Магнитоплазменный эффект в монокристаллах сурьмы при температуре $\geqslant 80 \, \text{K}$

© А.А. Зайцев, К.Г. Иванов*, В.М. Грабов†

Елецкий государственный педагогический институт,

399740 Елец Липецкой обл., Россия

* Санкт-Петербургский университет технологии и дизайна,

191186 Санкт-Петербург, Россия

† Российский государственный педагогический университет им. А.И. Герцена,

191186 Санкт-Петербург, Россия

(Получена 5 февраля 1998 г. Принята к печати 14 мая 1998 г.)

Исследованы спектры пропускания лазерного излучения с $\lambda=10.6$ мкм образцами, представляющими две разделенные малым зазором симметричные половинки монокристалла сурьмы, в импульсных магнитных полях $B\leqslant 20\,\mathrm{Tr}$ при температурах, $T\geqslant 80\,\mathrm{K}$. При $B\approx 15\,\mathrm{Tr}$ наблюдался магнитоплазменный эффект с изменением пропускания, близким к 100%. Определено магнитоплазменное время релаксации. Показана возможность использования таких образцов в качестве инфракрасных оптических клапанов с быстродействием не хуже $10^{-4}\,\mathrm{c}$.

Исследовано пропускание излучения инфракрасного (ИК) лазера ($\lambda=10.6\,\mathrm{mkm}$) симметричной полосковой линией (СПЛ), представляющей собой две половинки монокристалла сурьмы, разделенные зазором порядка длины волны излучения. Измерения проводились в импульсных магнитных полях с индукцией до 25 Тл, в температурном интервале $80 \div 140\,\mathrm{K}$. Применяемая методика и техника эксперимента, описана ранее [1].

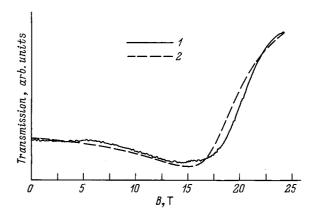
Резкий рост коэффицента пропускания СПЛ в зависимости от магнитного поля интерпретируется как магнитоплазменный эффект, соответствующий краю магнитоплазменного отражения кристаллов сурьмы [2,3]. Полевое положение края и форма спектра согласуются в результатами работ [2,3] по магнитоплазменному отражеию, проведенными при температуре жидкого гелия.

На рис. 1 представлена экспериментальная зависимость проходящего сигнала от индукции магнитного поля, направленного вдоль бинарной (кривая I) и биссектрисной оси (кривая 2) для поляризации $E \perp C_3$ (C_3 — тригональная ось). Резкий рост сигнала в полях порядка 15 Тл представляет собой магнитоплазменный эффект.

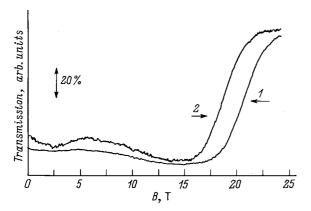
Комплексная диэлектрическая проницаемость, определяющая взаимодействие излучения с плазмой носителей заряда в магнитном поле при условиях $S \parallel B, E \perp B$ (S — волновой вектор), в случае изотропной эффективной массы имеет вид

$$\varepsilon_{\pm} = \varepsilon_{\infty} \left[1 - \frac{\omega_p^2}{\omega(\omega \pm \omega_c - i\tau^{-1})} \right]$$

$$\omega_p = \sqrt{Ne^2/(m^*\varepsilon_{\infty})}.$$
(1)


Знаки \pm означают левую и правую круговую поляризацию излучения, ω — его частота, ε_{∞} — диэлектрическая проницаемость на частотах $\omega\gg\omega_p,\ \omega_c=(eB/m^*)$ — циклотронная частота, N,m^*,τ — концентрация, эффективная масса и время релаксации носителей заряда, ω_p — плазменная частота.

В полуметалле сурьмы учет вкладов электронов и дырок в аддитивном приближении позволяет привести (1) к виду


$$\varepsilon_{\pm} = \varepsilon_{\infty} \left[1 - \sum_{j} \frac{\omega_{pj}^{2}}{\omega(\omega \pm \omega_{cj} - i\tau_{j}^{-1})} \right]. \tag{2}$$

Суммирование в (2) необходимо выполнить по трем электронным и шести дырочным квазиэллипсоидам с учетом их анизотропии и локализации в зоне Бриллюэна [4]. В расчетах использовались данные: $N_c = N_h = 5.54 \cdot 10^{19} \, \mathrm{cm}^{-3}$ [5], $\varepsilon_\infty = 85$ [6].

На рис. 2 представлены экспериментальный (кривая I) и модельный (кривая 2) спектры пропускания СПЛ в геометрии $B \parallel C_1$, $E \perp C_3$ для $T=80\,\mathrm{K}$. Согласие модельных и экспериментальных спектров во всем исследованном интервале температур было достигнуто при значениях эффективных масс для электронов и дырок, совпадающих с их значениями для $T=4.2\,\mathrm{K}$ [4], что обусловлено сильным вырождением носителей заряда. Наилучшее согласие в форме спектров пропускания

Рис. 1. Зависимость сигнала, проходящего через СПЛ из сурьмы, для $E \perp C_3$ и $B \parallel C_1$ (1), $B \parallel C_2$ (2). T = 80 K.

Рис. 2. Экспериментальный (1) и модельный (2) спектры магнитопропускания СПЛ из сурьмы при $E \perp C_3$ и $B \parallel C_1$. $T=80\,\mathrm{K}$.

было получено при $\tau=1.9\cdot 10^{-13}\,\mathrm{c}$ для $T=80\,\mathrm{K}$ (рис. 2) и $\tau=1.3\cdot 10^{-13}\,\mathrm{c}$ для $t=140\,\mathrm{K}$. Согласие модельного на основе (2) спектра магнитоотражения с экспериментальным [2] для $T=4.2\,\mathrm{K}$ достигается при $\tau=4\cdot 10^{-13}\,\mathrm{c}$. Полученные значения времени релаксации магнитоплазменного эффекта в кристаллах сурьмы указывают на его температурную зависимость, аналогичную наблюдаемой для времени релаксации плазменного отражения в висмуте [7].

Плазменная частота для сурьмы практически совпадает с модой излучения инфракрасного CO_2 -лазера $\lambda=10.6\,\mathrm{Mkm}$. В результате появляется возможность использования СПЛ из монокристалла сурьмы в качестве перестраиваемого магнитным полем оптического клапана на этой длине волны. Глубина модуляции приближается к 100% (рис. 1), а быстродействие, определяющееся длительностью импульса магнитного поля, оценивается как $10^{-4}\,\mathrm{c}$.

Список литературы

- [1] К.Г. Иванов, С.В. Кондаков, С.В. Бровко, А.А. Зайцев. ФТП, **30**, 1585 (1996).
- [2] M.S. Dresselhaus, J.G. Mavroides. Sol. St. Commun., 2, 297 (19640.
- [3] M.J. Apps. J. Phys. F: Metal. Phys., 4, 46 (1974).
- [4] W.R. Datars, J. Venderkooy. IBM J. Res. Dev., 8, 247 (1964).
- [5] Z. Altounian, W.R. Datars. Can. J. Phys., 53, 459 (1975).
- [6] C. Manney. Phys. Rev., 129, 109 (1963).
- [7] М.И. Беловолов, А.Д. Белая, В.С. Вавилов, В.Д. Егоров, В.С. Земсков, С.А. Рослов. ФТП, 26, 1382 (1976).

Редактор В.В. Чалдышев

Magnetoplasma phenomena in single-crystal antimony at $T \geqslant 80 \text{ K}$

A.A. Zaitsev, K.G. Ivanov*, V.M. Grabov†

Elets Stated Pedagogical Institute, 399740 Elets, Russia * St.Petersburg State University of Technology and Design, 191186 St.Petersburg, Russia † Russian State Pedagogical University, 191186 St.Petersburg, Russia

Abstract Transmission spectra of laser radiation with $\lambda=10.6\,\mu\mathrm{m}$ by samples, representing two shared by small backlash symmetric antimony single crystal plate, in pulsing magnetic fields $B\leqslant 20\,\mathrm{T}$ at temperatures $T=80\,\mathrm{K}$ are investigated. Magnetoplasma phenomena were observed at $B\approx 15\,\mathrm{T}$ with transmission change, close to 100%. Magnetoplasma relaxation time is determined. A possibility to use such samples as a IR-optical valves with speed not worse $10^{-4}\,\mathrm{s}$ is shown.