05:06:09

Феррогранатовые пленки с повышенной термостабильностью магнитных параметров

© С.И. Ющук, П.С. Костюк, И.Е. Лопатинский

Государственный университет "Львовская политехника", 290646 Львов, Украина

(Поступило в Редакцию 23 мая 1997 г.)

В интервале температур $213-353\,\mathrm{K}$ исследован ферромагнитный резонанс в феррогранатовых пленках $Y_3Fe_{5-x}Ga_xO_{12}$ ($0\leqslant x\leqslant 0.63$), полученных методом жидкофазной эпитаксии (ЖФЭ) на подложках из галлий-гадолиниевого граната. Установлено, что при ЖФЭ коэффициент распределения галлия в пленках изменяется в пределах от $2.2\,$ до $4.0\,$ в зависимости от состава и условий выращивания. Установлена возможность температурной стабилизации резонансных магнитных полей за счет температурных изменений намагниченности насыщения и поля анизотропии.

В последние годы возрос интерес к применению монокристаллических пленок феррогранатов в микроволновых устройствах, работающих на магнитостатических волнах (МСВ) [1,2]. Основные требования к таким устройствам — наличие минимальных магнитных потерь при распространении МСВ и высокая частотная стабильность в рабочем диапазоне температур. Магнитные потери определяются шириной линии ΔH ферромагнитного резонанса (ФМР). Для пленок железо-иттриевого граната (ЖИГ) можно получить минимальные значения $\Delta H \leq 0.5\,\mathrm{Oe}$. Одним из способов повышения стабильности работы устройств на МВС может быть применение в них феррогранатовых пленок с повышенной термостабильностью магнитных параметров. Однако пленки ЖИГ, используемые в устройствах на МСВ, обладая минимальными магнитными потерями, имеют неудовлетворительную термостабильность.

Настоящая работа посвящена поиску феррогранатовых пленок с минимальными значениями ширины линии ФМР и повышенной термостабильностью. С этой целью исследовалась возможность повышения термостабильности параметров пленок феррогранатов $Y_3 \operatorname{Fe}_{5-x} \operatorname{Ga}_x \operatorname{O}_{12}$ ($0 \leqslant x \leqslant 0.6$) за счет различного температурного хода намагниченности насыщения $4\pi M_s$ и поля анизотропии H_a .

Пленки выращивали методом жидкофазной эпитаксии путем изотермического погружения горизонтально расположенной подложки из галлий-гадолиниевого граната (ГГГ) ориентации (111) в переохлажденный раствор-расплав гранато-образующих окислов Fe_2O_3 , Y_2O_3 , Ga_2O_3 и флюса $PbO-B_2O_3$ общей массой 6 kg. Расчет состава шихты проводился по молярным соотношениям R_1-R_4 [3]. Эти соотношения выбирали из соображения стабильности гранатовой фазы для составов с различным содержанием ионов галлия. При изменении параметра x в химической формуле феррогранатовых пленок от 0.03 до 0.6 соотношения R_1-R_4 имели следующие значения или находились в пределах: $R_1 = 28.35-29.96$, $R_2 = 17.2-685.0$, $R_3 = 15.6$, $R_4 = 0.149$. Соотношение $R_2 = Fe_2O_3/Ga_2O_3$ характери-

зует количество окиси галлия, вводившейся в шихту для замещения окиси железа. Высокие значения температур насыщения расплава $1200-1235\,\mathrm{K}$ были выбраны исходя из требования минимального вхождения ионов Pb^{2+} в эпитаксиальные слои [4].

Выращенные Ga:ЖИГ пленки с $x \leqslant 0.3$ толщиной $1-10\,\mu{\rm m}$ имели гладкую блестящую поверхность без наплывов и микротрещин. Однако по мере увеличения толшины пленок и сопержания в них галлия качество поверхности ухудшалось. Вырастить качественные пленки со значениями $x \geqslant 0.6$ и толщиной более $5\,\mu\mathrm{m}$ не удалось из-за большой разницы параметров кристаллической решетки пленки и подложки $\Delta a \geqslant 0.015 \,\text{Å}$. Содержание ионов галлия в Ga:ЖИГ пленках по данным рентгеновского локального микроанализа несколько отличалось от расчетных значений (см. таблицу). Такое расхождение можно объяснить тем, что при расчете составов шихты не учитывалось изменение коэффициента распределения K_{Ga} [5] в зависимости от содержания галлия и температурных режимов роста. При расчетах шихты использовали значение $K_{\rm Ga}=2.2$. Коэффициент распределения галлия в пленках определяли из соотношения

$$K_{\text{Ga}} = \frac{\left(\frac{x_{\text{Ga}}}{x_{\text{Ga}} + x_{\text{Fc}}}\right)_f}{\left(\frac{x_{\text{Ga}}}{x_{\text{Ca}} + x_{\text{Fc}}}\right)_f},\tag{1}$$

где x_{Ga} и x_{Fe} — содержание галлия и железа в пленке (f) и растворе—расплаве (m).

Как видно из таблицы, значения $K_{\rm Ga}$ для пленок ${\rm Ga}$:ЖИГ с $x\leqslant 0.1$ значительно отличаются от литературных данных $K_{\rm Ga}=2.2$ [5].

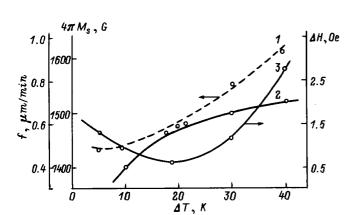
Состав Ga:ЖИГ замещенных пленок зависит не только от состава раствора—расплава, но и от скорости их роста, которая в свою очередь зависит от степени переохлаждения расплава ΔT . Изменение в Ga:ЖИГ пленках концентрации ионов Ga³⁺ и Pb²⁺ приводит к изменению параметров $4\pi M_s$ и ΔH . На рис. 1 приведены зависимости скорости роста пленки f $4\pi M_s$ и ΔH от степени переохлаждения ΔT раствора—расплава с x = 0.1.

Расчетный состав * x	Состав ферритовой пленки x	Параметр решетки подложки ГГГ, Å	Параметр решетки пленки, Å	Коэффициент распределения Ga ³⁺ , отн. ед.
0.03	0.028	12.3821	12.3723	4.0
0.05	0.053	12.3826	12.3718	3.1
0.1	0.140	12.3822	12.3735	2.8
0.3	0.380	12.3826	12.3708	2.4
0.5	0.560	12.3821	12.3691	2.4
0.6	0.630	_	_	2.2

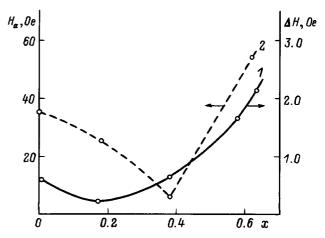
Составы Ga: ЖИГ пленок, параметры кристаллической решетки, коэффициенты распределения галлия

Измерение параметров Φ MP проводили по волноводной методике [6] на образцах диаметром 0.1 mm, изготовленных методом химического травления [7].

Из рис. 1 видно, что с возрастанием переохлаждения линейно увеличивается скорость роста пленок. Возрастает также и намагниченность насыщения. При изменении степени переохлаждения от 5 до 40 K коэффициент распределения $K_{\rm Ga}$ уменьшается в пределах от 3.39 до 2.23, что говорит об уменьшении в пленках содержания ионов ${\rm Ga}^{3+}$. Так как ионы галлия замещают ионы ${\rm Fe}^{3+}$ преимущественно в тетраэдрических положениях, то это должно приводить к возрастанию намагниченности насыщения, что и наблюдается.


Что касается параметра ΔH , то на рис. 1 он проходит через минимум при $\Delta T=18~\mathrm{K}$ и затем снова возрастает. Возрастание ΔH скорее всего обусловлено увеличением в пленках количества поступающих из шихты ионов $\mathrm{Pb^{2+}}$, вхождение которых в ферритовую пленку пропорционально скорости ее роста [8]. Наличие минимума на кривой ΔH можно объяснить взаимной зарядовой компенсацией ионов $\mathrm{Pb^{2+}}$ и $\mathrm{Pt^{4+}}$, последние из которых всегда имеются в небольшом количестве в шихте за счет платинового тигля [3].

На рис. 2 представлены зависимости ширины линии Φ MP и поля анизотропии от содержания ионов галлия в


Ga: ЖИГ замещенных пленках, выращенных при одинаковой температуре переохлаждения $\Delta T=10\,\mathrm{K}.$ Видно, что с ростом содержания галлия в пленках ΔH сначала уменьшается, достигая минимального значения $0.2\,\mathrm{Oe}$ при x=0.18. На этом же рисунке представлена кривая концентрационной зависимости поля анизотропии H_a , на которой также имеется острый минимум, несколько сдвинутый относительно минимума кривой $\Delta H.$ Можно сделать вывод, что эти зависимости коррелируют, т.е. ширина линии ΦMP Ga: ЖИГ пленок зависит от величины поля анизотропии. Причем параметр ΔH Ga: ЖИГ монокристаллических пленок растет уже при значениях $x\geqslant 0.3\,$ в отличие от объемных Ga: ЖИГ монокристаллов, где ширина линии ΦMP почти не изменяется до значения $x=0.8\,$ [6].

Различие в поведении ΔH в пленках и монокристаллах обусловлено тем, что поле анизотропии в объемных монокристаллах имеет кристаллографическую природу, а в пленках оно состоит из трех составляющих: магнито-кристаллической, наведенной напряжениями и индуцированной в процессе роста. Наличие в пленках наведенной и индуцированной ростом составляющих анизотропии вызвано особенностями технологии их получения.

Увеличение поля анизотропии в Ga:ЖИГ пленках с увеличением содержания галлия (рис. 2) связано с

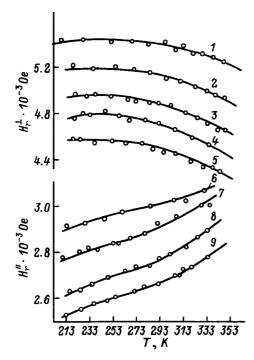


Рис. 1. Зависимости скорости роста f_p (I), намагниченности насыщения $4\pi M_s$ (2) и ширины линии ФМР ΔH (3) при $T=295\,\mathrm{K}$ от степени переохлаждения ΔT .

Рис. 2. Зависимости ширины линии ФМР ΔH (1) при $T=295\,\mathrm{K}$ и поля анизотропии H_a (2) от содержания ионов галлия (x) в пленках $\mathrm{Y}_3\mathrm{Fe}_{5-x}\mathrm{Ga}_x\mathrm{O}_{12}$.

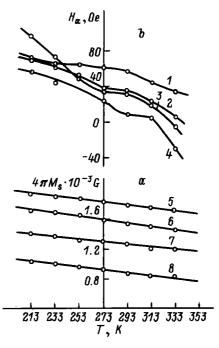
^{*} По содержанию окиси галлия в шихте.

Рис. 3. Температурные зависимости резонансных полей H_p^{\perp} и H_p^{\parallel} для пленок $Y_3Fe_{5-x}Ga_xO_{12}$: x=0 (1, 9); 0.14 (2, 8); 0.38 (3, 7); 0.56 (4); 0.63 (5, 6).

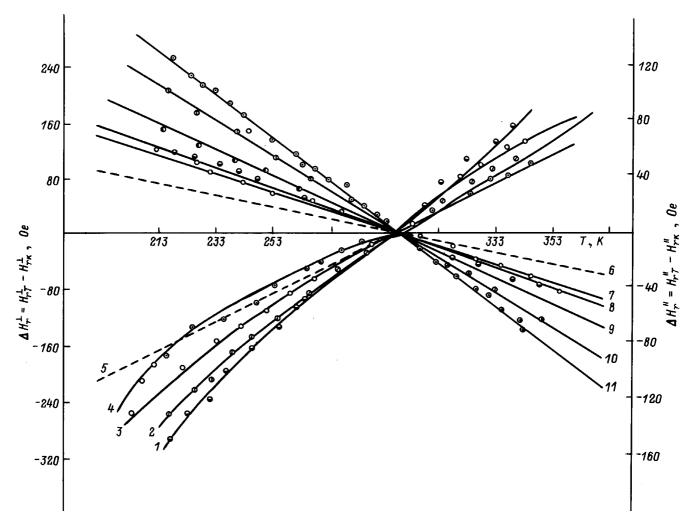
ростом упругих напряжений, возникающих в системе пленка—подложка из-за несоответствия параметров их кристаллических решеток. По данным наших измерений, с возрастанием x от 0.1 до 1.0 разница параметров решеток пленки и подложки возрастает от 0.0087 до 0.0206 Å, что приводит при больших несоответствиях к появлению трещин в пленках с x=1.0.

Для Ga: ЖИГ пленок с разными x нами были измерены температурные зависимости намагниченности насыщения, поля анизотропии и резонансных полей. Интервал температур 213-353 К соответствует наиболее реальным рабочим температурам микроволновых приборов, в которых могут быть использованы ферритовые пленки. Резонансные поля H_p^{\perp} и H_p^{\parallel} измеряли при направлениях постоянного магнитного поля, нормальном (перпендикулярный резонанс) и касательном (параллельный резонанс) к плоскости пленки. Результаты измерений температурных зависимостей резонансных полей H_r^{\perp} и H_r^{\parallel} для пленок Ga:ЖИГ различного состава приведены на рис. 3. Как видно из рис. 3, при данной температуре величина резонансного поля H_r^{\perp} уменьшается примерно на 100-150 Ое при увеличении содержания галлия в ферритовой пленке на 0.1 атома на формульную единицу (кривые 1-5). При параллельном резонансе величина H_r^{\parallel} возрастает на $50-100\,\mathrm{Oe}$ с увеличением параметра x на 0.1 (кривые 6-9). Для перпендикулярного резонанса [9]

$$\frac{\omega_{\perp}}{\gamma} = H_p^{\perp} - 4\pi M_s + H_a,\tag{2}$$


где ω_{\perp} — резонансная частота; γ — гиромагнитное отношение, равное 2.8 MHz/Oe; значение резонансного поля H_r^{\perp} определяется частотой СВЧ поля, намагниченностью насыщения $4\pi M_s$ и полем анизотропии H_a .

Для продольного резонанса, где


$$\frac{\omega_{\parallel}}{\gamma} = \sqrt{(H_r^{\parallel} + H_a)(H_r^{\parallel} + 4\pi M_s + H_a)},\tag{3}$$

при условии постоянства частоты с уменьшением намагниченности насыщения резонансное поле должно возрастать. Следовательно, при постоянной частоте для ферритовых пленок с различным содержанием галлия величины H_r^\perp , H_r^\parallel и их изменения с температурой определяются параметрами $4\pi M_s$, H_a и температурными изменениями последних (рис. 4). Как следует из рис. 4, a, с увеличением содержания ионов Ga^{3+} в пленках наряду с уменьшением намагниченности насыщения (кривые 5-8) изменяется и ее температурная зависимость. При возрастании температуры от 213 до 353 К для чистого ЖИГ наклон кривой 5 составляет $2.9\,\mathrm{Gs/K}$, а для пленок с x=0.38 он равен $2.0\,\mathrm{Gs/K}$ (кривая 8).

Как видно из рис. 4, b, в исследованном температурном интервале поле анизотропии Ga: ЖИГ пленок при малых степенях замещения (x=0.14) изменяется незначительно по сравнению с чистым ЖИГ, при x=0.38 оно заметно уменьшается, а при больших замещениях (x=0.63) заметно увеличивается. Из рис. 4, b видно, что для состава с большим замещением x=0.63 (кривая I) температурные изменения поля анизотропии самые малые.

Рис. 4. Температурные зависимости намагниченности насыщения (*a*) и поля анзизотропии (*b*) ферритовых пленок $Y_3Fe_{5-x}Ga_xO_{12}$: x=0.63 (*I*); 0.14 (2, 6); 0 (3, 5); 0.38 (4, 8); 0.23 (7).

Рис. 5. Температурные зависимости ухода резонансного поля при параллельном ΔH_r^{\parallel} и перпендикулярном ΔH_r^{\perp} резонансах: $x = 0 \ (1, 11), \ 0.14 \ (2, 10), \ 0.38 \ (3, 9), \ 0.63 \ (4, 7), \ 0.56 \ (8); \ 5, 6$ — кривые с наклоном $\alpha_5 = \alpha_6 = 1.0 \ \text{Э/K}$.

В соответствии с (2), (3) для поддержания постоянной рабочей частоты микроволновых устройств, т. е. для повышеняи их термостабильности, необходимо, чтобы величина температурных изменений резонансного поля компенсировалась суммарной величиной температурных изменений $4\pi M_s$ и H_a . На практике температурный уход резонансной частоты от фиксированного значения определяется изменением резонансного поля с температурой относительно его значения при комнатной температуре T_k .

На рис. 5 для ферритовых пленок Ga:ЖИГ с x=0-0.63 представлены температурные зависимости ухода резонансного поля при параллельном $\Delta H_r^\parallel = H_{rT}^\parallel - H_{rk}^\parallel$ и перпендикулярном $\Delta H_r^\perp = H_{rT}^\perp - H_{rk}^\perp$ резонансах, где H_{rT}^\parallel и H_{rT}^\perp — резонансные поля при температуре T, а H_{rk}^\parallel и H_{rk}^\perp — при T_k . Из рис. 5 видно, что с увеличением количества ионов Ga^{3+} в пленках наклоны кривых $\Delta H_r^\parallel(T)$ и $\Delta H_r^\perp(T)$ заметно уменьшаются. Так, для пленки с x=0.63 наклон кривой $\Delta H_r^\perp(T)$ уменьшается более чем в 2 раза по сравнению

с кривой для пленки чистого ЖИГ: $\alpha_7=1.4\,\mathrm{Oe/K}$ и $\alpha_{11}=3.2\,\mathrm{Oe/K}$ соответственно. Для сравнения для обоих резонансов на рис. 5 приведены штриховые кривые с наклоном $\alpha_5=\alpha_6=1.0\,\mathrm{Oe/K}$.

Из сравнения температурных зависимостей $\Delta H_p^{\perp}(T)$ и $\Delta H_p^{\parallel}(T)$ видно, что для пленок одного состава кривая ухода резонансного поля при параллельном резонансе более пологая, чем при перпендикулярном. Так, для пленки с x=0.63 в одинаковом интервале температур при перпендикулярном резонансе $\alpha_7=1.4\,\mathrm{Oe/K}$, а при параллельном $\alpha_4=1.0\,\mathrm{Oe/K}$.

Таким образом, замещение в пленках ЖИГ ионов ${\rm Fe}^{3+}$ немагнитными ионами ${\rm Ga}^{3+}$ позволяет повысить температурную стабильность резонансного поля, но при этом возрастает ширина линии ФМР. Кроме того, не удается вырастить толстые пленки с большим содержанием галлия ($x \geq 0.63$) из-за возникающих механических напряжений, обусловленных возрастающей разницей параметров кристаллической решетки пленки и подложки.

Список литературы

- [1] Адам М.Р., Шродер Д.К. // Электроника. 1980. Т. 53. № 11. С. 74–84.
- [2] *Никитов В.А., Никитов С.А.* // Зарубежная электроника. 1981. № 12. С. 11–23.
- [3] Балбашов А.М., Червоненкис А.Я. Магнитные материалы для микроэлектроники. М.: Энергия, 1979. С. 159.
- [4] Glass H.L., Elliot M.T. // J. Cryst. Growth. 1974. Vol. 27. P. 253–260.
- [5] Эшенфельдер А. Физика и техника цилиндрических магнитных доменов. М.: Мир, 1983. С. 334.
- [6] Яковлев Ю.М., Генделев С.Ш. Монокристаллы ферритов в радиоэлектронике. М.: Сов. радио, 1975. С. 269.
- [7] Ющук С.И., Костюк П.С. // ПТЭ. 1996. Т. 39. № 6. С. 79–81.
- [8] Glass H.L. // J. Cryst. Growth. 1977. Vol. 33. N 1. P. 183–188.
- [9] Glass H.L., Liaw H.W., Elliott M.T. // Mat. Res. Bull. 1977.Vol. 12. P. 735–740.