. Экспоненциальный рост  $I_{\rm ph}$  с уменьшением обратной температуры сменяется спадом лишь при температурах, близких к комнатной. Фототок определяется разделением неравновесных носителей на барьере Шоттки Pd-*p*-*por*-Si. Изменение фототока отражает в основном соответствующее изменение времени жизни неосновных носителей (электронов) с температурой. В самом деле, как известно, полный фототок структуры определяется двумя компонентами

$$I_{\rm ph} = I_d + I_b, \tag{10}$$

где *I*<sub>d</sub> — вклад области пространственного заряда,

$$I_d \sim \Big[1 - \exp(-\alpha w_1)\Big],\tag{11}$$

и  $I_b$  — вклад области базы, т. е. слоя пористого *p*-Si,

$$I_b \sim \frac{\alpha L_n}{(\alpha L_n + 1)} \exp(-\alpha w_1).$$
(12)

В этих соотношениях  $\alpha$  — коэффициент поглощения,  $w_1$  — толщина слоя пространственного заряда. Вследствие малого коэффициента поглощения  $\alpha$  (фотоносители генерировались монохроматическим светом с  $\lambda = 1.1$  мкм) и малой толщины  $w_1$  основной вклад в фототок вносит базовая область т.е. компонента  $I_b$  (12):

$$I_{\rm ph} \sim L_n \sim \left(\frac{\mu_n^* kT}{q}\right)^{1/2} \exp\left(-\frac{E_r}{2kT}\right).$$
 (13)

Из наклона прямой температурной зависимости фототока имеем  $E_r = 0.12$  эВ. Можно полагать, что этим рекомбинационным уровнем определяется время жизни фотоносителей. Характерно влияние магнитного



**Рис. 3.** Температурная зависимость фототока диодной структуры без смещения.



**Рис. 4.** Изменение фотоэдс  $\Delta V_{\text{ph}}$  в магнитном поле *H* для образца диодной структуры Pd–*p*-*por*-Si.

поля на фотоэдс (рис. 4). При магнитном поле, перпендикулярном диффузионному потоку, фотоэдс растет с ростом поля, достигая максимума при H = 12 кOe, и затем начинает спадать. Следовало ожидать, однако, падения  $I_{\rm ph}$  во всем интервале магнитных полей, хотя и не очень резкого, из-за малой эффективной подвижности электронов

$$D_n(H) = \frac{D_n(0)}{\sqrt{1 + \left(\frac{\mu_n^*H}{c}\right)^2}}$$

Наблюдаемый экспериментально рост фотоэдс, вероятно, целиком обусловлен ростом дифференциального сопротивления барьера Pd– $\langle$ пористый кремний $\rangle$ . Лишь при высоких полях начинает преобладать спад тока короткого замыкания  $I_{\rm ph}$ , что предопределяет наличие максимума и спад фотоэдс.

#### Список литературы

- C. Peng, K.D. Hirschman, P.M. Fauchet. J. Appl. Phys., 80. 295 (1996).
- [2] F. Namavar, H.P. Maruska, N.M. Kalkhoran. Appl. Phys. Lett., 60, 2514 (1992).
- [3] С.В. Слободчиков, Х.М. Салихов, Е.В. Руссу, М.М. Мередов, А.И. Язлыева. ФТП, **31**, 15 (1977).
- [4] A. Rose. Phys. Rev., 97, 1538 (1955).
- [5] Э.И. Адирович, П.М. Карагеоргий-Алкалаев, А.Ю. Лейдерман. Токи двойной инжекции в полупроводниках (М., Наука, 1978) с. 73, 118–122.
- [6] R.H. Bube. J. Appl. Phys., 34, 3309 (1963).
- [7] J. Wang. J. Appl. Phys., 75, 332 (1984).

Редактор Т.А. Полянская

# Current transport in porous silicon and Pd–*p*-*por*-Si structures

S.V. Slobodchikov, Kh.M. Salikhov, E.V. Russu

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia