05;12

Модифицированный слоистый композит с большой анизотропией пьезоконстант e_{ii}^* и d_{ii}^*

© В.Ю. Тополов, А.В. Турик

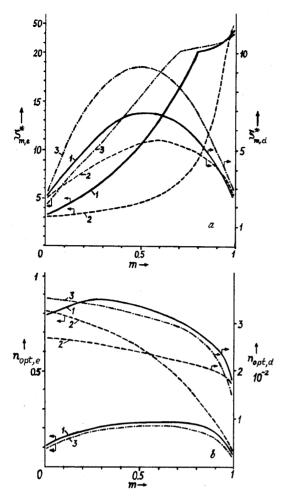
Ростовский государственный университет

Поступило в Редакцию 24 сентября 1997 г.

Рассмотрен трехкомпонентный композит, сочетающий черты структур со связностями 2-2 и 3-1 и характеризующийся значительной пьезоэлектрической анизотропией $e_{33}^*/|e_{31}^*|$; $d_{33}^*/|d_{31}^*|$ при изменении объемной концентрации одного из компонентов. Проведен анализ физических факторов, влияющих на пьезоэлектрическую анизотропию композита и обусловливающих своеобразное распределение в нем внутренних механических и электрических полей.

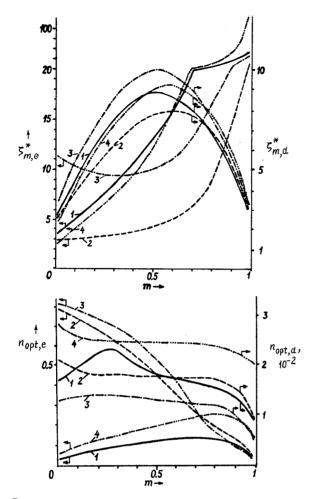
Как известно, эффективные упругие, пьезо- и диэлектрические свойства композитных материалов зависят от свойств и объемной концентрации компонентов, микроструктуры (связности) и т.п. Проблемы моделирования композитных структур, оптимизации и анизотропии их физических свойств являются сложными и многогранными. В частности, это относится к сегнетопьезоактивным композитам, нередко обладающим либо большими пьезоэлектрическими модулями d_{ij}^* или другими пьезоконстантами $(g_{ij}^*, e_{ej}^*$ или h_{ij}^*), либо их большой анизотропией. В настоящем сообщении теоретически обосновывается возможность создания трехкомпонентного композита, содержащего сегнетопьезокерамики (СПК) и характеризующегося достаточно большой пьезоэлектрической анизотропией $d_{33}^*/|d_{31}^*|$ и $e_{33}^*/|e_{31}^*|$, что является важным преимуществом для различных практических применений.

Наши предварительные оценки, основанные на методах усреднения [1-3], показали, что двухкомпонентная слоистая структура типа 2-2 может характеризоваться анизотропией $d_{33}^*/|d_{31}^*|$ и $e_{33}^*/|e_{31}^*|$, более высокой по сравнению с анизотропией $d_{33}^{(k)}/|d_{31}^{(k)}|$ и $e_{33}^{(k)}/|e_{31}^{(k)}|$ (k=1;2) исходных компонентов. Среди таких компонентов выделяются, например, СПК ВаТіО $_3$ и полимер поливинилиденфторид (PVF) либо СПК


5 65

ЦТС-19 и PVF, пьезоэлектрические константы $d_{3j}^{(k)}$ и $e_{3j}^{(k)}$ которых в широком температурном интервале не обнаруживают значительной анизотропии [4,5]. Влияние слоистой структуры на пьезоэлектрическую анизотропию может быть усилено при армировании полимерного слоя достаточно длинными стержнями из СПК, электромеханические константы которой соизмеримы с аналогичными константами СПК из другого слоя. Ниже приводятся свидетельствующие об этом результаты расчетов.

В предлагаемом модифицированном слоистом композите слой 1 формируется из полимерной матрицы (объемная концентрация 1-n внутри слоя 1), характеризующейся низкой или нулевой пьезоактивностью и пронизанной насквозь СПК стержнями (объемная концентрация n внутри слоя 1) вдоь оси OX_3 прямоугольной системы координат $(X_1X_2X_3)$. В слое 2 присутствует только СПК другого состава. Объемные концентрации слоев 1 и 2, чередующихся в направлении OX_3 , равны соответственно m и 1-m. Данная композитная структура предполагается поляризованной вдоль OX_3 , а ее электромеханические константы определяются с помощью формул [1,2] для слоистых и [6] волокнистых [6] композитов.


Концентрационные зависимости $\xi_{m,e}^*(m) = e_{33}^*(m, n_{opt,e})/|e_{31}^*(m, n_{opt,e})|$ и $\xi_{m,d}^*(m) = d_{33}^*(m, n_{opt,d})/|d_{31}^*(m, n_{opt,d})|$ модифицированного композита и оптимальных концентраций СПК стержней $n_{opt,e}(m)$ и $n_{opt,d}(m)$, обусловливающих при значениях $0.01 \leqslant m \leqslant 0.99$ максимумы анизотропии $e_{33}^*(m, n/|e_{31}^*(m, n)|$ и $d_{33}^*(m, n)/|d_{31}^*(m, n)|$ соответственно, приведены на рис. 1 и 2. Форма кривых $\xi_{m,e}^*(m)$ и $\xi_{m,d}^*(m)$ практически не меняется при наличии пьезо- (рис. 1) или непьезоактивной (рис. 2) матрицы в слое 1. При переходе к непьезоактивной матрице величины $\xi_{m,e}^*$ и $\xi_{m,d}^*$ несколько возрастают (ср., например, кривые I на рис. 1,a и 2,a) и слегка изменяется вид кривых $n_{opt,e}(m)$ и $n_{opt,d}(m)$ (ср. кривые I на рис. 1,b и 2,b). В то же время различия в анизотропии $e_{33}^{(k)}/|e_{31}^{(k)}|$ или $d_{33}^{(k)}/|d_{31}^{(k)}|$ исходных СПК компонентов не оказывают большого влияния на взаимное расположение кривых $\zeta_{m,e}^*(m)$ и положение

 $^{^1}$ Следует отметить, что формулы [3] для определения эффективных констант пьезоактивных волокнистых композитов типа $3\!-\!1$ оказываются в ряде случаев некорректными вследствие наблюдающегося при некоторых взаимодействующих компонентах перехода модуля упругости c_{66}^* через нуль в отрицательную область. По нашему мнению, этот результат может быть следствием недостаточно корректного учета в [3] различий между упругими свойствами матрицы и волокон (стержней).

Рис. 1. Расчетные концентрационные зависимости величин анизотропии пьезоконстант $\zeta_{m,e}^*(m)$ и $\zeta_{m,d}^*(m)$ модифицированного слоистого композита (a) и соответствующих оптимальных концентраций $n_{opt,e}$ и $n_{opt,d}$ стержней (b), окруженных в слое 1 пьезоактивной полимерной матрицей из PVF. В качестве материалов для стержней и слоя 2 выбираются следующие СПК: I — PZT-4 и ЦТС-19; 2 —ТБК-3 и ЦТС-19; 3 — ЦТС-19 и ТБК-3 соответственно. Электромеханические константы компонентов, измеренные при комнатной температуре, взяты из работ [4,5].

5* Письма в ЖТФ, 1998, том 24, № 11

Рис. 2. Расчетные концентрационные зависимости величин анизотропии пьезоконстант $\xi_{m,e}^*(m)$ и $\xi_{m,d}^*(m)$ модифицированного слоистого композита (a) и соответствующих оптимальных концентраций $n_{opt,e}$ и $n_{opt,d}$ стержней (b), окруженных в слое 1 непьезоактивной полимерной матрицей из аральдита. В качестве материалов для стержней и слоя 2 выбираются следующие СПК: I— PZT-4 и ЦТС-19; 2— ТБК-3 и ЦТС-19; 3— ЦТБС-3 и ТБКС; 4— ТБКС и ЦТБС-3 соответственно. Электромеханические константы компонентов, измеренные при комнатной температуре, взяты из работ [4,6].

Письма в ЖТФ, 1998, том 24, № 11

 $\max \zeta_{m,e}^*(m)$ (ср. кривые 2,3,4 на рис. 2,a). Сравнение кривых $\zeta_{m,d}^*(m)$ для различных составов СПК компонентов и матрицы (рис. 1,2) показывает, что значения $\max \zeta_{m,e}^*(m)$ достигаются при $m\approx 0.5\dots 0.6$ и $n_{opt,d}(m)\approx (1\dots 3)\cdot 10^{-2}$, тогда как для кривых $\zeta_{m,e}^*(m)$ наибольшие значения имеют место при $m\to 1$ и соответствующих оптимальных концентрациях $n_{opt,e}(m)\lesssim 0.1$.

Как следует из анализа немонотонных зависимостей $\zeta_{m,d}^*(m)$ (рис. 1,2) и соотношений между электромеханическими константами [4–6] компонентов, значения $\max \zeta_{m,d}^*(m) \approx 10$ для различных составов достигаются вследствие больших скачков пьезо-, диэлектрических и упругих констант при переходе от слоя к слою (полимер с малыми $n_{opt,d}$ или $n_{opt,e}$ СПК стержней в слое 1 oСПК слой $2 o \dots)$ при достаточно близких ($m \approx 0.4...0.6$) объемных концентрациях слоев. Большая анизотропия $\zeta_{m,e}^*(m)\gg 1$ наблюдается, наоборот, при резком преобладании объема слоя 1 слабоармированного полимера $(1-n\gg n)$ по сравнению с объемом СПК слоя 2, т.е. $m\gg 1-m$. Это связано с заметно различающимися наклонами кривых $e_{33}^{(1)}(m)$ и $|e_{31}^{(1)}(m)|$ при $m \to 1$ и $n = n_{opt,e} \ll 1$, что обусловлено граничными условиями для электрических и упругих полей внутри слоя 1, а также со значительными скачками электромеханических констант компонентов. Такие скачки, а следовательно и перераспределение внутренних полей, имеют место как при переходе от стержня к матрице и, наоборот, внутри слоя 1, так и при переходе через границу слоев $x_3 = const$, даже если отвлечься от возникающих вблизи торцевых поверхностей цилиндров избыточных механических напряжений. Можно полагать, что оба вида указанных скачков констант оказывают важное влияние на $\zeta_{m,e}^*(m)$.

Числовые оценки, основанные на анализе электроупругого взаимодействия пьезоактивного включения с окружающей средой [7,8], показывают, что в данном композите, в особенности в случае непьезоактивной матрицы, достигается необычное распределение индуцированных деформаций $\xi_{33}^{(k)}$: $|\xi_{33}^{(1)}|$ существенно возрастает в СПК стержнях, окруженных в слое 1 менее жесткой полимерной матрицей, а $|\xi_{33}^{(2)}|$, наоборот, уменьшается благодаря присутствию более жесткого СПК слоя 2 по сравнению со слоем 1 и равенству на границе слоев $(x_3 = \text{const})$ внутренних механических напряжений $\sigma_{33}^{(1)} = \sigma_{33}^{(2)}$. Что касается распределения электрических полей вдоль оси OX_3 , то в стержнях эффект деполяризации сильно уменьшается, а в слоях, наоборот, воз-

Письма в ЖТФ. 1998. том 24. № 11

растает [8]. Вероятно, указанные особенности распределения полей внутри композита связаны с его эффективными константами e_{33}^* и d_{33}^* , а также с анизотропией $\zeta_{m,e}^*$ и $\zeta_{m,d}^*$ соответственно.

Список литературы

- [1] Hashimoto K.Y., Yamaguchi M. // Proc. IEEE Ultrason. Symp. Williamsburg, Va, Nov. 17–19, 1986. V. 2. New York, NY, 1986. P. 697–702.
- [2] Akcakaya E., Farnell G.W. // J. Appl. Phys. 1988. V. 64. N 9. P. 4469-4473.
- [3] Хорошун Л.П., Маслов Б.П., Лещенко П.В. Прогнозирование эффективных свойств пьезоактивных композитных материалов. Киев: Наук. думка, 1989. 208 с.
- [4] Landolt-Börnstein. Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie. Gr. III. Bd 18. Berlin etc.: Springer-Verlag, 1984. 559 p.; Bd 28. Berlin etc.: Springer-Verlag, 1990. 833 p.
- [5] Sessler G.M. // J. Acoust. Soc. Amer. 1981. V. 70. N 6. P. 1596–1608.
- [6] Chan H.L.W., Unsworth J. // IEEE Trans. Ultrason., Ferroelec. and Freq. Contr. 1990. V. 36. N 4. P. 434–442.
- [7] Бондаренко Е.И., Тополов В.Ю. // Письма в ЖТФ. Т. 18. № 3. С. 10–13.
- [8] Dunn M.L., Taya M. // Trans. ASME: J. Appl. Mech. 1994. V. 61. N 2. P. 474–475.