01;07

Линза Люнеберга из кубиков. Геометрооптический расчет

© А.В. Голубятников, Б.З. Каценеленбаум

Институт радиотехники и электроники РАН, Москва Московский государственный технический университет им. Н.Э. Баумана

Поступило в Редакцию 30 января 1998 г.

Рассмотрен эффект фокусировки сферической линзой Люнеберга, составленной из дискретных диэлектрических кубиков с различными диэлектрическими проницаемостями. В результате геометрооптического расчета определяется степень фокусировки лучей линзой, состоящей из 2600 кубиков. Показано, что при этом степень фокусировки еще значительно хуже, чем при нерерывном распределении ε .

1. Линза Люнеберга представляет собой неоднородую диэлектрическую сферу, в которой диэлектрическая проницаемость ε есть функция расстояния R от центра, $\varepsilon = 2 - R^2/d^2$ (a — радиус сферы). В геометрооптическом приближении при падении на нее пучка параллельных лучей все они соберутся в одной точке — фокусе. Ниже рассматривается линза с дискретным распределением ε ; она состоит из однородных кубиков, в каждом из которых ε имеет то значение, которое должно быть в центре кубика. Грани кубиков образуют три системы параллельных плоскостей. На линзу падает параллельный пучок лучей с одинаковыми амплитудами и фазами. Прослеживается путь каждого луча до фокальной плоскости и определяются три числа: расстояние до фокуса, фаза и амплитуда. В приведенных расчетах число лучей M было порядка 10³ и рассматривалось падение пучка под \approx 10 направлениями.

Сторона кубика равна единице. Координаты x, y, z — центра каждого кубика — целые числа l, m, n. Значение ε кубика номер (l, m, n) равно $\varepsilon_{l,m,n} = 2 - \frac{1}{p^2}(l^2 + m^2 + n^2)$, если $l^2 + m^2 + n^2 \leq p^2$; $\varepsilon_{l,m,n} = 1$, если $l^2 + m^2 + n^2 \leq p^2$; $\varepsilon_{l,m,n} = 1$, если $l^2 + m^2 + n^2 > p^2$. Здесь p = a - 1/2. Было принято 2a = 17, линза содержала ≈ 2600 кубиков.

Направление пучка задается тремя неположительными числами α_0 , β_0 , γ_0 ($\alpha_0^2 + \beta_0^2 + \gamma_0^2 = 1$) — косинусами углов с осями x, y, z. Угол μ с осью z — наименьший, $|\gamma_0| \ge |\gamma_0|$, $|\gamma_0| \ge |\beta_0|$, $\gamma_0 = \cos \mu$. Почти

69

всюду принималось, что $\alpha_0 = \beta_0$, и это ограничение не оказало влияния на результат. Угол μ менялся от $\mu = 0^\circ$ ($|\gamma_0 = 1|$) до $\mu = 55^\circ$ ($|\gamma_{\gamma_0}| = 1/\sqrt{3}$). На входной плоскости $\alpha_0 x + \beta_0 y + \gamma_0 z + a = 0$ *N*-й ($N \leq M$) луч имеет координаты x_0^N , y_0^N , z_0^N . Надо найти его параметры на фокальной плоскости $\alpha_0 x + \beta_0 y + \gamma_0 z - a = 0$. Чтобы луч попал на линзу, должно быть $(x_0^N)^2 + (y_0^N)^2 + (z_0^N)^2 \leq 2 \cdot a^2$. На плоскости x, y проекции этих точек должны образовывать квадратную сетку со стороной $d/\sqrt{|\gamma_0|}$, где d — сторона квадратной сетки, образуемой лучами на входной плоскости. Было принято d = 1/2, на каждой кубик падает 4 луча.

2. Итерационный процесс последовательного определения точек пересечения луча номера N с гранями кубиков производится по следующей схеме: находится номер кубика, в котором лежит точка x_0, y_0, z_0 (индекс N опускаем), т.е. такие целые числа l, m, n, что $l - 1/2 < x_0 < l + 1/2$; $m-1/2 < y_0 < m+1/2; n-1/2 < z_0 < n+1/2.$ Уравнение луча до следующего преломления имеет вид $x = x_0 + \alpha_0 t$; $y = y_0 + \beta_0 t$; $z = z_0 + \gamma_0 t$, где $t \ge 0$. Находятся корни шести уравнений (граней кубов) x = l - 1/2; x = l + 1/2; y = m - 1/2; y = m + 1/2; z = n - 1/2; z = n + 1/2, независимо решаемых совместно с уравнением луча. Наименьший положительный корень t этих уравнений дает координату следующей точки, а это значение t, умноженное на $\sqrt{\varepsilon}$ данного кубика, — оптический путь луча в нем. Направляющие косинусы $\alpha_1, \beta_1, \gamma_1$ в следующем кубике находятся из трех уравнений. Одно из них очевидно: $\alpha_1^2 + \beta_1^2 + \gamma_1^2 = 1$. Два других зависят от того, на какой грани произошло преломление и в каком кубике оказался луч. Если, например, упомянутое значение t соответствует первому из шести уравнений, то новый кубик имеет номер l - 1, m, n, а нормаль к границе имеет направляющие косинусы (1,0,0). Тогда второе уравнение есть $\gamma_1eta_0-eta_1\gamma_0=0,$ а третье $\sinarphi_1=\sinarphi_0\sqrt{rac{arepsilon_{l,m,n}}{arepsilon_{l-1,m,m}}},$ где углы $arphi_1$ и $arphi_0$ определяются (в нашем примере) тем, что $\cos \varphi_0 = \alpha_0, \ \alpha_1 = \cos \varphi_1.$ Если угол φ_0 столь велик, что получается ($|\sin \varphi_1| > 1$), т.е. происходит полное внутреннее отражение, то на этом этапе итерационного процесса два угла сохраняются, а косинус третьего меняет знак.

Все получаемые координаты точек преломления последовательно подставляются в левую часть уравнения фокальной плоскости. Когда результат впервые станет положительным, надо вернуться к предыдущей точке и решить уравнение луча с уравнением фокальной плоскости (а не с уравнениями граней кубов). Так получится координата луча на фо-

Письма в ЖТФ, 1998, том 24, № 15

71

кальной плоскости. Сумма всех оптических путей (включая последний отрезок) дает оптический путь луча.

В проделанных расчетах поляризация луча не прослеживалась, а квадрат амплитуды прошедшего луча умножался на полусумму квадратов коэффициентов Френеля для обеих поляризаций. Квадрат амплитуды на фокальной плоскости есть произведение этих множителей во всех итерациях. При скользящем падении в преломленный луч может уходить меньше энергии, чем в отраженный. В одном из вариантов программы в этом случае прослеживается далее путь отраженного луча.

Некоторые лучи покидают линзу в направлении, почти параллельном фокальной плоскости; их движение вне линзы описывается как многочисленные итерации. Наименьшее число итераций равно, разумеется, 2, *а*. Программа отбрасывала луч, за 6*а* итераций не достигший фокальной плоскости.

3. Если $\mu = 0$ (пучок нормален двум граням кубиков), то лучи не испытывают преломлений, фокусировки нет, распределение лучей на фокальной плоскости повторяет их распределение на входной плоскости. При малых μ (т.е. при $1 - |\gamma_0| \ll 1$) отличие дискретной линзы от непрерывной хотя и не столь велико, но фокусировка значительно ослаблена; то же будет при $1 - |\alpha_0| \ll 1$, $1 - |\beta_0| \ll 1$. Однако при случайном направлении пучка вероятность малости угла между пучком и ребрами будет порядка $\frac{3}{2}\mu^2$, и даже при $\mu \approx 1/10$ таких "плохих" направлений будет только примерно 6%.

Письма в ЖТФ, 1998, том 24, № 15

Тем не менее расчет показал, что при том "грубом" разбиении, которое рассматривалось (2a = 17), дискретность все же приводит к значительному ослаблению фокусировки. Приведем некоторые из полученных результатов.

Одной их характеристик фокусирующего действия линзы из кубиков является среднее — по всем лучам, пересекшим фокальную плоскость — расстояние \bar{r} от фокуса до точки пересечения. Для непрерывной линзы было бы $\bar{r} = 0$ (геометрооптический расчет). При $\mu = 0$, т. е. при отсутствии преломления, r = 2a/3, что при a = 8.5 дает r = 5.7. На рисунке представлено \bar{r} как функция μ для двух вариантов программы: I — когда при скользящем падении прослеживается далее путь того луча, преломленного или отраженного, который уносит больше энергии; 2 — всегда (кроме случаев полного внутреннего отражения) прослеживается путь преломленного луча. Вариант I точнее передает процесс прохождения луча. Значение \bar{r} при не очень малых μ имеет порядок $1 \div 2$. Эту величину надо сравнить с дифракционным радиусом фокального пятна, имеющим порядок λ [1].

Качество фокусировки характеризуется также распределением энергии на фокальной плоскости. Например, если пучок образует равные углы (= 55°) со всеми тремя осями, то в кольце на фокальной плоскости между радиусами r = 1 и r = 2 оказывается 0.24 часть всей энергии, доходящей до этой плоскости.

Другой характеристикой является дисперсия длины оптических путей; для непрерывной линзы она равна нулю. Для лучей, расстояние которых от фокуса меньше 1, эта дисперсия равна ≈ 0.5 ; при расстоянии от фокуса, меньше a/2, дисперсия равна ≈ 1 .

Эти примеры (и более подробные данные, которые здесь не приводятся) показывают, что при числе кубиков $\approx 2 \div 3$ тысяч линза фокусирует еще значительно хуже, чем при непрерывном распределении ε . При такой дискретизации скачок ε на гранях имеет порядок $\Delta \varepsilon = 0.1$, что по-видимому, слишком велико.

Заметим, что число лучей M пропорционально a^2 , число итераций для каждого луча пропорционально a, так что число операций в описанном методе растет как a^3 , т.е. $(\Delta \varepsilon)^{-3}$.

Список литературы

[1] Голубятников А.В., Каценеленбаум Б.З. // Радиотехника и электроника. 1997. Т. 42. № 12.

Письма в ЖТФ, 1998, том 24, № 15