Исследование фазового перехода в оксифториде $(NH_4)_3WO_3F_3$ методом комбинационного рассеяния света

© А.С. Крылов, Ю.В. Герасимова, А.Н. Втюрин, В.Д. Фокина, Н.М. Лапташ*, Е.И. Войт*

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

* Институт химии Дальневосточного отделения Российской академии наук, 690022 Владивосток, Россия

E-mail: vtyurin@iph.krasn.ru, jul@iph.krasn.ru

(Поступила в Редакцию в окончательном виде 3 октября 2005 г.)

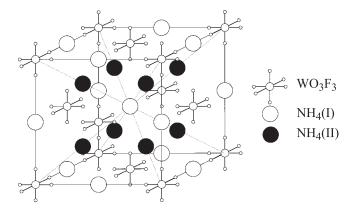
Получены спектры комбинационного рассеяния света поликристаллических образцов перовскитоподобного оксифторида $(NH_4)_3WO_3F_3$ в области частот $70-3600\,\mathrm{cm}^{-1}$ и интервале температур $93-323\,\mathrm{K}$, включающем область перехода из ориентационно-неупорядоченной кубической в низкосимметричную фазу. Обнаружены переходные аномалии параметров спектра в областях внутренних колебаний ионов аммония и октаэдрических групп WO_3F_3 . Анализ измерений позволяет утверждать, что исследованный фазовый переход связан главным образом с упорядочением октаэдрических групп.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 03-02-16079), гранта Президента РФ для поддержки ведущих научных школ РФ (НШ-939.2003.2) и Фонда содействия отечественной науке.

PACS: 64.70.Kb, 78.30.Hv

Перовскитоподобные фториды с общей формулой A_3BX_6 (A и B — катионы металлов, X — ион галогена или кислорода) в высокотемпературной фазе обладают кубической симметрией (пространственная группа $Fm\bar{3}m, Z=4$) и относятся к семейству криолита-эльпасолита [1]. Ранее в [2] было показано, что и в смешанных составах $A_3BO_xHal_{6-x}$ (величина x зависит от валентности ионов A и B) сохраняется кубическая симметрия высокотемпературной фазы; при этом атомы галогена и кислорода оказываются статистически распределены в кристаллической решетке, тогда как локальная симметрия октаэдрического иона BO_xHal_{6-x} оказывается ниже кубической [3,4] (структура кубической фазы показана на рис. 1).

При понижении температуры оксифториды и фториды этого семейства испытывают последовательности фазовых переходов, которые могут быть связаны с ориентационным упорядочением октаэдрических ионов [1,5,6]. Природа искаженных фаз при этом может быть различной — во фторидных системах они являются сегнетоэластическими, тогда как в оксифторидах известны как сегнетоэластические, так и сегнетоэлектрические структуры.


Замещение катиона A^+ на ион аммония приводит к возможности дополнительного структурного беспорядка, связанного с ориентационными степенями свободы этого иона. Более того, одна из этих катионных позиций в кубической структуре — $\mathrm{NH_4}(\mathrm{I})$ — имеет локальную симметрию O_h , и находящийся в ней тетраэдрический ион должен быть ориентационно неупорядочен.

В настоящее время исследования фазовых переходов в аммонийных оксифторидах только начаты [6]. В настоящей работе приводятся результаты таких исследований

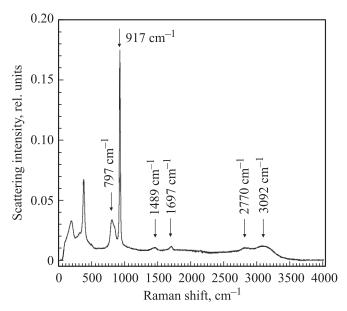
для кристалла $(NH_4)_3WO_3F_3$, выполненных методом комбинационного рассеяния (KP) света.

1. Эксперимент

Аммонийный оксифторид $(NH_4)_3WO_3F_3$ был приготовлен из горячего раствора $(NH_4)_2WO_2F_4$ с избытком NH_4F при последующем добавлении раствора NH_4OH . В результате образовались мелкие прозрачные и бесцветные кристаллы в форме октаэдров. При дальнейшей кристаллизации методом медленного испарения на воздухе были получены октаэдрические монокристаллы с ребром около $40\,\mu\text{m}$. Более подробно методика синтеза

Рис. 1. Структура элементарной ячейки кубической фазы кристалла $(NH_4)_3WO_3F_3$. Катионы аммония ориентационно разупорядочены и поэтому показаны сферами. $NH_4(I)$ — ион аммония в позиции с локальной симметрией O_h , $NH_4(II)$ — в позиции T_d . Положения атомов кислорода и фтора в октаэдрах WO_3F_3 также неизвестны.

описана в [6]. Рентгеноструктурный анализ показал, что структура кристаллов является кубической ($Fm\bar{3}m$, параметр ячейки 0.9156 nm); пиков, соответствующих примесям исходных компонентов и посторонних фаз, на рентгенограммах не обнаружено.


Спектры KP в диапазоне $70-3600\,\mathrm{cm^{-1}}$ в геометрии рассеяния назад были получены на Фурье–Раман спектрометре RFS100/S (Bruker) с разрешением $1\,\mathrm{cm^{-1}}$. В качестве источника возбуждения использовалось излучение Nd:YAG лазера с длинной волны $1.06\,\mu\mathrm{m}$ и мощностью $350\,\mathrm{mW}$. Микрокристаллы исследуемого вещества помещались в металлический контейнер, закрытый кварцевым стеклом. При проведении температурных исследований контейнер устанавливался внутрь криостата Specac, позволяющего получить спектры в температурном диапазоне $83-523\,\mathrm{K}$, точность стабилизации $\pm 0.1\,\mathrm{K}$.

Для получения количественной информации о параметрах спектральных линий применялись программные пакеты Peak Fit и Sigma Plot 8.0 (оба — SPSS Inc.) с использованием фойгтовской и дисперсионной форм для отдельных линий (после учета температурного фактора Бозе—Эйнштейна, характеризующего заселенность колебательных уровней).

2. Экспериментальные результаты и обсуждение

2.1.~Oбщая структура спектра. На рис. 2 показан экспериментальный спектр $KP~(NH_4)_3WO_3F_3$ при комнатной температуре. В спектре отчетливо выделяется четыре диапазона.

Области 2700-3500 и 1200 $-1600\,\mathrm{cm^{-1}}$ содержат по две линии соответственно внутренних валентных и де-

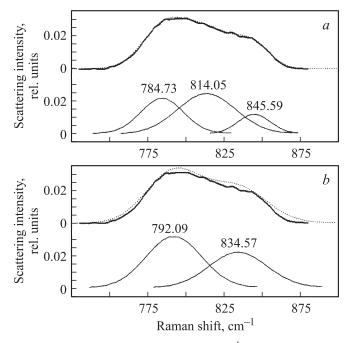
Рис. 2. Обзорный спектр $KP\ (NH_4)_3WO_3F_3$ при комнатной температуре.

формационных мод ионов аммония. Хотя эти линии и достаточно широки, их расщепления не наблюдается, а значения частот (2770 и $3092\,\mathrm{cm^{-1}}$ для валентных, 1489 и $1697\,\mathrm{cm^{-1}}$ для деформационных колебаний) очень близки к частотам внутренних мод свободного иона (3040, 3145, 1400 и $1680\,\mathrm{cm^{-1}}$ соответственно по данным [7]). Малость сдвига этих частот и отсутствие расщепления линий (как позиционного, так и связанного со снятием вырождения F- и E-мод) свидетельствует о слабом искажении ионов аммония кристаллическим окружением и их слабом взаимодействии между собой.

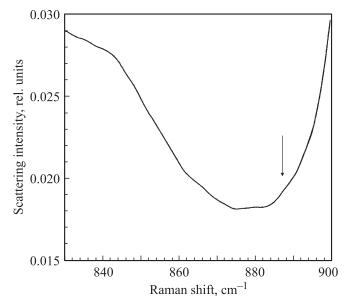
Область $750-1000\,\mathrm{cm}^{-1}$ содержит линии, соответствующие валентным колебаниям W-О-связей ионов $WO_3F_3^{3-}$. Для их интерпретации был выполнен квантовохимический расчет двух возможных конфигураций этих ионов с симметрией C_{3v} (*cis*-) и C_{2v} (*trans*-[WO₃F₃]³⁻). Расчеты были проведены ограниченным методом Хартри-Фока с использованием функционала плотности B3LYP. В качестве базиса для атомов W, F, О использовался стандартный валентный базис SBKJC [8] в сочетании с псевдорелятивистским остовным потенциалом, дополненным двумя диффузными функциями. Все расчеты выполнены на 16-процессорном Linuxкластере МВС-1000 с использованием программного комплекса GAMESS [9]. Оптимизация (с точки зрения механической устойчивости) геометрических параметров высокозарядного аниона $[WO_3F_3]^{3-}$ приводила к завышенным по сравнению с экспериментальными данными [6] межатомным расстояниям и к заметному сдвигу колебательных частот, поэтому был проведен расчет оптимальных геометрических параметров кластера $[Na_6WO_3F_3]^{3-}$; полученные геометрические параметры использовались в дальнейших расчетах. Более подробное описание методики приведено в [10]. Полученные в результате частоты колебаний и относительные интенсивности линий спектра КР для двух конфигураций ионов приведены в таблице.

Положение наиболее интенсивной линии экспериментального спектра $917 \, \mathrm{cm}^{-1}$ практически совпадает с расчетной частотой (915 cm⁻¹) полносимметричного колебания валентного колебания WO₃ для *cis*-конфигурации этого иона. Расположенная в этой области сложная полоса $775-850\,\mathrm{cm}^{-1}$ близка по частоте к дважды вырожденному асимметричному валентному колебанию WO₃ той же конфигурации (расчетная частота $821 \, \mathrm{cm}^{-1}$); сюда же попадает расчетная частота $810\,\mathrm{cm}^{-1}$ наиболее интенсивного валентного W-O колебания для transконфигурации этого иона. Попытки разделить эту полосу на составляющие с использованием дисперсионных или фойгтовых контуров (рис. 3) показали, что она является суперпозицией как минимум трех отдельных линий: 784, 814 и 845 cm⁻¹. Видимо, данный триплет состоит из двух линий, образовавшихся в результате снятия вырождения E-колебания cis-конфигурации иона $WO_3F_3^{3-}$, и наиболее интенсивного A_1 -колебания transконфигурации этого иона (см. таблицу).

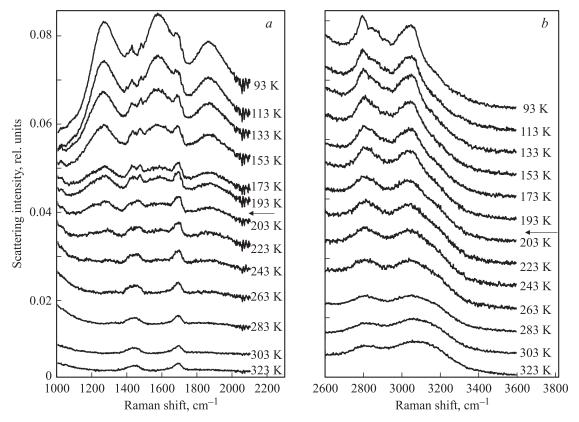
Результаты квантово-химического (ECP/SBKJC/B3LYP) расчета колебательного спектра ионов $WO_3F_3^{3-}$

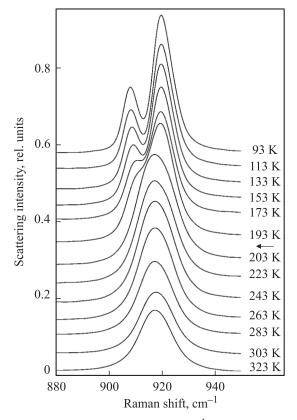

Симметрия колебания	Частота, ст ⁻¹	Относительная интенсивность КР
Cis -конфигурация, C_{3v}		
A_1	915	37.1
E	821	4.7
A_1	415	3.7
E	342	0.3
A_1	336	0.3
E	334	1.7
A_1	274	0.3
E	252	0.2
E	175	0.3
A_2	137	0.0
Trans -конфигурация, C_{2v}		
A_1	887	12.4
A_1	810	13.6
B_1	745	0.5
A_1	455	4.9
B_2	433	0.0
B_1	358	0.7
A_1	328	1.1
A_2	292	0.0
B_1	308	1.1
A_1	263	3.9
B_2	256	0.8
B_2	229	0.4
B_1	211	0.6
A_1	151	2.6
B_2	0.35	0.0

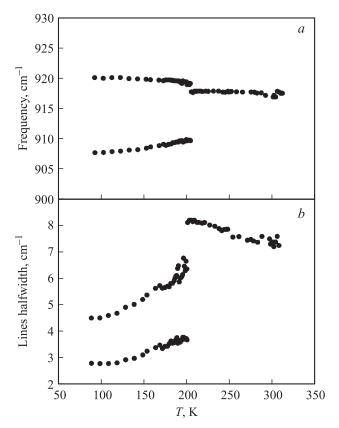
Еще одна менее интенсивная по расчетам, но активная в KP линия валентного W-О-колебания для *trans*-конфигурации иона WO $_3$ F $_3^{3-}$ должна лежать на частоте 887 cm $^{-1}$. Здесь действительно наблюдается некоторое возрастание спектрального сигнала (рис. 4), однако слишком слабое, чтобы с уверенностью интерпретировать его как спектральную линию.


Область ниже $500\,\mathrm{cm}^{-1}$ соответствует валентным колебаниям связей W-F и деформационным модам ионов WO₃F₃³⁻. Здесь также наблюдается хорошее согласие экспериментальных данных с расчетом [10] для C_{3v} -варианта, так что можно заключить, что ионы WO₃F₃³⁻ в исследуемом кристалле находятся преимущественно в cis-конфигурации, но при наличии внутрисферной динамики.

2.2. Температурная трансформация спектра. Полученные спектры сравнительно мало изменяются при охлаждении образца вплоть до 200 К (за исключением незначительного закономерного уменьшения ширины линий). Ниже 200 К (в точке фазового перехода, ранее наблюдавшегося при исследованиях рентгеновской дифракции и теплоемкости [6]) спектр существенно модифицируется.


В областях валентных и деформационных внутренних колебаний ионов аммония наблюдается значительный рост интенсивности рассеяния (рис. 5), на месте одиночных линий формируются сложные структурированные


Рис. 3. Разделение полосы 775—850 сm $^{-1}$ при $T=232\,\mathrm{K}$ на три (a) и две (b) компоненты. В верхней части рисунков показаны экспериментальные спектры (жирная линия) и сумма составляющих компонент (штрих). Параметры компонент (положение/полуширина в обратных сантиметрах), показанных в нижней части рисунков, равны для трех пиков: 784.73/16.74-814.05/22.69-845.59/12.80; для двух пиков: 792.09/21.62-834.57/22.70.


Рис. 4. Увеличенный участок спектра в области $880\,\mathrm{cm}^{-1}$. Стрелкой показано расчетное положение валентного W-O-колебания *trans*-конфигурации WO₃F₃-иона.

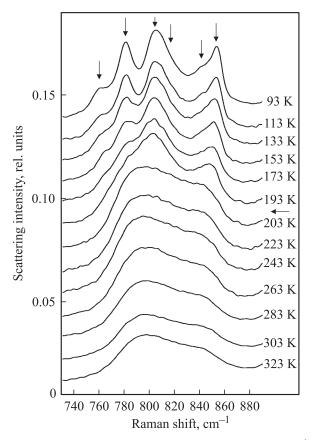

Рис. 5. Трансформация спектров внутренних деформационных (a) и валентных (b) колебаний ионов аммония при охлаждении. Стрелками показана температура фазового перехода.

Рис. 6. Трансформация линии $917\,\mathrm{cm}^{-1}$ при фазовом переходе.

Рис. 7. Температурные зависимости частоты (a) и полуширины (b) линии $917\,\mathrm{cm}^{-1}$.

Рис. 8. Трансформация спектра в области 775-850 cm⁻¹ с температурой. Вертикальными стрелками показаны положения линий ниже фазового перехода.

полосы. При дальнейшем охлаждении вплоть до 90 К рост интенсивности продолжается, линии остаются широкими (характерные полуширины более 100 cm⁻¹).

Область валентных колебаний W-О-связей также значительно модифицируется. Наиболее интенсивная линия $917 \, \mathrm{cm}^{-1}$ резко сужается и расщепляется на две (рис. 6). На рис. 7 показаны зависимости частот и полуширин образующегося дублета — ясно видно аномальное поведение затухания этих линий при фазовом переходе. В то же время величина затухания вдали от перехода остается практически постоянной (в отличие, например, от поведения ширин внутренних колебаний упорядоченного эльпасолита Rb₂KScF₆ [11]), что свидетельствует о том, что в данном случае время жизни этих фононов определяется главным образом не фонон-фононным взаимодействием, а их взаимодействием с неупорядоченной решеткой.

изменения происходят и с $775-850\,\mathrm{cm^{-1}}$ (рис. 8). Уже на $1-2\,\mathrm{K}$ ниже перехода образующие ее линии заметно сужаются, и становится хорошо видно, что эта полоса действительно состоит из трех линий. При дальнейшем охлаждении каждая из них расщепляется на дублет, компоненты которых продолжают раздвигаться по частоте (рис. 9) и незначительно сужаться.

Аналогичные, хотя и не столь ярко выраженные изменения происходят и в низкочастотной части спектра (рис. 10).

Подобные изменения спектра, очевидно, связаны с процессами ориентационного упорядочения молекулярных ионов при фазовом переходе — как уже упоминалось выше, в кубической фазе и ионы аммония, и ионы $WO_3F_3^{3-}$ ориентационно разупорядочены. Рез-

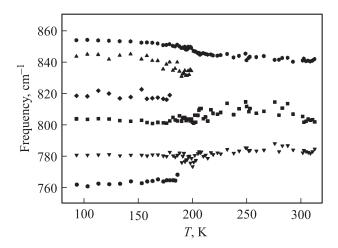


Рис. 9. Температурные зависимости частот линий в области $775 - 850 \,\mathrm{cm}^{-1}$.

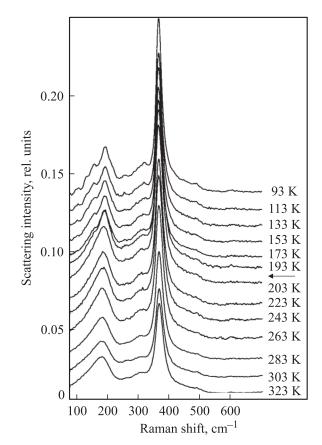


Рис. 10. Трансформация спектра в области низких частот с температурой.

кое уменьшение ширин внутренних колебаний W—O свидетельствует о том, что ниже перехода происходит ориентационное упорядочение анионов. В то же время катионы аммония остаются ориентационно неупорядоченными — и с этим связаны сохраняющиеся большие ширины линий их внутренних колебаний. Усилившееся взаимодействие этих катионов с упорядоченной анионной подрешеткой приводит к их заметному искажению (вполне вероятно возникновение водородных связей между протонами аммония, с одной стороны, и кислородом упорядоченной анионной подрешетки, с другой), с чем и связано усложнение высокочастотной части спектра и увеличение его интенсивности.

3. Выводы

Впервые получен и проанализирован полный спектр комбинационного рассеяния кристалла $(NH_4)_3WO_3F_3$ в температурном интервале $93-323~\rm K$, идентифицированы линии внутренних валентных и деформационных колебаний ионов аммония и колебания связей W-O-анионов $WO_3F_3^{3-}$.

Сравнение спектров валентных колебаний анионов $WO_3F_3^{3-}$ с результатами квантово-химических расчетов подтверждает, что данные катионы в структуре исследуемого кристалла присутствуют главным образом в cis-конфигурации.

Все молекулярные ионы в кубической фазе кристалла ориентационно разупорядочены, что подтверждается большими ширинами соответствующих линий и слабой зависимостью их ширин от температуры вдали от фазового перехода.

При охлаждении кристалла ниже точки фазового перехода (200 K) происходит ориентационное упорядочение анионной подрешетки, что проявляется в резком сужении линий, соответствующих колебаниям связей W—О. Усиление вазимодействия ионов аммония с упорядочивающейся анионной подрешеткой приводит к их искажению, что проявляется в расщеплении линий, соответствующих их внутренним колебаниям и росту их интенсивности, однако они остаются ориентационно неупорядоченными.

Список литературы

- [1] I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Cousi. Mater. Sci. Eng. R 24, 3, 81 (1998).
- [2] G. von Pausewang, W. Rüdorff. Z. Anorg. Allgem. Chem. **364**, *1*–2, 69 (1969).
- [3] K. von Dehnicke, G. Pausewang, W. Rüdorff. Z. Anorg. Allgem. Chem. **366**, *1*–2, 64 (1969).
- [4] M. Couzi, V. Rodriguez, J.-P. Chaminade, M. Fouad, J. Ravez. Ferroelectrics 80, 109 (1988).
- [5] И.Н. Флеров, М.В. Горев, С.В. Мельникова, С.В. Мисюль, В.Н. Воронов, К.С. Александров. ФТТ 34, 7, 2185 (1992).
- [6] И.Н. Флеров, М.В. Горев, В.Д. Фокина, А.Ф. Бовина, Н.М. Лапташ. ФТТ 46, 5, 888 (2004).

- [7] К. Накамото. ИК спектры и спектры КР неорганических и координационных соединений. Мир, М. (1991). 536 с. [K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds. A Wiley Interscience Publication. John Wiley and Sons, N.Y. etc. (1986). 484 р.].
- [8] W.J. Stevens, H. Basch, M. Krauss, P. Jasien, Can. J. Chem. 70, 3, 612 (1992).
- [9] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert. J. Comput. Chem. 14, 5, 1347 (1993).
- [10] N.M. Laptash, L.A. Sheludyakova, T.V. Basova, E.I. Voit. 14th European Symp. on Fluorine Chemistry. Book of Abstracts. Poznan, Poland. (2004). P. 328. Accepted for publication in J. Fluorine Chem. (2005).
- [11] С.Н. Крылова, А.Н. Втюрин, А. Белю, А.С. Крылов, Н.Г. Замкова. ФТТ 46, 7, 1271 (2004).