05:09

Условия существования обратных поверхностных магнитостатических волн в структуре феррит—диэлектрик—металл

© В.И. Зубков, В.И. Щеглов

Институт радиотехники и электроники РАН, Фрязино

Поступило в Редакцию 10 декабря 1996 г. В окончательной редакции 13 марта 1998 г.

Теоретически исследована дисперсия поверхностных магнитостатических волн (ПМСВ) различных частот, распространяющихся в намагниченных однородным магнитным полем структурах феррит-диэлектрик-металл (СФДМ). Установлено, что в СФДМ в зависимости от соотношения толщин ферритового и диэлектрического слоев обратные ПМСВ существуют в разных частотных диапазонах и имеют разные волновые числа и направления распространения. Определены условия, при которых возможно непосредственное наблюдение обратных ПМСВ в СФДМ.

Изучение дисперсии прямых и обратных поверхностных магнитостатических волн (ППМСВ и ОПМСВ) в структурах феррит–диэлектрик-металл (СФДМ) актуально в связи с их возможным использованием для аналоговой обработки информации в СВЧ-диапазоне [1] (при цитировании авторы имеют в виду и литературу во всех ссылках). Большое число работ по изучению дисперсии ПМСВ в СФДМ с конкретными параметрами [1–6] создает иллюзию изученности проблемы существования ОПМСВ в СФДМ. Однако отсутствие прямого экспериментального доказательства их существования [4–6] непонятно. Ниже объяснены возможные причины этого.

1 1

Рассмотрим бесконечную в плоскости y0z СФДМ, состоящую из ферритовой пленки (ФП) толщиной d, намагниченной до насыщения, идеально проводящего металлического слоя и диэлектрического слоя (в магнитостатике — вакуумного) между ними с толщиной s (далее этот слой обозначается просто s). Плоскость x=0 есть поверхность ФП, ближайшая к металлическому слою. Подмагничивающее поле H_0 направлено по оси z. В СФДМ распространяется ПМСВ с частотой ω , волновой вектор \mathbf{k} и групповая скорость \mathbf{v}_g которой направлены под углами φ и ψ к оси y.

Дисперсионное соотношение для ПМСВ в СФДМ записывается в виде [7]:

$$[\beta - 2\mu\alpha \operatorname{cth}(\alpha kd)] + (\beta + 2 - 2p\nu\cos\varphi)\exp(-2ks) = 0, \quad (1)$$

где $\alpha=[\mu^{-1}\sin^2\varphi+\cos^2\varphi]^{1/2};\ \beta=(\nu^2-\mu^2+\mu)\cos^2\varphi-\mu-1;\ \mu=1+\Omega_H(\Omega_H^2-\Omega^2)^{-1};\ \nu=\Omega(\Omega_H^2-\Omega^2)^{-1};\ \Omega=\omega(4\pi|\gamma|M_0)^{-1};\ \Omega_H=H_0(4\pi M_0)^{-1};\ 4\pi M_0$ — намагниченность насыщения ФП, γ — гиромагнитное отношение для электрона, $p=\pm 1$. Только ПМСВ, распространяющиеся в плоскости x=0 СФДМ (p=1), могут быть как прямыми, так и обратными волнами [1-3].

Дисперсионное соотношение (1) рассматривают как закон дисперсии $\Omega_s(k)$ при заданных параметрах φ , d, s и Ω_H . По нему определяется тип ПМСВ (прямая или обратная) [1–5]. Вид закона дисперсии $\Omega_s(k)$ зависит от соотношения между d и s, качественно не меняется при изменении Ω_H , а угол φ считается свободным параметром, который задается возбуждающей ПМСВ антенной ($\varphi=\varphi_0$) [1–6]. Ниже определена связь между частотным диапазоном существования, волновыми числами и направлениями распространения ОПМСВ и показано, что определение типа волны только по закону дисперсии недостаточно.

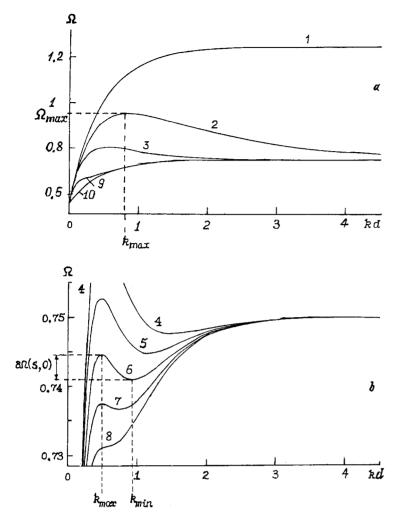
Известно [1–3,5], что ПМСВ существуют в диапазоне частот от нижней Ω_l до верхней Ω_u (s,φ) и в интервале углов φ , ограниченном углами "отсечки" $\pm \varphi_c(s)$. При этом $\Omega_u(\infty,0)<\Omega_u(s,\varphi)<\Omega_u(0,0)$ и $\varphi_c(s)<\varphi_c(0)$, где $\Omega_u(\infty,0)$ и $\Omega_u(0,0)$ и $\varphi_c(\infty)$ и $\varphi_c(0)$ — верхние частоты и углы отсечки для ПМСВ в ФП $(s=\infty)$ и в структуре ферритметалл $(C\Phi M)$ (s=0):

$$\Omega_l = \sqrt{\Omega_H(\Omega_H + 1)},\tag{2}$$

$$\Omega_u(\infty, 0) = \Omega_H + 0.5,\tag{3}$$

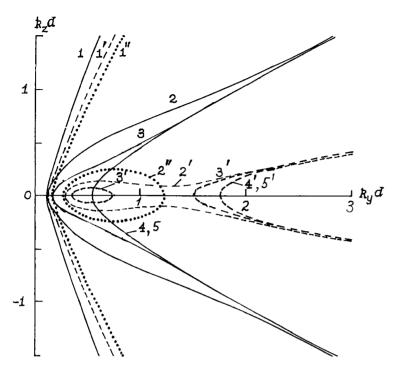
Письма в ЖТФ. 1998, том 24, № 13

$$\varphi_c(\infty) = \arccos\left\{ \left[\Omega + \sqrt{\Omega^2 - \Omega_H(\Omega_H + 1)} \right] (\Omega_H + 1)^{-1} \right\},$$
(4)


$$\Omega_u(0,0) = \Omega_H + 1,\tag{5}$$

$$\Omega_u(0,0) = \Omega_H + 1, \tag{5}$$

$$\varphi_c(0) = \arccos\sqrt{[\Omega^2 - \Omega_H(\Omega_H + 1)](\Omega_H + 1)^{-1}}. \tag{6}$$


На рис. 1 приведены дисперсионные кривые ПМСВ $\Omega_s(k_v,d)$ в СФДМ с различными s. Видно, что имеются три вида зависимостей $\Omega_s(k_v d)$. Во-первых, в диапазоне частот $\Omega_u(\infty,0) < \Omega < \Omega_u(0,0)$ функции $\Omega_s(k_v d)$ для ПМСВ в СФДМ с малыми s (0 $< s \le s_{b1}$) имеют максимум при $kd=k_{\max,s}d$ и стремятся к $\Omega_u(\infty,0)$ при $kd\to\infty$ (кривые 2 и 3). Каждой ППМСВ с $k < k_{\text{max},s}$ соответствует ОПМСВ с k в $k_{\max,s} < k < \infty$. Во-вторых, в диапазоне частот $\Omega_l < \Omega < \Omega_u(\infty,0)$ функция $\Omega_s(k_v d)$ для ПМСВ в СФДМ с большими s $(s \geqslant s_{b1})$ имеет максимум и минимум (кривые 4-7). ОПМСВ существуют при $s_{b1} < s < s_{b2}$ и в интервале частот $\delta\Omega(s,0) \ll \Omega_l$. ППМСВ имеют волновые числа k в интервалах $0 < k < k_{\text{max},s}$ и $k_{\text{min},s} < k < \infty$, а ОПМСВ — в $k_{\max,s} < k < k_{\min,s}$ (кривые 4–7). В-третьих, функции $\Omega_s(k_v d)$ для ПМСВ в СФДМ с $s_{b2} < s < \infty$ имеют точку перегиба (кривая 8) и в них вроде бы есть лишь ППМСВ.

Однако соотношение (1) задает дисперсионную поверхность $\Omega_s(k_v,k_z)$ $(k_v$ и k_z — проекции волнового вектора ПМСВ ${\bf k}$ на оси v и z), а закон дисперсии $\Omega_s(k_v)$ является ее сечением плоскостью $k_z=0$ и не дает полной информации, которая получается при изучении, наряду с ним и ее сечений плоскостями $\Omega_i = \text{const}(k_v 0 k_z)$ — кривых $k_z(k_v)$ (аналогично ПМСВ в ФП [8,9]). На рис. 2 приведены зависимости $k_{z}(k_{v})$ для ПМСВ с частотами $\Omega=0.608,\,0.695,\,0.745$ и 0.775 в СФДМ с различными s. В $\Phi\Pi$ и в $C\Phi M$ кривые $k_z(k_y)$ похожи на гиперболы канонического вида [2,8,9] (кривые 1 и 4). Обозначим их как $qH(\infty)$ при $s=\infty$ и qH(0) при s=0. Направление распространения ПМСВ на плоскости $k_v 0 k_z$ задано прямой, исходящей из начала координат под углом φ_0 (далее — прямая направления; при обсуждении рис. 2 будем проводить ее мысленно). При $|arphi_0|<|arphi_{c,s}|$ эта прямая пересекает $qH(\infty)$ и qH(0) в одной точке, в которой проекция групповой скорости на направление фазовой показывает, что ПМСВ в ФП и в СФМ — прямые волны. В СФДМ прямая направления пересекает кривые $k_z(k_y)$ в двух или трех точках. При нумерации их по увеличению k_{y} в первой и третьей точках существуют ППМСВ, а во второй — ОПМСВ.

Рис. 1. Дисперсионные кривые $\Omega_s(k_yd)$ ПМСВ в СФДМ с различными s при $\Omega_H=0.25$ ($s_{b1}\approx\frac{4}{3}d$ и $s_{b2}\approx2d$). Кривые на рисунке: I-s=0; $2-s=\frac{1}{3}d$; 3-s=d; 4-s=1.467d; 5-s=1.6d; 6-s=1.733d; 7-s=1.867d; 8-s=2d; 9-s=4d и $10-s=\infty$. Для кривых 2 и 6 отмечены $k_{\max,s'}$, $k_{\min,s'}$, $\Omega_u(s,0)$, $\delta\Omega_s$.

Письма в ЖТФ, 1998, том 24, № 13

Рис. 2. Зависимости $k_z(k_y)$ для ПМСВ с частотами $\Omega=0.695$ (сплошные кривые), 0.745 (штриховые кривые) и 0.775 (пунктирные кривые) в СФДМ с различными s при $\Omega_H=0.25$. Сплошные и пунктирные кривые: I-s=0; 2-s=d; 3-s=2d; 4-s=4d; $5-s=\infty$. Штриховые кривые: I-s=0; 2-s=1.533d; $3-s=\frac{5}{3}d$; 4-s=4d. На частотах $\Omega=0.695$ и 0.745 кривые S=00 мало отличаются от кривых S=01. На частоте S=02. На частоте S=03. На существуют.

В СФДМ с различными s, как видно из кривых $k_z(k_y)$ (рис. 2), ОПМСВ различных частотных диапазонов распространяются в разных интервалах изменения угла φ и имеют различные волновые числа.

Рассмотрим ПМСВ в СФДМ с малыми s (прямая направления пересекает кривые $k_z(k_y)$ в двух точках). В диапазоне частот от $\Omega_u(\infty,0)$ до $\Omega_u(0,0)$ ОПМСВ существуют при изменении угла φ от $-\varphi_c(0)$ до $+\varphi_c(0)$, так как кривые $k_z(k_y)$ похожи на эллипсы неканонического

Письма в ЖТФ, 1998, том 24, № 13

вида, которые лежат при $k_y>0$ (пунктирная кривая 2), а прямая направления может пересекать их только при $|\varphi_0|<|\varphi_c(0)|$. В диапазоне частот от Ω_l до $\Omega_u(\infty,0)$ ОПМСВ существуют в интервале углов $|\varphi_c(\infty)|<|\varphi_o|<|\varphi_c(0)|$, так как кривые $k_z(k_y)$ являются строго возрастающими функциями (сплошные кривые 2 и 3), находящимися между qH(0) и $qH(\infty)$, и прямая направления может пересекать их только в этом интервале углов. Кривые $k_z(k_y)$ в точке с наименьшим значением k_y ($k_{y,\inf,s}$ при $k_z=0$) близки к qH(0); $k_{y,\inf,s}$ растет с увеличением s.

Рассмотрим ПМСВ в СФДМ с большими в (прямая направления пересекает кривые $k_{z}(k_{y})$ в трех точках), где существуют две ППМСВ и одна ОПМСВ. В СФДМ с $s_{b1} < s < s_{b2}$ кривые $k_z(k_y)$ либо состоят из двух частей, одной похожей на эллипс, а другой — на $qH(\infty)$ (штриховая кривая 3), либо являются неразрывными кривыми, имеющими максимум (при $k_y = k_{y, \max}$) и минимум (при $k_y = k_{y, \min}$) (штриховая кривая 2). При этом $k_{y, \max} < k_{y, \min} < k_{y, \inf, \infty}$ для кривой $qH\left(\infty\right)$. ОПМСВ и вторая ППМСВ существуют при изменении угла φ_0 от 0° до $\pm \varphi_c(\infty)$ в частотном интервале $\delta\Omega(s,\varphi)$, находящемся в диапазоне от Ω_l до Ω_u (∞ , 0) (при $s \geqslant s_{b1}$ — около Ω_u (∞ , 0)). В СФДМ с $s_{b2} < s < \infty$ кривые $k_z(k_v)$ являются возрастающими функциями, имеющими слабо выраженные выпуклость и вогнутость (кривая 3). ОПМСВ и вторая ППМСВ существуют в узком интервале углов $|arphi_{c0}|<|arphi_{0}|<|arphi_{c}(\infty)|$, где $arphi_{c0}$ — угол наклона прямой, проходящей через начало координат и вершину вогнутости. Их частотный интервал существования $\delta\Omega(s,\varphi)$ находится в диапазоне от Ω_l до $\Omega_u(\infty,0)$ (при $s \to \infty$ — около Ω_l).

При анализе известного эксперимента [1,4–6], целиком посвященного изучению ПМСВ, распространяющихся только при $\varphi_0=0$, видно, что дисперсионные кривые ППМСВ в СФДМ хорошо совпадают с теоретическими. ОПМСВ не наблюдаются, а объясняют это большими потерями на их распространение (из-за малости их групповой скорости).

Однако групповая скорость ОПМСВ с $\varphi_0 = 0$ сравнима с групповой скоростью ППМСВ (рис. 1). Наблюдение этих ОПМСВ возможно при использовании узкополосных преобразователей, возбуждающих ПМСВ с большими волновыми числами (рис. 2), и связано только с трудностями измерений при малых s, пути преодоления которых известны [5,6]. Групповая скорость ОПМСВ с $|\varphi_c(\infty)| < |\infty_0| < |\varphi_c(0)|$ действительно

Письма в ЖТФ. 1998, том 24, № 13

много меньше групповой скорости ППМСВ. Наблюдение этих ОПМСВ возможно, если выбрать $|\varphi_0| \approx |\varphi_c(\infty)|$ и использовать узкополосные преобразователи.

По нашему мнению, в [4,5] ОПМСВ не наблюдались только из-за применения широкополосных преобразователей. В [6] ОПМСВ могли возбуждаться, но роль их не выяснена, так как это не было целью работы.

Работа поддержана РФФИ (грант 96-02-17283а).

Список литературы

- [1] Исхак В.С. // ТИИЭР. 1988. Т. 76. № 2. С. 86–104.
- [2] Вугальтер Г.А., Гилинский И.А. // Изв. вузов. Радиофизика. 1989. Т. 32. № 10. С. 1187–1220.
- [3] *Беспятых Ю.И., Вашковский А.В., Зубков В.И.* // Радиотехника и электроника, 1975. Т. 20. № 5. С. 1003–1008.
- [4] Есиков О.С., Толокнов Н.А., Фетисов Ю.К. // Радиотехника и электроника. 1980. Т. 25. № 1. С. 128–132.
- [5] Валявский А.Б., Вашковский А.В., Стальмахов А.В., Тюлюкин В.А. // Радиотехника и электроника. 1988. Т. 33. № 9. С. 1820–1830.
- [6] Зубков В.И., Локк Э.Г., Щеглов В.И. // Радиотехника и электроника. 1989. Т. 34. № 7. С. 1381–1384.
- [7] Вашковский А.В., Зубков В.И., Локк Э.Г., Щеглов В.И. // ЖТФ. 1995. Т. 65.№ 8. С. 78–89.
- [8] Зубков В.И., Локк Э.Г., Щеглов В.И. // Радиотехника и электроника. 1990.
 Т. 35. № 8. С. 1617–1623.
- [9] *Вашковский А.В., Зубков В.И., Локк Э.Г., Щеглов В.И.* // Радиотехника и электроника. 1995. Т. 40. № 6. С. 950–961.