01:07

Расчет оптимальных параметров лидара с лазером на парах меди при дистанционном зондировании H₂

© Г.В. Лактюшкин, В.Е. Привалов, В.Г. Шеманин

Балтийский государственный технический университет, С.-Петербург

Поступило в Редакцию 12 ноября 1996 г. В окончательной редакции 18 марта 1997 г.

Выполнено численное решение лидарного уравнения для обратного комбинационного рассеяния молекулами водорода и определены оптимальные значения мощности излучения медного лазера на расстояниях 100–6000 m.

Применение лазера на парах меди в локации становится весьма распространенным [1]. Результаты работы [2] наводят на мысль о возможности работать с лидаром на основе лазера на парах меди при длинах волн 0.5106, 0.2553, 0.5782, 0.2891 μ m импульсами 10 ns (частота следования до 20 kHz) при типовых мощностях P=10+150 kW. В режиме накопления импульсов при регистрации сигнала лидаром [3] можно работать на дистанции зондирования, соответствующей произведению $P\cdot\sqrt{N}$.

Мы провели численное решение лидарного уравнения для обратного комбинационного рассеяния молекулами водорода и его изотопов излучением медного лазера с приведенными выше параметрами. Цель расчета — выбор оптимального варианта лидара.

Лидарное уравнение для комбинационного рассеяния [4,5] решалось для молекул H_2 . Соответствующие длины волн приведены в таблице. Дифференциальное сечение обратного колебательного комбинационного рассеяния рассчитывалось по известной формуле [4], которая может быть упрощена до вида

$$\frac{d\sigma}{d\Omega} = \frac{A}{\lambda^4},\tag{1}$$

где постоянная A определена по известному значению сечения для длины волны излучения аргонового лазера $\lambda_0=488.1\,\mathrm{nm},$ $\left(\frac{d\sigma}{d\Omega}\right)=0.86\cdot10^{30}\,\mathrm{cm}^2/\mathrm{sr}$ и равна $A=4.87138\cdot10^{12}\,\mathrm{cm}^2/\mathrm{sr}$. Далее,

Результаты расчетов мощности обратного КР молекулы H_2 для трех длин волн медного лазера мощностью $1{\text -}100\,\text{kW},$ дистанций зондирования $0.1{\text -}6.0\,\text{km}$ и концентрации молекул $10^{20}\,\text{cm}^{-3}.$

km	P_0 , kW	1	10	100
0.1	λ , nm	$P(\lambda, R)$, nW	$P(\lambda, R)$, nW	$P(\lambda, R)$, nW
	510	1.646	16.46	164.6
	255	5.439	543.39	543.9
	289	8.928	89.28	892.8
0.5	λ , nm	$P(\lambda, R)$, nW	$P(\lambda, R)$, nW	$P(\lambda, R)$, nW
	510	65.8	0.658	6.58
	255	217.6	2.176	21.76
	289	357.1	3.571	35.71
1.0	λ , nm	$P(\lambda, R)$, nW	$P(\lambda, R)$, nW	$P(\lambda, R)$, nW
	510	16.46	164.6	1.646
	255	54.39	543.9	5.439
	289	89.28	892.8	8.928
2.0	λ , nm	$P(\lambda, R)$, nW	$P(\lambda, R)$, nW	$P(\lambda, R)$, nW
	510	4.11	41.1	0.411
	255	13.60	136.0	1.360
	289	22.32	223.2	2.232
3.0	λ , nm	$P(\lambda, R)$, pW	$P(\lambda, R)$, pW	$P(\lambda, R)$, pW
	510	1.828	18.28	182.8
	255	6.044	60.44	604.4
	289	9.921	99.21	992.1
4.0	λ , nm	$P(\lambda, R)$, pW	$P(\lambda, R)$, pW	$P(\lambda, R)$, pW
	510	1.029	10.29	102.9
	255	3.400	34.00	340.0
	289	5.580	55.80	558.0
5.0	λ , nm	$P(\lambda, R)$, pW	$P(\lambda, R)$, pW	$P(\lambda, R)$, pW
	510	0.658	6.58	65.8
	255	2.176	21.76	217.6
	289	3.571	35.71	357.1
6.0	λ , nm	$P(\lambda, R)$, pW	$P(\lambda, R)$, pW	$P(\lambda, R)$, pW
	510	0.457	4.57	45.7
	255	1.511	15.11	151.1
	289	2.480	24.80	248.0

³ Письма в ЖТФ, 1998, том 24, № 4

для конкретного случая нашего лидара выделим в постоянной лидара K_1 сомножитель $\xi_{\nu}(\lambda)$, зависящий от спектральной чувствительности фотокатода $\Phi \ni Y$ в виде

$$k_1 = k_2 \cdot \xi_{\nu}(\lambda). \tag{2}$$

Остальные сомножители в лидарном уравнении имеют следующие значения: шаг по расстоянию $\Delta R=7.5\,\mathrm{m}$ для времени измерения $z=50\,\mathrm{ns}$, площадь приемника $A_2=0.008\,\mathrm{m}^2$, $K_2=0.495\,$ для длины волны 519 nm, пиковые мощности лазерного импульса $P_0=1.10\,\mathrm{u}\,100\,\mathrm{kW}$, расстояние зондирования $P=0.1,\,0.5,\,1.0,\,2.0,\,3.0,\,4.0,\,5.0\,\mathrm{u}\,6.0\,\mathrm{km}$, концентрация исследуемых молекул $10^{16}\,\mathrm{cm}^{-3}$, значения спектральной чувствительности фотокатодов ФЭУ-79 и ФЭУ-140 (ФЭУ-124) в УФ области взяты из [6], пропускание атмосферы рассчитывалось, как и в [4], по формуле

$$T(\lambda, R) = \exp\left[-\int_{0}^{R} k(\lambda) \cdot dR\right]$$
 (3)

по значениям коэффициента ослабления k, которые взяты из [6].

Используя приведенные выше данные, были проведены численные расчеты мощности обратного КР по лидарному уравнению для одного из значений концентраций исследуемых молекул, выбранных длин волн и пиковых мощностей медного лазера в диапазоне расстояний зондирования от 0.1 до 6.0 km с целью поиска оптимального варианта лидарной системы. Результаты расчетов для молекулы Н2 приведены в таблице. Из таблицы следует, что увеличение мощности лазерного излучения ведет к пропорциональному увеличению мощности КР, а уменьшение концентрации зондируемых молекул ведет соответственно к пропорциональному уменьшению мощности КР без изменения спектральной зависимости сомножителей, входящих в лидарное уравнение. С увеличением расстояния сигнал КР уменьшается на два порядка на первом километре и еще на два на следующих пяти километрах. Анализ этих результатов показывает, что оптимальным является использование в такой системе лазерного излучения с длиной волны 289 nm, которое позволяет получить максимальное значение мощности обратного КР для всех молекул в диапазоне расстояний 0.1-6.0 km.

Письма в ЖТФ, 1998, том 24, № 4

Таким образом, полученные результаты показывают возможность оптимального выбора длины волны лазерного излучения для зондирования молекулярного водорода в атмосфере на заданном расстоянии.

Список литературы

- [1] *Евтушенко Г.С., Катаев М.Ю., Климкин В.М.* // Оптика атмосферы и океана. 1996. Т. 9. № 8. С. 777.
- [2] Воробьев Л.П., Евтушенко Г.С., Климкин В.И. и др. // Оптика атмосферы и океана. 1995. Т. 8. № 11. С. 1648.
- [3] Вицинский С.А., Дивин В.Д., Келлер А.В. и др. // Оптический журнал. 1996.№ 5. С. 83.
- [4] Межерис Р. Лазерное дистанционное зондирование. М.: Мир, 1987. 550 с.
- [5] Хинкли ЭД. Лазерный контроль атмосферы. М.: Мир, 1979. 416 с.
- [6] Прохоров А.М. Справочник по лазерам. М.: Сов. радио, 1978. Т. 1, 2.