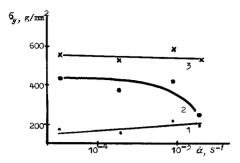
05:12

Концентрационная зависимость влияния скорости деформирования на предел текучести при одноосном сжатии легированных кристаллов NaCl в интервале температур 77–773 К


© Р.П. Житару, Н.А. Палистрант, В.А. Рахвалов Институт прикладной физики АН Молдовы, Кишинев Поступило в Редакцию 10 июня 1997 г.

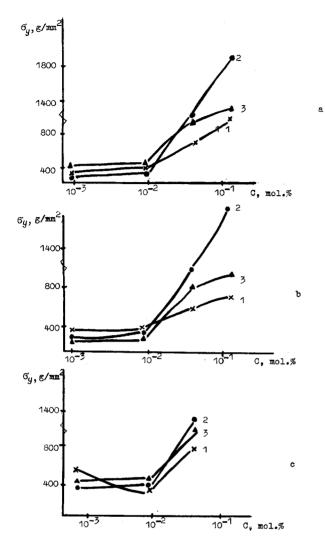
Описаны данные по аномалиям в зависимости предела текучести кристаллов каменной соли от скорости деформирования при варьировании состава и концентрации примесей и температуры.

Предложены объяснения аномалий на основе специфики движения дислокаций в атмосфере примесей.

Известно, что при повышении скорости деформирования а при одноосном сжатии щелочно-галоидных кристаллов предел текучести σ_{v} возрастает [1–4]. Однако такая скоростная зависимость предела текучести не всегда имеет место для легированных кристаллов; наряду с обычной зависимостью $\sigma_{v}(\dot{a})$ при определенных условиях испытания и некоторых концентрациях примеси для кристаллов NaCl наблюдается и необычная, когда обнаруживается не увеличение, а падение предела текучести с ростом скорости деформации [5,6]. Противоречивыми в ряде случаев также представляются и результаты, полученные для легированных кристаллов в работах [3,7]. Это связано с тем, что сравнительно мало проведено исследований влияния скорости на процессы деформации кристаллов, содержащих примесные дефекты разного типа. В связи с изложенным, в настоящей работе изучено влияние типа и концентрации примеси на зависимость предела текучести от скорости испытания в широком интервале температур с целью более глубокого понимания механизма пластической деформации кристаллов.

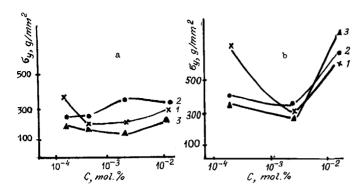
Исследовались кристаллы NaCl, легированные Ca, Pb и Sr, выращенные по методу Чохральского в Томском политехническом институте.

Рис. 1. Скоростная зависимость предела текучести для кристаллов NaCl:Sr. C, mol.%: $3.7 \cdot 10^{-4}$ (I); $6 \cdot 10^{-3}$ (2) и $1.8 \cdot 10^{-2}$ (3).


Концентрация примесей в расплаве $C_{\rm III}$ варьировалась в интервале $10^{-4}-3\cdot 10^{-1}$ mol.%. Однако ее содержание в кристалле C отличалось от $C_{\rm III}$, зависело от типа примеси и варьировалось для $C_{\rm III}$: Pb: $2\cdot 10^{-4}-1.65\cdot 10^{-2}$ и Sr: $2\cdot 10^{-4}-1.8\cdot 10^{-2}$ mol.%. Образцы для исследований выкалывались по плоскостям спайности и имели размеры $4\times 4\times 12$ mm. Одноосное сжатие кристаллов вдоль оси [001] осуществлялось на машине "Instron" в интервале скоростей $6.6\cdot 10^{-5}-3.4\cdot 10^{-3}$ s $^{-1}$. Температура деформирования изменялась в пределах 77-773 K.

На рис. 1 представлены результаты изменения предела текучести σ_y от скорости сдвиговой деформции \dot{a} для кристаллов NaCl:Sr, содержащих различные концентрации C стронция. Видно, что характер зависимости $\sigma_y(\dot{a})$ существенно отличается при переходе от одной концентрации к другой. Обычный вид зависимости $\sigma_y(\dot{a})$, т.е. рост предела текучести с ростом скорости деформирования, наблюдается лишь для образцов, содержащих наименьшую концентрацию примеси (рис. 1, кривая I). Для других образцов характерным является аномальное явление — уменьшение δ_y при высоких скоростях (рис. 1, кривые 2,3).

Существенное влияние концентрации примеси на скоростную зависимость предела текучести имело место и для других исследованных систем.

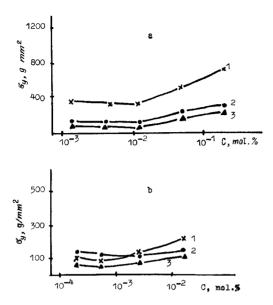

На рис. 2 представлены концентрационные зависимости предела текучести монокристаллов NaCl:Са при разных скоростях и температурах деформации. Видно, что при всех температурах деформирования кристаллов NaCl:Са влияние скорости на изменения предела

Письма в ЖТФ, 1998, том 24, № 3

Рис. 2. Концентрационные зависимости предела текучести для кристаллов NaCl: Са при разных скоростях сдвиговой деформации, \dot{a} , s $^{-1}$: $3.4 \cdot 10^{-3}$ (I); $3.4 \cdot 10^{-4}$ (2); $6.6 \cdot 10^{-5}$ (3). Температура деформирования, T, K: 373 (a); 293 (b); 150 (c).

Письма в ЖТФ, 1998, том 24, № 3

Рис. 3. Концентрационные зависимости предела текучести для кристаллов NaCl: Pb при разных скоростях сдвиговой деформации, \dot{a} , s⁻¹: $3.4 \cdot 10^{-3}$ (1); $3.4 \cdot 10^{-4}$ (2); $6.6 \cdot 10^{-5}$ (3). Температура деформирования, T, K: 293 (a); 220 (b).


текучести существенно зависит от концентрации примеси: оно является заметным для $C \geqslant 10^{-2} \, \mathrm{mol.\%}$ и практически отсутствует для малых $C(C < 10^{-2} \, \mathrm{mol.\%})$.

Известно, что с ростом C примеси ее состояние в матрице кристалла изменяется [8–9]. Учитывая этот фактор, можно заключить, что отмеченное выше различное влияние скорости на σ_y , по-видимому, связано с неадекватным состоянием примесных дефектов в области малых концентраций примеси и с области больших ее значений. Таким образом, полученные результаты свидетельствуют о том, что влияние скорости на предел текучести в значительной степени контролируется структурным состоянием примесных дефектов, определяемым концентрацией примеси.

Влияние концентрации примеси и ее состояния на $\sigma_y(\dot{a})$ проявилось и для кристаллов NaCl:Pb (рис. 3). Как видно из рисунка, лишь для минимальной концентрации Pb²⁺ наблюдается обычная зависимость: рост \dot{a} сопровождается увеличением σ_y . Такая связь имела место практически при всех исследованных температурах. Однако иная картина выявилась

 $^{^1}$ При малых концентрациях примесь Са в матрице кристалла в основном находится в виде диполей примесь–катионная вакансия и их агрегатов; при больших C — в виде сложных комплексов, преципитатов [8-9].

³ Письма в ЖТФ, 1998, том 24, № 3

Рис. 4. Концентрационные зависимости предела текучести для кристаллов NaCl: Ca (*a*) и NaCl: Pb (*b*) при разных скоростях сдвиговой деформации, \dot{a} , s⁻¹: $3.4\cdot 10^{-3}$ (*1*); $3.4\cdot 10^{-4}$ (*2*); $6.6\cdot 10^{-5}$ (*3*). *T*, K: 673 K.

для остальных C свинца (рис. 3). Оказалось, что при этом существенную роль играет температура испытания: изменение температуры приводило в ряде случаев к резко противоположным эффектам. Так, например, одинаковое измерение скорости от $6.6 \cdot 10^{-5}$ к $3.4 \cdot 10^{-3}$ s $^{-1}$ вызываало рост предела текучести при 293 K (рис. 3, a, кривые 2 и I лежат выше кривой 3) и его падение при 220 K (рис. 3, b, $C \sim 10^{-2}$ mol.%, кривые 2) и I лежат ниже кривой 3); уменьшение σ_y при 373 K сменялось противоположным эффектом при 673 K. Следует отметить, что для всех исследованных концентраций Pb^{2+} и Ca^{2+} при T=673 K, при которой примеси диспергированы, рост скорости деформации сопровождается закономерным увеличением предела текучести, т. е. наблюдается обычная $\sigma_y(\dot{a})$ (рис. 4).

Суммируя полученные для исследованных систем NaCl результаты, можно заключить, что $\sigma_{\rm v}(\dot{a})$ контролируется структурным состоянием

Письма в ЖТФ, 1998, том 24, № 3

примесных дефектов, определяемым концентрацией примеси и температурой испытания.

Однако полученные данные показывают, что влияние скорости деформации на изменения параметров пластичности определяется не только состоянием примеси, но и величиной скорости сдвиговой деформации.

Необычная закономерность зависимости σ_{v} от \dot{a} обнаружена для кристаллов NaCl:Ca, $C \geqslant 10^{-2} \, \text{mol.}\%$ (рис. 2). Для образцов, содержащих равные концентрации кальция (следовательно, одинаковое его состояние в матрице), рост \dot{a} вначале приводит к повышению σ_{v} (рис. 2, кривые 2 расположены выше кривых 1), что вполне закономерно. В противоположность этому дальнейшее возрастание а вызывает не дополнительный рост σ_{v} , а наоборот, его резкое падение (кривые 3 расположены ниже кривых 2 и 1). Такая особенность скоростной зависимости предела текучести кристаллов NaCl: Са является характерной для всех исследованных температур, данные при некоторых Tпредставлены на рис. 2a, b и c. И только при $T=673\,\mathrm{K}$ имеет место обычная зависимость $\sigma_v(\dot{a})$ (рис. 4, a). Как отмечалось выше, при такой высокой Т состояние примеси резко меняется, оно становится более диспергированным. В связи с этим анализ приведенных результатов позволяет заключить, что необычное влияние скорости деформации на изменения предела текучести наблюдается, когда примесь Ca^{2+} представляет собой крупные агрегаты, сложные комплексы, так как имеет место для больших C и температур, при которых примесь еще недостаточно разбита на мелкие агрегаты.

Особенным и интересным результатом является то, что для одного и того же структурного состояния примесных дефектов (сечение по вертикали, рис. 2) обнаруживаются противоположные эффекты: рост σ_y по мере возрастания скорости деформации меняется резким его падением. Такое поведение σ_y при высоких скоростях деформации, скорее всего, связано со значительным изменением механизма взаимодействия движущихся дислокаций с примесным центром, что, по-видимому, обусловлено различием скоростей движения дислокаций при разных скоростях сдвиговой деформации. Предлагается механизм, объясняющий резкое падение σ_y при высоких \dot{a} . Учитывая, что скорость деформации $\dot{\varepsilon}$ выражается в виде $\dot{\varepsilon} = \mathbf{b}\dot{\rho}\bar{\nu}$, где \mathbf{b} — вектор Бюргерса, ρ — плотность подвижных дислокаций, $\bar{\nu}$ — средняя скорость движения дислокаций, следует заключить, что рост скорости деформации $\dot{\varepsilon}$ на стадии предела

текучести может быть осуществлен либо за счет роста средней скорости движения дислокаций \bar{v} ; либо за счет увеличения скорости размножения подвижных дислокаций $\dot{\rho}$ [11]. Однако второй способ является менее доминирующем в нашем случае, так как специальные исследования показали, что при высоких $\dot{\varepsilon}$ плотность новых дислокаций на 2–3 и более порядка ниже ρ при малых $\dot{\varepsilon}$. Следовательно, скорость размножения дислокаций $\dot{\rho}$ в процессе деформации меньше при высоких скоростях пластической деформации, чем при малых $\dot{\varepsilon}$. Это позволяет предположить, что для исследованных легированных кристаллов NaCl возрастание скорости деформации осуществляется главным образом за счет увеличения средней скорости подвижных дислокаций. Приняв этот факт, полученные в работе данные можно связать со следующим. Увеличение скорости сдвиговой деформации \dot{a} приводит к повышению кинетической энергии дислокации, что дает ей возможность частично оторваться от примесной атмосферы. 2 Однако этот отрыв не является полным, так как дислокация обладает еще недостаточной энергией для окончательного ее освобождения от атмосферы, а атмосфера уже не может поспеть за дислокацией, что вызывает существенное дополнительное упрочнение. Этим, по-видимому, и объясняется наблюдаемое в работе возрастание предела текучести при повышении \dot{a} в пределах $10^{-5} - 10^{-4} \,\mathrm{s}^{-1}$ (рис. 2, кривая 2).

Тем не менее по мере дальнейшего увеличения скорости сдвиговой деформации до $\dot{a}\sim 10^{-3}\,\mathrm{s^{-1}}$ энергия дислокации увеличивается и, возможно, становится достаточной для полного отрыва дислокации от примесных атмосфер, что существенно облегчает ее движение и сопровождается уменьшением напряжения движения. Таким образом, отрывом дислокаций от примесных атмосфер можно объяснить резкое падение предела текучести кристаллов NaCl: Са при высоких скоростях сдвиговой деформации (рис. 2, кривая I).

Итак, для легированных кристаллов NaCl выявлено раздельное влияние на предел текучести двух различных факторов: а) структурного состояния примесных дефектов и б) скорости сдвиговой деформации. Установлено, что влияние скорости сдвиговой деформации на σ_y существенно зависит от структурного состояния примесных дефектов,

 $^{^2}$ Известно, что ядро дислокации в легированных щелочно-галоидных кристаллах окружено облаками из примесных дефектов (облака Коттрелла, Сузуки, Снука) [11]. Скорее всего, в случае больших C дефектная атмосфера вокруг дислокации представляет собой в основном комплексы типа пластин $\{310\}$ и $\{111\}$ $\{12\}$.

определяемого концентрацией примеси и температурой испытания. Выявлены две области концентраций примеси: малые C — влияние скорости на σ_y практически отсутствует и большие C — наблюдается существенное влияние \dot{a} на σ_y .

Обнаружено для кристаллов NaCl: Са, что в зависимости от скорости деформации при одном и том же структурном состоянии примеси имеют место противоположные эффекты: рост предела текучести с ростом \dot{a} , и его резкое падение при дальнейшем увеличении скорости деформации. Предложен механизм взаимодействия быстро движущейся дислокации с дефектами, объясняющий резко различное поведение σ_{v} с ростом \dot{a} .

Список литературы

- [1] Смирнов Б.И. Дислокационная структура и упрочнение кристаллов. Л.: Наука, 1981. 235 с.
- [2] *Житару Р.П., Клявин О.В., Смирнов Б.И.* // Изв. АН МССР. Сер. физ.-техн. и матем. наук. 1972. № 2. С. 39–46.
- [3] Orozko E., Agulo-Lopez F. // Acta Metall. 1986. V. 34. N 9. P. 1701-1709.
- [4] Urusovskaya A.A., Darinskaya E.V., Voszka R. et al. // Cryst. Res. and Techn. 1981. V. 16. N 5. P. 597–601.
- [5] Боярская Ю.С., Житару Р.П., Палистрант Н.А. // ФТТ. 1990. Т. 32. В. 3. С. 769–772.
- [6] Боярская Ю.С., Житару Р.П., Палистрант Н.А. // ФТТ. 1990. Т. 32. В. 11. С. 3433–3435.
- [7] Головин Ю.И., Шибков А.А. // ФТТ. 1986. Т. 28. В. 11. С. 3492–3499.
- [8] Сойфер Л.М. // Физика конденсированного состояния. Харьков: ФТИНТ, 1973. В. 24. С. 45–64.
- [9] *Андреев Г.А., Смирнов Б.И.* // Проблемы прочности. 1971. № 10. С. 122–124
- [10] Orozko E., Mendoza A., Soullard I. et al. // Jap. J. Appl. Phys. 1982. V. 21. N 2. P. 249–254.
- [11] Новиков И.И. Дефекты кристаллической решетки металлов. М.: Металлургия, 1988. 188 с.
- [12] Orozco E.M., Soullard I., Zaldo C. et al. // Philos. Mag. A. 1984. V. 50. N 3. P. 425–440.