01:03:05

Идентификация модели водородопроницаемости металлов

© Ю.В. Заика

Петрозаводский государственный университет, 185640 Петрозаводск, Россия

(Поступило в Редакцию 3 июля 1997 г.)

Рассматривается нелинейная обратная задача определения по экспериментальным данным параметров водородопроницаемости металлов. Модель учитывает не только диффузионные, но и адсорбционно-десорбционные процессы. Предложен алгоритм идентификации по известному десорбционному потоку, не требующий разработки специализированного программного обеспечения.

Введение

Интерес к проблеме взаимодействия водорода и его изотопов с металлами носит многоплановый характер [1-6]. Достаточно упомянуть задачи энергетики, защиты конструкционных материалов от водородной коррозии, проектирования химических реакторов, ракетостроения, вакуумной техники и технологии. Существенную роль играют не только диффузионные процессы внутри металла, но и физико-химические явления на поверхности [3, с. 177-206]. Параметры переноса водорода зависят и от технологических особенностей получения конкретной партии металла, от способов обработки поверхности. Это ограничивает использование различных "табличных данных". Грубые оценки параметров (с ошибкой в пределах нескольких порядков) обычно известны. Необходим алгоритм, позволяющий уточнять их значения по экспериментальным данным для конкретных материалов.

В [7] предложен итерационный численный алгоритм идентификации модели переноса водорода. В данной работе показано, что если взаимодействие с ловушками считать малыми возмущениями и нацеливаться на определение только основных параметров (в рамках принятой модели), то задача допускает решение, не требующее от экспериментатора создания специализированного программного обеспечения.

Математическая модель

Согласно экспериментальному методу проницаемости, с входной стороны предварительно обезводороженной и нагретой до фиксированной температуры $T(t) = \bar{T}$ мембраны (перегородки вакуумной камеры) скачкообразно создается достаточно высокое постоянное давление $p_0(t) = \bar{p}_0$ водорода в газовой фазе. С выходной стороны производится постоянная откачка газа вакуумной системой. Экспериментальными данными считаем плотность выходного десорбционного потока водорода. Для определенности автор ориентировался на экспериментальную установку [8].

Примем следующую математическую модель [3, с. 177–206]:

$$\frac{\partial c}{\partial t} = D(T) \frac{\partial^2 c}{\partial x^2}, \quad (t, x) \in Q_{t^+} = (0, t^+) \times (0, l), \quad (1)$$

$$c(0,x) = \varphi(x), \quad x \in [0,l], \tag{2}$$

$$c_0(t) = c(t, 0) = g(T)q_0(t),$$

$$c_l(t) = c(t, l) = g(T)q_l(t),$$
 (3)

$$\frac{d}{dt}q_0(t) = \mu s(T)p_0(t) - b(T)q_0^2(t) + D(T)\frac{\partial c}{\partial x}(t,0), \quad (4)$$

$$\frac{d}{dt}q_l(t) = -b(T)q_l^2(t) - D(T)\frac{\partial c}{\partial x}(t,l), \quad t \in [0,t^+], \quad (5)$$

$$g(T(0))q_0(0) = c_0(0) = \varphi(0),$$

$$g(T(0))q_l(0) = c_l(0) = \varphi(l).$$
 (6)

Здесь c(t,x) — концентрация диффундирующего (атомарного) водорода; $q_0(t)$, $q_l(t)$ — поверхностные концентрации (x = 0, l); D(T) — коэффициент диффузии; g(T) — коэффициент соответствия между концентрациями на поверхности и в приповерхностном объеме мембраны; μ — кинетическая константа; s(T) — коэффициент прилипания водорода в газовой фазе к поверхности; b(T) — коэффициент десорбции. Если в начальный момент времени t = 0 мембрана обезводорожена, то $\varphi(x) = 0$. Соотношения (4), (5) являются уравнениями баланса потоков. Десорбционный поток моделируется квадратичной зависимостью. Для других газов может использоваться иная функциональная зависимость — ниже это непринципиально. Последние слагаемые в правых частях (4), (5) соответствуют оттоку или притоку атомов водорода к поверхности за счет диффузии в объеме мембраны. В (5) нет слагаемого $\mu s(T)p_l(t)$, поскольку для достаточно мощной вакуумной системы давление $p_l(t)$ на выходе очень мало и возврат десорбировавшегося с выходной поверхности водорода обратно на поверхность относительно ничтожен. Начальные и граничные условия согласованы в смысле (6).

Требуется для конкратного материала по плотности выходного десорбционного потока

$$J(t) = b(T)q_l^2(t) = b(T)g^{-2}(T)c_l^2(t),$$

$$T = T(t), \quad t \in [0, t_*]$$
(7)

идентифицировать D(T), g(T), s(T), b(T). Слово "плотность" будем опускать, считая поверхности единичной площади. Время t_* окончания эксперимента определяется выходом потока на стационарный режим $J(t) \approx \bar{J} = \mathrm{const}, \, t \geqslant t_* \, (t_* < t^+).$

Применительно к водороду обычно используется закон Аррениуса

$$D = D_0 \exp(-E_D/[RT(t)]), \dots, b = b_0 \exp(-E_b/[RT(t)]).$$

Возможны и другие модели зависимости от температуры. Ниже изложен алгоритм определения D, g, s, b при $T(t) = \bar{T} = \mathrm{const.}$ Это основная проблема — нелинейная обратная задача математической физики. Информация о значениях D, g, s, b при различных температурах дает возможность определить параметры и в $D(T), \ldots, b(T)$ (в аррениусовском случае $D_0, E_D, \ldots, b_0, E_b$). При построении алгоритма учитывается реальная зашумленность измерений: в окончательных формулах экспериментальные данные входят под знаком интеграла на $[0,t_*]$, что обеспечивает помехоустойчивость идентификации. Модель (1)-(6) имеет свои границы применимости. Поэтому идея алгоритма изложена достаточно подробно и допускает вариации уравнений.

Граничные условия (3)–(6) не являются классическими, поэтому несколько слов о математическом обосновании модели. Если $\varphi \in H^1(0,l), T \in C^1[0,t^+],$ то при ограничениях на коэффициенты в соответствии с их физическим смыслом существует единственное решение $c(t,x) \in H^{1,2}(Q_{t^+})$. Функция c(t,x) в Q_{t^+} удовлетворяет (1), равномерно непрерывна в прямоугольной области Q_{t^+} и продолжается по непрерывности на замыкание $\bar{Q}_{t^+} = [0, t^+] \times [0, l]$. Соотношение (2) выполняется для $x \in [0, l]$. Градиенты $c_x(t, 0), c_x(t, l)$ определяются по $c \in H^{1,2}$ как элементы $L_2(0,t^+)$. После их подстановки в (4), (5) имеем обыкновенные дифференциальные уравнения с начальными данными (6). Их решения $q_0, q_l \in H^1(0, t^+)$ удовлетворяют (4), (5) в смысле параметров водородопроницаемости на $[0, t^+]$. Наконец, после подстановки $q_0(t)$, $q_1(t)$ в (3) получаем тождество по $t \in [0, t^+]$. Если за фазовое состояние принять $c(t,\cdot) \in H^1(0,l), t \ge 0$, то модель (1)–(6) является содержательным примером нелинейной полудинамической системы в гильбертовом пространстве $H^1(0, l)$. Ее исследование представляет и математический интерес [9]. С ростом гладкости входных данных краевой задачи (1)–(6) будет расти и гладкость решения c(t, x).

Алгоритм идентификации

Пусть $T(t) = \bar{T}$, $p_0(t) = \bar{p}_0$ и $\varphi(x)$ фиксированы. Измерения $J(t) = bq_l^2(t)$ непосредственно связаны с поверхностными процессами. Поэтому целесообразно "исключить" уравнение диффузии в объеме мембраны. Подходящим математическим аппаратом здесь является интегрирование по частям. Эта техника приводит к так называемым сопряженным уравнениям [10].

Для произвольной достаточно гладкой в $ar{Q}_{t*}$ функции $\psi(t,x)$ в силу (1)

$$0 = \int_{0}^{t_{*}} \int_{0}^{l} \psi(t, x)(c_{t} - Dc_{xx}) dx dt$$

$$= \int_{0}^{l} \{\psi(t_{*}, x)c(t_{*}, x) - \psi(0, x)c(0, x)\} dx$$

$$- D \int_{0}^{t_{*}} \{\psi(t, l)c_{x}(t, l) - \psi(t, 0)c_{x}(t, 0)\} dt$$

$$+ D \int_{0}^{t_{*}} \{\psi_{x}(t, l)c(t, l) - \psi_{x}(t, 0)c(t, 0)\} dt$$

$$- \int_{0}^{t_{*}} \int_{0}^{l} c(t, x)(\psi_{t} + D\psi_{xx}) dx dt.$$
 (8)

Выбором $\psi(t,x)$ легко добиться равенства нулю последнего "объемного" слагаемого. Остальные связаны с краевыми условиями. Проанализируем (с точностью до значений неизвестных априори параметров модели) информативность пары $p_0(t)$, J(t). Через J(t) выражаются $c_l(t)$ и $c_x(t,l)$ в силу (3), (5) и (7). А знание на входе лишь $p_0(t)=\bar{p}_0$ малоинформативно: в дифференциальном уравнении (4) известно только слагаемое в правой части. Это не математический недостаток: чтобы корректно идентифицировать "черный ящик", нужно знать вход и выход. По расходу водорода можно было бы определить поток $Dc_x(t,0)$, но мешает высокий фон \bar{p}_0 . Измерение концентрации $c_0(t)(q_0(t))$ также представляется проблематичным. Совсем иное дело — измерение J(t) в условиях вакуумирования.

Выход из этой ситуации все же есть, нужно только учесть различия скоростей поверхностных процессов $(x=0,\ x=l)$ при огромном перепаде давлений $(7-9\ \text{порядков}).$

Подчиним $\psi(t,x)$ сопряженному к (1) уравнению и только одному граничному условию

$$\frac{\partial \psi}{\partial t} = -D \frac{\partial^2 \psi}{\partial x^2}, \quad (t, x) \in Q_{t_*}, \tag{9}$$

$$\psi(t,0) = 0, \quad t \in [0,t_*]. \tag{10}$$

При условии (9) в (8) не будет последнего слагаемого, а за счет (10) в (8) не войдет поток $Dc_x(t,0)$, значения которого неизвестны по постановке эксперимента. Решение (9), (10) легко найти методом разделения переменных: $\psi(t,x)=\beta(t)\gamma(x), \gamma(0)=0$. Таких решений бесконечно много, что для дальнейшего существенно. Уравнение (8) теперь принимает вид

$$\int_{0}^{l} \psi c \Big|_{t=0}^{t_{*}} dx - D \int_{0}^{t_{*}} \psi c_{x} \Big|_{x=l} dt + D \int_{0}^{t_{*}} \psi_{x} c \Big|_{x=0}^{l} dt = 0.$$
 (11)

40 Ю.В. Заика

Дальнейшая стратегия использования (11) такова: выбираем какое-либо решение (9), (10) $\psi = \psi_i(t,x)$ и подставляем в (11) выражения c(0,x), $c(t_*,x)$, $c_x(t,l)$, $c_{0,l}(t)$ через известную информацию и параметры D, g, s, b. В результате получим уравнение $f_i(D,g,s,b)=0$. Нужно набрать достаточное их количество для определения D, g, s, b.

Функция $c(0,x)=\varphi(x)$ задана начальными условиями $(\varphi(x)=0)$. Поскольку $\bar{p}_0=$ const, то через некоторое время устанавливается стационарный выходной поток $J(t)=\bar{J}=$ const, $t\geqslant t_*$. Для $t\geqslant t_*$ все производные по времени в (1)–(6) можно считать нулевыми, откуда получаем линейное стационарное распределение концентрации $c(t,x)=c(t_*,x),\,t\geqslant t_*,\,c(t_*,x)=\xi_1\cdot(x-l)+\xi_2.$ Модель (1)–(6) отражает эти простые экспериментальные факты (проверено численно). Подсчитаем $\xi_1,\,\xi_2.$ Из (7)

$$\xi_2 = c(t_*, l) = gq_l(t_*) = gb^{-1/2}\bar{J}^{1/2}.$$

Угловой коэффициент ξ_1 прямой $c(t_*, x)$ найдем из (5)

$$\xi_1 = c_x(t, l) = -D^{-1}\bar{J} \quad (\dot{q}_l = 0, \quad t \geqslant t_*).$$

Окончательно для $t \geqslant t_*$

$$c(t,x) = c(t_*,x) = D^{-1}\bar{J} \cdot (l-x) + gb^{-1/2}\bar{J}^{1/2}.$$
 (12)

Итак, со временем на выходе (x=l) устанавливается концентрация \bar{c}_l , пропорциональная $\bar{J}^{1/2}$, а диффузионный поток $Dc_x(t,x)$ не меняется по толщине мембраны и по абсолютной величине равен десорбционному \bar{J} .

Преобразуем теперь второй интеграл в (11) с учетом (5)

$$-\int_{0}^{t_{*}} \psi(t,l)Dc_{x}(t,l)dt = \int_{0}^{t_{*}} \psi(t,l)(\dot{q}_{l}(t)+J(t))dt$$

$$= \psi(t,l)q_{l}(t)\Big|_{0}^{t_{*}} - \int_{0}^{t_{*}} \dot{\psi}(t,l)q_{l}(t)dt + \int_{0}^{t_{*}} \psi(t,l)J(t)dt$$

$$= \psi(t_{*},l)b^{-1/2}\bar{J}^{1/2} + \int_{0}^{t_{*}} \{\psi(t,l)J(t)$$

$$-\dot{\psi}(t,l)b^{-1/2}J^{1/2}(t)\}dt,$$

$$\left(q_{l}(0) = 0, \quad q_{l}(t) = b^{-1/2}J^{1/2}(t),$$

$$q_{l}(t_{*}) = b^{-1/2}\bar{J}^{1/2}\right). \tag{13}$$

Последнее выражение в (13) уже содержит известные величины и параметр b.

Осталось конкретизировать последний интеграл в (11). Концентрация $c_l(t)$ выражается через J(t) и параметры в силу (7): $c_l(t)=gb^{-1/2}J^{1/2}(t)$. Как подечитать достаточно точно интеграл от $\psi_x(t,0)c_0(t)$, считая $c_0(t)$ недоступной измерению? На выходе вследствие

вакууммирования поверхность обеднена водородом и его накопление является лимитирующим фактором (уравнение (5)). На входе при $p_0\gg p_l$ происходит быстрое насыщение поверхности до уровня \bar{q}_0 , соответствующего \bar{p}_0 , с последующим относительно медленным оттоком диффузанта в объем. Длительность переходного процесса очень мала по сравнению с временем t_* выхода на стационарный уровень \bar{J} . В эксперименте это условие скачка концентрации на входе можно реализовать достаточно точно: при необходимости нужно увеличить \bar{p}_0 и толщину l. Тогда при подсчете интеграла от $\psi_x(t,0)c_0(t)$ на отрезке $[0,t_*]$ можно полагать $c_0(t)\approx \bar{c}_0=g\bar{q}_0$. Концентрация \bar{c}_0 определяется (12) (x=0). Для модели (1)–(6) эти качественные рассуждения подтверждаются вычислительными экспериментами.

Теперь имеется все необходимое для составления конкретных уравнений f(D,g,s,b)=0. Вначале извлечем максимум возможного из соответствия $\bar{p}_0\to \bar{J}$. Если входная концентрация установившаяся, то из (4)

$$\dot{q}_0 = 0 \rightarrow \bar{c}_0 = gb^{-1/2}(\mu s \bar{p}_0 + Dc_x(t,0))^{1/2}$$

$$(t \geqslant \varepsilon, \quad \varepsilon \ll t_*).$$

Поток $Dc_x(t,0)$ не меняется $(t\geqslant \varepsilon)$, а при $t\geqslant t_*$ он уже был подсчитан: $Dc_x(t,0)=Dc_x(t,l)=-\bar{J},\ t\geqslant t_*.$ Поэтому

$$\bar{c}_0 = gb^{-1/2}(\mu s\bar{p}_0 - \bar{J})^{1/2}.$$
 (14)

Под корнем положительные число. Смысл (14) $(\bar{J}=\mu s\bar{p}_0-bg^{-2}c_0^{-2})$ в следующем. После насыщения на входе до значения \bar{c}_0 , соответствующего \bar{p}_0 , устанавливается динамическое равновесие: проникающий поток равен разности падающего на поверхность потока $\mu s\bar{p}_0$ и десорбционного потока обратно в объем камеры. На выходе же уровень \bar{J} достигается только к моменту t_* . Сравнивая (14) и (12) (x=0), получаем первое уравнение $f_1=0$

$$gb^{-1/2}(\mu s\bar{p}_0 - \bar{J})^{1/2} - gb^{-1/2}\bar{J}^{1/2} - lD^{-1}\bar{J} = 0.$$
 (15)

Использование (15) позволит найти s и комплекс $X=Dgb^{-1/2}/l$. Для этого модифицируем эксперимент по схеме проницаемости. Сначала, как описано выше, при давлении напуска \bar{p}_{01} и $\varphi(x)=0$ дожидаемся момента времени t_* установления $J=\bar{J}_1$. Затем скачком поднимаем давление до $\bar{p}_{02}>\bar{p}_{01}$ и ждем еще некоторое время Δt_* до установления \bar{J}_2 . Подставим две пары \bar{p}_{0i} , \bar{J}_i в (15) и перенесем последнее слагаемое вправо. Тогда

$$\bar{J}_1/\bar{J}_2 = [(\mu s \bar{p}_{01} - \bar{J}_1)^{1/2} - \bar{J}_1^{1/2}][(\mu s \bar{p}_{02} - \bar{J}_2)^{1/2} - \bar{J}_2^{1/2}]^{-1}.$$

Обозначив

$$y = (\mu s \bar{p}_{01} - \bar{J}_1)^{1/2}, \quad d_1 = \bar{J}_1^{1/2} (1 - \bar{J}_1^{1/2} / \bar{J}_2^{1/2}),$$
$$d_2 = \bar{p}_{02} \bar{J}_1^2 / (\bar{p}_{01} \bar{J}_2^2),$$

получим $\mu s \bar{p}_{02} = (y^2 + \bar{J}_1) \bar{p}_{02} / \bar{p}_{01}$ и

$$y - d_1 = \{(y^2 + \bar{J_1})d_2 - \bar{J_1}^2/\bar{J_2}\}^{1/2}.$$
 (16)

Возводим (16) в квадрат

$$(1-d_2)y^2-2d_1y+d_1^2+d_3=0, \quad d_3=\bar{J}_1(\bar{J}_1/\bar{J}_2-d_2).$$
 (17)

В силу $\bar{p}_{02} > \bar{p}_{01} \Rightarrow \bar{J}_2 > \bar{J}_1$ и (15) выполняется $d_1 > 0, d_2 < 1, d_3 < 0$, квадратное уравнение (17) имеет два вещественных корня $y_1 > y_2$. Физическому смыслу соответствует больший корень y_1 . Он больше d_1 и согласуется с (16). Второй корень $y_2 < d_1$ противоречит (16) и появился вследствие возведения в квадрат. По значению $y = y_1$ находится s, а из (15) — комплекс $X = Dgb^{-1/2}/l$.

Как видим, анализ лишь стационарных значений не дает возможность определить D, g, b, а лишь комбинацию X. Дополнительные уравнения определим по переходному процессу, используя (11)–(14). Возьмем простейшее решение (9), (10) $\psi(t,x) = x/l$. Для $\psi = x/l$ уравнение (11) с учетом (13) упрощается

$$l^{-1} \int_{0}^{l} xc(t_{*}, x) dx + b^{-1/2} \bar{J}^{1/2} + \int_{0}^{t_{*}} J(t) dt + Dl^{-1} \int_{0}^{t_{*}} c \Big|_{x=0}^{t_{*}} dt = 0.$$

Из вычислительных соображений удобно перейти к переменным $x_1=l^2/D,\ x_2=lg,\ x_3=b^{-1/2}.$ После подстановки $c(t_*,c)$ из (12), $c_l(t)=gb^{-1/2}J^{1/2}(t)$ и $c_0(t)\approx \bar{c}_0$ из (12) при x=0 (или из (14)) получаем

$$f_2 = x_1 \bar{J}_1 / 6 + x_1 X \bar{J}_1^{1/2} / 2 + x_3 \bar{J}_1^{1/2} + A_1 = 0,$$
 (18)

где

$$A_1 = S_1 + XS_{1/2} - \bar{J}_1 t_* - X \bar{J}_1^{1/2} t_*, \quad S_\sigma = \int_0^{t_*} J^\sigma(t) dt$$

$$(X = Dgb^{-1/2}/l = x_1^{-1}x_2x_3 \to x_2x_3 = x_1X).$$

Воспользуемся той же $\psi(t,x)=x/l$ и на отрезке времени $[t_*,t_*+\Delta t_*]$. Выкладки те же. Следует только учесть, что при переносе начала отсчета времени в t_* в (11) будет $\psi(x)\neq 0$ ($\varphi(x)=c(t_*,x)$) и в (13) $q_l(0)\neq 0$ ($q_l(0)=b^{-1/2}J_1^{1/2}$)

$$f_{3} = -x_{1}\bar{J}_{1}/6 - x_{1}X\bar{J}_{1}^{1/2}/2 - x_{3}\bar{J}_{1}^{1/2} + x_{1}\bar{J}_{2}/6$$

$$+ x_{1}X\bar{J}_{2}^{1/2}/2 + x_{3}\bar{J}_{2}^{1/2} + \Delta A_{1} = 0,$$

$$\Delta A_{1} = \Delta S_{1} + X\Delta S_{1/2} - \bar{J}_{2}\Delta t_{*} - X\bar{J}_{2}^{1/2}\Delta t_{*},$$

$$\Delta S_{\sigma} = \int_{t_{*}}^{t_{0}} J^{\sigma}(t)dt, \quad t_{0} = t_{*} + \Delta t_{*}.$$
(19)

Уравнения (18), (19) — система двух линейных алгебраических уравнений относительно x_1, x_3 . Исключаем переменную x_3

$$f_2 - \xi f_3 = 0,$$

 $\xi = \bar{J}_1^{1/2} / (\bar{J}_2^{1/2} - \bar{J}_2^{1/2}) \rightarrow x_1 = 6(A_1 - \xi \Delta A_1) / (\bar{J}_1 \bar{J}_2)^{1/2}.$ (20)

После подстановки x_1 в (18) (или (19)) находим x_3 и затем $x_2 = Xx_1/x_3$.

Для удобства применения изложим последовательность решения задачи идентификации.

- 1. Условная схема опыта: $T = \bar{T}, t = 0 \rightarrow (\varphi(x) = 0, p = \bar{p}_{01}), t = t_* \rightarrow (J = \bar{J}_1, \varphi(x) = c(t_*, x), p = \bar{p}_{02} > \bar{p}_{01}), t = t_* + \Delta t_* \rightarrow J = \bar{J}_2.$
- 2. По \bar{p}_{0i} , \bar{J}_i вычисляем d_1 , d_2 , d_3 , больший корень y_1 квадратного уравнения (17) и определяем

$$s = (y_1^2 + \bar{J}_1)/(\mu \bar{p}_{01}),$$

(15)
$$\rightarrow X_i = \bar{J}_1/[(\mu s \bar{p}_{0i} - \bar{J}_i)^{1/2} - \bar{J}_i^{1/2}], \quad X = (X_1 + X_2)/2.$$

- 3. Используя квадратурную формулу, вычисляем интегралы S_1 , $S_{1/2}$, ΔS_1 , $\Delta S_{1/2}$ и затем величины A_1 , ΔA_1 (см. (18), (19)).
- 4. По формуле (20) находим $x_1(D = l^2/x_1)$, затем $x_3 = x_{31}$, $x_3 = x_{32}$ из (18), (19) и окончательно $x_3 = (x_{31} + x_{32})/2$ ($b = x_3^{-2}$), $x_2 = Xx_1/x_3$ ($g = x_2/l$).

В численных экспериментах, подтверждающих работоспособность алгоритма, полагалось $l=0.02\,\mathrm{cm},$ $\mu=1.46\cdot 10^{21}\,\mathrm{mol/cm^2\cdot c\cdot Torr},$ и варьировались следующие опорные значения: $D=10^{-6}\,\mathrm{cm^2/s},$ $g=10\,\mathrm{cm^{-1}},$ $b=10^{-17}\,\mathrm{cm^2/s},$ $s=10^{-4},$ $\bar{p}_0=0.1\,\mathrm{Torr}.$

Кратко рассмотрим возможность использования других ψ . Если ограничить ψ только (9), то в (8) можно брать $\psi=(x-l)/l$. Это исключит из формулы последнее слагаемое и поток $Dc_x(t,l)$. Слагаемое с $Dc_x(t,0)$ следует преобразовать с учетом (4) подобно (13) с последующей заменой $c_0(t)\approx \bar{c}_0$. Но корректнее выбирать такие $\psi(t,x)$, которые исключают $c_0(t)$ или $Dc_x(t,0)$ ($\psi_x(t,0)=0$, $\psi(t,0)=0$), поскольку дефицит информации именно на входе.

При использовании $\psi = \beta(t) \cos \omega x$, $\psi = \beta(t) \sin \omega x$, $\psi = \zeta(t) \exp(\omega x) \ (\beta(t) = \sigma \exp(D\omega^2 t), \ \zeta(t) = \sigma \times$ $\times \exp(-D\omega^2 t)$, $\sigma = \text{const}$) в окончательные формулы войдут интегралы от $\beta(t)J(t)$, $\beta(t)J^{1/2}(t)$ ($\zeta(t)J(t)$, $\zeta(t)J^{1/2}(t)$). Следовательно, имеется возможность отдавать предпочтение измерениям на второй половине $[0,t_*]$ (больший вес $\beta(t)$) или на начальном этапе измерений $(\zeta(t))$. Нормирующий множитель σ определяется, например, из $\beta(t_*/2) = 1$, $\zeta(t_*/2) = 1$. Важен и выбор параметра ω . Величина $D\omega^2$ не должна быть очень большой, иначе часть измерений будет практически несущественна. Условиям (9), (10) наряду с $\psi = x/l$ удовлетворяет $\psi = \beta(t) \sin \omega x$. При $\omega = n\pi/l$ из (8) исключается не только $Dc_x(t,0)$, но и $Dc_x(t,l)$. Уравнение связывает только концентрации. При $\omega = n\pi/(2l)$ (n - нечетное) исключается пара $Dc_x(t, 0), c_l(t)$. Для $\gamma(x) = \cos \omega x$, $\omega = n\pi/l$ получаем только соотношение между потоками, а при $\omega = n\pi/(2l)$ (n — нечетное) между $c_l(t)$, $Dc_x(t,0)$. Если в уравнение входит $Dc_x(t,0)$ и не измеряется, то действуем аналогично (13). Но информация о $Dc_x(t,0)$ (или $q_0(t), c_0(t)$) существенно увеличит надежность идентификации.

В заключение остановимся на следующей возможной модификации эксперимента. Давление \bar{p}_0 устанавливает-

42 Ю.В. Заика

ся при включенном атомизаторе (вольфрамовая нить накаливания). Уравнение (4), ориентированное на подачу в камеру молекулярного водорода, исключаем из модели. Условие $c_0(t) \approx \bar{c}_0(t \geqslant \varepsilon, \varepsilon \ll t_*)$ реализуется еще быстрее. Неизвестное значение \bar{c}_0 в выкладках заменяем, как и раньше, на (12) (x = 0). Разумеется, уровни \bar{q}_0 , соответствующие \bar{p}_0 , должны быть меньше теоретически максимальных. Уравнения (15)–(17) не используем. Для определения D, g, b остаются уравнения вида (18), (19), где уже неизвестных три: x_1 , x_3 , X. Чтобы остаться в классе линейных алгебраических уравнений, лучше считать неизвестными x_1, x_3, x_1X, X . Дополнительные уравнения можно получить либо очередным увеличением \bar{p}_0 $(t=t_*+\Delta t_* \to p=\bar{p}_{03}>\bar{p}_{02},J\to \bar{J}_3,\dots)$, либо повторением 1–4 с другими \bar{p}_{01} , \bar{p}_{02} . Аналитических проблем не возникает: выражаем комплекс $x_1X = x_2x_3$ из одного уравнения, затем решаем три линейных уравнения относительно x_1, x_3, X .

Что касается реализации метода, то объем экспериментальной работы выглядит значительным. Оправдание — нетривиальность (по крайней мере математическая) модели (1)–(6), увязывающей поверхностные процессы с объемными. В физическом отношении модель груба, ее можно уточнять. Но тогда проблема многопараметрической идентификации будет труднообозримой. Ситуация упрощается, если уже имеется достаточное количество кривых проницаемости на $[0,t_*]$ при $\varphi(x)=0$ и различных \bar{p}_{0i} . Тогда можно обойтись только уравнениями вида $f_2=0$.

Замечания

1. В случае недостаточной мощности вакуумной системы можно использовать модель измерений

$$p_l(t) = heta_1 \int\limits_0^t \exp((au - t)/ heta_0) J(au) d au.$$

По давлению $p_l(t)$ плотность потока J(t) определяется однозначно. В правой части (5) добавится слагаемое $\mu s(T)p_l(t)$. Существенных изменений не произойдет, в окончательных формулах будут как интегралы от $p_l(t)$, так и от J(t), $J^{1/2}(t)$.

- 2. Величина \bar{J} регистрируется надежно за счет достаточно длительного наблюдения J(t). Но затем в (11) следует использовать не слишком большое допустимое t_* . Иначе информативный переходный процесс $(0 \to \bar{J_1}, \bar{J_1} \to \bar{J_2})$ будет незаметен в интегралах.
- 3. При значительных экспериментальных погрешностях лучше решать не (17), а скалярное уравнение (16) численно. В частности, методом наименьших квадратов в реальном диапазоне $s \in [s^-, s^+]$. Это же можно отнести и к линейной системе (18), (19) из-за возможной плохой обусловленности. Например, при сравнительно малых D(T) и больших b(T) слагаемые с $x_3 = b^{-1/2}$, $x_3 = b^{-1/2}$,

в $x_1\bar{J}_1/6-\bar{J}_1t_*\sim 0$, т.е. $l^2/(6D)\sim t_*$. По формуле (20) $x_1(D=l^2/x_1)$ определится надежно. Но при попытке определить x_3 результат непредсказуем, если в (18) слагаемое $x_3\bar{J}_1^{1/2}$ сравнимо с погрешностью определения $S_1,S_{1/2}$. Впрочем, и информация $s,D,\ gb^{-1/2}=lX/D$ существенна для практических целей. При $x_3\to 0$ в силу (12) $c(t_*,x)\approx 0$ и десорбционный проникающий поток вырождается в диффузионный, тогда разумнее обратиться к другой модели. Итак, задача будет решаться математически корректно не для всех металлов: слагаемые с x_1 и x_3 в (18), (19) должны быть сравнимы по порядкам (учитываемые моделью (1)–(6) процессы "одинаково существенны").

4. В принятых единицах измерений параметры имеют большой разброс порядков. Поэтому целесообразно домножать уравнения $f_i=0$ на масштабирующий множитель, скажем, 10^{-12} и использовать новые переменные $\tilde{J}=J\cdot 10^{-12}, \, \tilde{X}=X\cdot 10^{-6}, \, \tilde{x}_3=x_3\cdot 10^{-6}, \, \tilde{x}_4=\mu s\cdot 10^{-12}.$

Таким образом, представленный метод позволяет свести нелинейную обратную задачу идентификации модели (1)–(6) к анализу алгебраических уравнений.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (№ 95-01-00355).

Список литературы

- [1] Водород в металлах / Под ред. Г. Алефельда, В. Фелькля. М.: Мир, 1981. Т. 1. 506 с. Т. 2. 430 с.
- [2] Гельд П.В., Мохрачева Л.П. Водород и физические свойства металлов и сплавов. М.: Наука, 1985. 231 с.
- [3] Взаимодействие водорода с металлами / Под ред. А.П. Захарова. М.: Наука, 1987. 296 с.
- [4] Габис И.Е., Курдюмов А.А., Самсонов А.В. // ПЖТФ. 1995. Т. 21. Вып. 5. С. 1–8.
- [5] Габис И.Е. // ПЖТФ. 1995. Т. 21. Вып. 9. С. 60-66.
- [6] Коньков О.И., Капитонов И.Н., Трапезников И.Н., Теруков Е.И. // ПЖТФ. 1997. Т. 23. Вып. 1. С. 3–8.
- [7] Заика Ю.В., Габис И.Е. // Зав. лаб. 1996. № 1. С. 18–26.
- [8] Габис И.Е., Курдюмов А.А., Тихонов Н.А. // Вестн. С.-Пб. 1993. Сер. 4. Вып. 2. С. 77–79.
- [9] Заика Ю.В. // ЖВММФ. 1996. № 12. С. 108–120.
- [10] *Марчук Г.И.* Сопряженные уравнения и анализ сложных систем. М.: Наука, 1992. 336 с.