Релаксация доменной структуры примесных кристаллов триглицинсульфата под действием внутреннего поля

© А.И. Никишина, С.Н. Дрождин, О.М. Голицына

Воронежский государственный университет, 394006 Воронеж, Россия

Исследована релаксация структуры сегнетоэлектрических кристаллов триглицинсульфата (ТГС), неравновесное состояние которой создавалось быстрым охлаждением через точку фазового перехода, полевым и термическим воздействием. Выявлена роль внутреннего поля в процессах релаксации доменной структуры к равновесному состоянию в дефектных кристаллах ТГС.

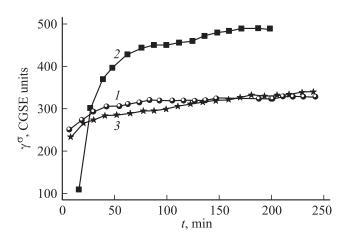
Работа выполнена при поддержке фонда CRDF (грант VZ-010).

PACS: 77.80.Dy, 77.84.Fa, 77.80.Bh

1. Введение

Доменная структура (ДС), возникающая в результате быстрого охлаждения в полярную фазу и измененная термическим или полевым воздействием, неравновесна и со временем релаксирует к новому или исходному (в зависимости от вида воздействия) равновесному состоянию [1,2]. Существенное влияние на этот процесс оказывает внутреннее поле, сформированное дефектами [3]. В настоящей работе исследован характер релаксационного поведения созданной указанными способами неравновесной ДС номинально чистых и примесных кристаллов группы триглицинсульфата (ТГС).

2. Методика измерения


Объектами исследования служили кристаллы ТГС: номинально чистые, легированные молекулами L, α -аланина (ATГС), а также с двойной примесью фосфора и L, α -аланина (ATГСФ). Измерялись временные зависимости статического пирокоэффициента $\gamma^{\sigma}=(dP_{\Sigma}/dT)_{\sigma,E}$, отражающие изменение во времени коэффициента униполярности, зависящего от состояния доменной структуры кристалла. Измерения пироэлектрического заряда проводились цифровым вольтметром-электрометром B7-30 по следующей схеме. Образец после выдержки в течение 15 min при 55°C охлаждался со скоростью 1.3°C/min в сегнетофазу до заданной температуры T_m , при которой измерения $\gamma^{\sigma}(t)$ проводились в течение 3-4 h с $\Delta T=\pm 0.2$ °C.

3. Экспериментальные результаты и их обсуждение

Зависимости $\gamma^{\sigma}(t)$, стимулированные быстрым охлаждением кристалла в полярную фазу, представлены на рис. 1. Кривые $\gamma^{\sigma}(t)$, полученные при температуре измерения $T_m = 46$ °C, для всех кристаллов имеют релаксационный характер: значения γ^{σ} со временем монотонно возрастают (что свидетельствует об укрупнении ДС), постепенно выходя на насыщение. При удалении в

сторону низких температур от точки Кюри релаксационное поведение пирокоэффициента, а следовательно, и ДС для номинально чистого ТГС быстро пропадает, но по-прежнему сохраняется в легированных кристаллах. Исследования кристалла АТГС, проведенные нами ранее [4], показали, что зависимости $\gamma^{\sigma}(t)$ могут быть немонотонными: на начальном этапе происходит уменьшение значений γ^{σ} и лишь затем наблюдается их рост с постепенным выходом на насыщение. Такое различие, вероятно, связано с тем, что релаксационные процессы, обусловленные быстрым охлаждением (1.3°С/min) в сегнетофазу, протекает быстрее, чем при более медленном (0.8°C/min в [4]) переводе образца через T_c , и в данном случае мы наблюдаем только конечные — возрастающие — участки релаксационных кривых.

Во всем временном интервале (от t=0 до $3-4\,\mathrm{h}$) экспериментальные результаты лучше всего описывает экспоненциальная функция: $\gamma^\sigma = a \exp(bt)$. Соответствующая обработка экспериментальных кривых позволила определить времена релаксации τ , температурные зависимости которых представлены на рис. 2. Зависимость $\tau(T)$ для кристалла АТГС (кривая I на рис. 2) яв-

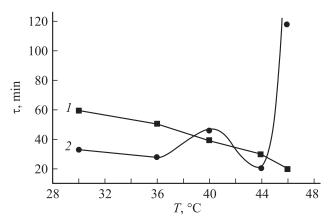
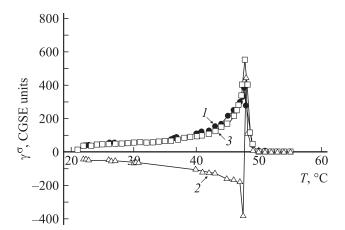


Рис. 1. Временны́е зависимости пироэлектрического коэффициента γ^{σ} для кристаллов номинально чистого ТГС (1), АТГС (2) и АТГСФ (3) при $T_m = 46^{\circ}$ С.


8 1073

ляется монотонно убывающей, а для кристалла АТГСФ (кривая 2 на рис. 2) она немонотонна, что, вероятно, объясняется существованием в этом кристалле перестроек ДС, наиболее интенсивных в области $\sim 40^{\circ}$ С и вблизи T_c [5].

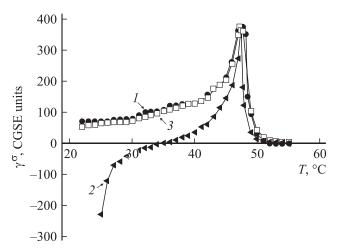

Для кристалла АТГСФ также была исследована релаксация ДС, вызванная температурным отжигом при 110° С в течение часа и воздействием постоянного электрического поля $E_{=}=2E_{c}$ (E_{c} — коэрцитивное поле), которое прикладывалось к образцу при комнатной температуре в течение 30 min противоположно направлению поля естественной униполярности. Результаты этих исследований приведены на рис. 3 и 4. Кривая I на рис. 3 представляет зависимость $\gamma^{\sigma}(T)$, полученную до воздействия постоянного электрического поля, приложение которого вызывает смену знака γ^{σ} во всем исследованном интервале температур (кривая I на рис. I на р

Рис. 2. Температурные зависимости времени релаксации τ для кристаллов АТГС (1) и АТГСФ (2).

Рис. 3. Температурные зависимости пироэлектрического коэффициента γ^{σ} для кристалла АТГСФ. I — до воздействия поля, 2 — сразу после воздействия поля, 3 — через $160\,\mathrm{h}$ после воздействия поля.

Рис. 4. Температурные зависимости пироэлектрического коэффициента γ^{σ} для кристалла АТГСФ. I — до отжига, 2 — сразу после отжига, 3 — через 140 h после отжига.

начальному состоянию (кривая 3 на рис. 3), что обусловлено действием внутреннего поля кристалла.

После термического отжига величина γ^{σ} меняет знак не во всем исследованном интервале температур, а только в интервале, ограниченном сверху: $T \leq 40^{\circ}\mathrm{C}$ (кривая 2 на рис. 4). Как и при воздействии поля $E_{=}$, состояние ДС со временем полностью (через $140~\mathrm{h}$) восстанавливается под действием внутреннего поля (кривая 3 на рис. 4).

4. Заключение

Экспериментально получены временные зависимости пирокоэффициента, обусловленные релаксацией неравновесной ДС. В номинально чистом ТГС релаксация, обусловленная быстрым охлаждением в сегнетофазу, проявляется только вблизи T_c . Для примесных кристаллов ТГС релаксационные процессы наблюдаются во всем исследованном температурном интервале. Полевое и термическое воздействия на кристаллы АТГСФ, разрушающие существующую униполярность, приводят к смене знака γ^{σ} . Со временем под действием внутреннего поля начальное состояние ДС полностью восстанавливается.

Список литературы

- [1] Б.А. Даринский, А.П. Лазарев, А.С. Сигов. ЖЭТФ **114**, 6(12), 2238 (1998).
- [2] А.М. Саввинов, Н.Д. Гаврилова, В.К. Новик. Изв. АН СССР. Сер. физ. 34, 12, 2601 (1970).
- [3] V. Likodimos, M. Labardi, M. Allegrini. Phys. Rev. B 66, 024 104 (2002).
- [4] С.Н. Дрождин, А.И. Никишина, О.М. Голицына. Полиматериалы-2003. М. (2003). Ч. 2. С. 88–90.
- [5] L.N. Kamysheva, S.N. Drozhdin, O.M. Serdyuk. Phys. Stat. Sol. (a) 97, K29 (1986).