Магнитосопротивление углеродных наноматериалов

© С.В. Демишев, А.А. Пронин

Институт общей физики им. А.М. Прохорова Российской академии наук, 119991 Москва, Россия

E-mail: apronin@hotmail.com

(Поступила в Редакцию 23 августа 2005 г.)

Для различных углеродных материалов, свойства которых определяются неоднородностями нанометрового размера, выполнен анализ опубликованных экспериментальных данных по магнитосопротивлению в области прыжковой проводимости моттовского типа. Рассмотрена применимость механизма сжатия локализованного состояния в магнитном поле и спин-поляризационного механизма, учитывающего зависящий от спина вклад от прыжков по двукратно-занятым электронным состояниям. Для случая спин-поляризационного механизма предложена простая аналитическая модель, в рамках которой получено выражение для магнитосопротивления в слабом магнитном поле. Найдено, что только совместное влияние спин-поляризационного механизма и эффекта сжатия волновой функции позволяют адекватно описать магнитосопротивление углеродных наноматериалов. Рассматриваются возможные направления поиска объектов с большой величиной магнитосопротивления среди материалов данного класса.

Работа выполнена в рамках проекта 2.8 Программы фундаментальных исследований президиума РАН "Влияние атомно-кристаллической и электронной структуры на свойства конденсированных сред". Ряд аспектов исследования выполнен при поддержке проекта PD02-1.2-336 Министерства образования РФ и гранта МК-2188.2003.02 Президента РФ.

PACS: 75.47.Pq, 72.20.Ee

1. Введение

За последние годы было синтезировано значительное число углеродных материалов, физические свойства которых определяются естественными или искусственно приготовленными неоднородностями, имеющими характерные размеры 1–100 пт. В частности, к таким углеродным наноматериалам (УНМ) можно отнести углеродные аэрогели и активированные углеродные волокна [1], случайные углеродные сетки, состоящие из нанотрубок [2], квазипериодические углеродные сетки, полученные путем самоорганизации при синтезе [3], а также материалы на основе карбинов [4–6]. Характерной чертой рассматриваемых УНМ является низкотемпературная прыжковая проводимость, для которой удельное сопротивление на постоянном токе описывается законом Мотта

$$\rho(T) = \rho_0 \exp[(T_0/T)^{\alpha}],\tag{1}$$

с показателем степени α , принимающим значения из интервала $1/4 \leq \alpha \leq 1/2$ [1–6]. Интересно, что в прыжковой области у систем, исследованных в [1–6], наблюдался значительный положительный вклад в магнитосопротивление (ПМС) вида $\ln[\rho(H)/\rho(0)] \sim H^2 f(T)$, который принято связывать с эффектом сжатия волновой функции локализованного состояния в магнитном поле [7,8]. В частности, такая интерпретация ПМС была предложена в [1,3,5].

Необходимо отметить, что в отличие от большинства неупорядоченных материалов с прыжковой проводимостью [9–10] у УНМ отрицательное магнитосопротивление (ОМС) в слабых магнитных полях, как правило, не

наблюдается [1–6]. Единственным известным исключением являются результаты, полученные в [2], однако в этом случае ОМС было связано с наличием в образцах углеродных сеток примеси никеля [2]. В тех случаях, когда УНМ не содержали магнитных примесей, эффект ОМС отсутствовал и в прыжковой области наблюдалось только ПМС [1,3,5,6].

Поскольку ОМС в немагнитных материалах, в том числе с прыжковой проводимостью, принято объяснять эффектами квантовой интерференции [8], анализируя экспериментальные данные [1,3,5,6], можно заключить, что у УНМ интерференционный вклад в магнитосопротивление пренебрежимо мал. В результате УНМ, на первый взгляд, представляются "идеальным" объектом, в котором для описания ПМС в прыжковой области достаточно учесть только механизм сжатия волновой функции. Известно [10], что в такой ситуации совместный анализ данных по температурной зависимости удельного сопротивления и полевой зависимости магнитосопротивления позволяет найти плотность локализованных состояний на уровне Ферми $g(E_F)$ и радиус локализации а. Оказалось, однако, что применение подхода [10] в случае карбинов дает значения радиуса локализации при гелиевых температурах $a \sim 10\,\mathrm{nm}$, существенно превышающие все характерные размеры структурных неоднородностей, составляющие в данном случае около 1 nm [5]. Более того, подробные измерения температурных зависимостей магнитосопротивления карбинов показали, что анализ экспериментальных данных в модели сжатия волновой функции [7,8] приводит к сильной температурной зависимости радиуса локализации, не имеющей физического смысла [6].

В настоящей работе показано, что аналогичная ситуация возникает не только для карбинов, но и для других УНМ, и тем самым носит общий характер. В результате модель ПМС, учитывающая только вклад от механизма сжатия волновой функции, оказывается неприменимой, и для адекватного описания ПМС у УНМ необходимо учесть спин-поляризационный вклад, описывающий прыжки не только на свободные, но и на заполненные локализованные состояния.

Настоящая работа организована следующим образом. В разделе 2 проанализированы имеющиеся литературные данные по магнитосопротивлению УНМ и обоснована неадекватность модели сжатия волновой функции в магнитном поле. Далее в разделе 3 рассматриваются известные из литературы подходы к описанию спин-поляризационного вклада в магнитосопротивление [11,12] и формулируется простая модель ПМС, непосредственно применимая к описанию экспериментальных данных для УНМ. В заключение теоретическая модель сравнивается с экспериментальными данными и предлагается новая схема анализа магнитосопротивления УНМ в области прыжковой проводимости моттовского типа.

2. Магнитосопротивление углеродных наноматериалов

В настоящее время известно значительное число работ, в которых сообщалось о прыжковой проводимости различных углеродных наноматериалов. Однако лишь в ограниченном числе работ приводились не только данные проводимости, но и подробно исследовались температурные зависимости магнитосопротивления. Поэтому в нашем анализе мы оказываемся ограниченными результатами, опубликованными в [1-3,5,6]. Поскольку в работе [2] ПМС в прыжковой области наблюдалось на фоне ОМС, необходима процедура разделения вкладов, которая в общем случае будет зависеть от используемой модели. Поскольку природа ПМС у углеродных наноматериалов носит дискуссионный характер, исключим результаты [2] из подробного количественного рассмотрения и ограничимся в данном случае лишь качественным обсуждением.

Экспериментальные данные по температурным зависимостям удельного сопротивления и полевым зависимостям магнитосопротивления для различных УНМ представлены на рис. 1–5. Видно, что для разных значений показателя степени α , принимающего значения $\alpha=1/2$ (рис. 1, a и 2, a), $\alpha=1/3$ (рис. 3, a и 4, a), $\alpha=1/4$ (рис. 5, a), точность экспериментальных данных $\rho(T)$ и диапазон изменения температуры оказываются достаточными для надежного определения величины α (более подробно обсуждение этого вопроса представлено в работе [6]).

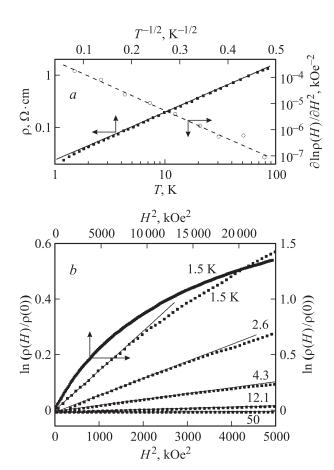


Рис. 1. Температурные зависимости удельного сопротивления и производной $\partial \ln \rho(H)/\partial H^2$ в слабом магнитном поле (a) и полевые зависимости магнитосопротивления при различных температурах (b) для образца активированного углеродного волокна с $\alpha=1/2$ (по работе [1]). Цифры у кривых на части b соответствуют температуре в K.

В теории прыжковой проводимости [7,13] показатель степени α определяется известным выражением

$$\alpha = \frac{n+1}{1+d+n},\tag{2}$$

где $d\geq 2$ — размерность пространства, а n — индекс, задающий энергетическую зависимость плотности состояний в окрестности кулоновской щели $g(E_F)\sim |E-E_F|^n$. Поскольку в модели кулоновской щели n=d-1 [7] и $\alpha=1/2$ независимо от размерности пространства, согласно (2), наблюдаемые значения $\alpha=1/3$ и $\alpha=1/4$ однозначно соответствуют d=2 и d=3, причем в обоих случаях n=0. Отметим, что представление о двумерном (рис. 3,4) и трехмерном характере прыжков (рис. 5) полностью согласуется с данными о морфологии образцов, исследованных в [3–6]. В этих случаях кулоновские корреляции, очевидно, оказываются несущественными.

Объяснение значений $\alpha=1/2$ (рис. 1, 2) оказывается более сложным. В этом случае возможно как образование кулоновской щели в двумерной или трехмерной системе [7], так и возникновение режима квазиодномер-

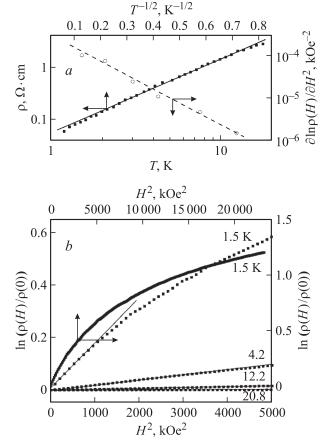


Рис. 2. Температурные зависимости удельного сопротивления и производной $\partial \ln \rho(H)/\partial H^2$ в слабом магнитном поле (a) и полевые зависимости магнитосопротивления при различных температурах (b) для образца углеродного аэрогеля с $\alpha=1/2$ (по работе [1]). Цифры у кривых на части b соответствуют температуре в K.

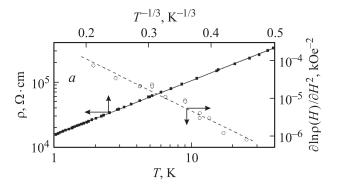
ных прыжков. В работе [4] было показано, что в последнем случае $\alpha=1/(d+1)$ и для d=1 и $g(E_F)=$ const будет наблюдаться $\alpha=1/2$. Дальнейшее теоретическое рассмотрение в разделах 3 и 4 будет проводиться в предположении о том, что у рассматриваемых УНМ кулоновскими корреляциями можно пренебречь и $g(E_F)=$ const, а изменение показателя степени прыжковой проводимости отражает изменение эффективной размерности прыжков. При этом основной упор будет делаться на экспериментальные данные, полученные для случаев $\alpha=1/3$ и $\alpha=1/4$ (d=2 и d=3), а случай $\alpha=1/2$ будет рассматриваться в качестве иллюстративного, поскольку его интерпретация не является однозначной.

Интересно, что несмотря на существенное различие в значениях показателя степени α и, следовательно, в характере прыжков, магнитосопротивление у всех рассматриваемых УНМ носит качественно однотипный характер (рис. 1-5,b). В слабых магнитных полях наблюдается квадратичное ПМС вида $\ln[\rho(H)/\rho(0)] \sim H^2$, амплитуда которого возрастает при понижении температуры.

На первый взгляд, такой универсальный характер ПМС полностью соответствует механизму сжатия волновой функции локализованного состояния магнитным полем. Действительно, согласно [7,8], рассмотрение магнитокулоновской задачи в слабом магнитном поле приводит к появлению поправки к сопротивлениям Z_{ij} , составляющим сетку сопротивлений Миллера—Абрахамса, вида $Z_{ij}\sim \exp[\xi_{ij}+\Delta\xi_{ij}(H)]$, где $\Delta\xi_{ij}(H)\sim aR_{ij}^3/l_H^4$. В последней формуле $R_{ij}\sim a(T_0/T)^\alpha$ — характерная длина прыжка, а $l_H=\sqrt{\frac{\hbar c}{eH}}$ — магнитная длина. В результате ПМС для механизма сжатия волновой функции дается выражением [7,8]

$$\ln \frac{\rho(H)}{\rho(0)} = t_d \frac{e^2 a^4 H^2}{c^2 \hbar^2} \left(\frac{T_0}{T}\right)^{3\alpha},\tag{3}$$

в котором численный коэффициент t_d зависит от размерности пространства и составляет $t_3=5/2016$ [7] и $t_2=1/360$ [8]. Учитывая, что коэффициенты $t_2\sim 2.8\,10^{-3}$ и $t_3\sim 2.5\cdot 10^{-3}$ близки, можно надеяться, что выражение (3) может быть использовано для оценок и в квазиодномерном случае (более подробно



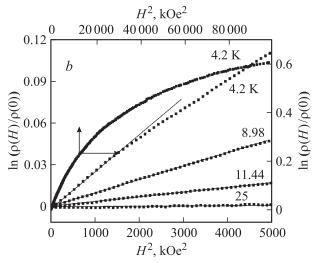


Рис. 3. Температурные зависимости удельного сопротивления и производной $\partial \ln \rho(H)/\partial H^2$ в слабом магнитном поле (a) и полевые зависимости магнитосопротивления при различных температурах (b) для образца квазипериодической углеродной сетки с $\alpha=1/3$ (по работе [3]). Цифры у кривых на части b соответствуют температуре в K.

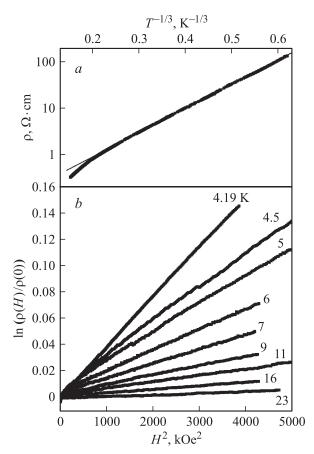


Рис. 4. Температурные зависимости удельного сопротивления и производной $\partial \ln \rho(H)/\partial H^2$ в слабом магнитном поле (a) и полевые зависимости магнитосопротивления при различных температурах (b) для образца карбина с $\alpha=1/3$ (по работам [5,6]). Цифры у кривых на части b соответствуют температуре в K.

применимость такого подхода к квазиодномерным прыжкам обсуждается в [6]).

Как видно из формулы (3), магнитосопротивление в модели сжатия волновой функции возрастает при понижении температуры, однако температурная зависимость ПМС полностью определяется температурной зависимостью проводимости (формула (1)) и не содержит никаких свободных параметров. Поскольку величины T_0 и α известны из зависимости $\rho(T,H=0)$, данные рис. 1-5 позволяют из наклона линейных в координатах $\ln[\rho(H)/\rho(0)] = f(H^2)$ участков рассчитать значение радиуса локализации для каждой из температур, при которых измерялись полевые зависимости магнитосопротивления. Кроме того, при проведении расчетов мы использовали значения производной $\partial \ln \rho(H)/\partial H^2 = f(T)$, приведенные в работах [1,3] (рис. 1-3,a).

Результат обработки данных в модели сжатия волновой функции показан на рис. 6, a. Видно, что применение формулы (3) приводит к существенной температурной зависимости радиуса локализации a = f(T),

причем в случаях $\alpha=1/3$ и $\alpha=1/4$ (двумерные и трехмерные прыжки) a(T) в диапазоне 2-20 К меняется в 1.5-2 раза.

Очевидно, что в стандартной теории прыжковой проводимости радиус локализации представляет собой температурно-независимую характеристику локализованного состояния. Тем не менее предположим, что в силу каких-то не учитываемых нами коллективных эффектов у УНМ радиус локализации оказывается функцией температуры, т.е. данные рис. 6, а отражают не температурную зависимость подгоночного параметра модели, а реальную физическую ситуацию. Поскольку параметр $T_0 \sim (g(E_F)a^d)^{-1}$ в формуле (1) зависит от радиуса локализации, в случае a = f(T) возникнет изменение температурной асимптотики удельного сопротивления. Потребуем, чтобы при $T = 4.2 \, \text{K}$ наблюдаемое в эксперименте и модельное (с учетом a(T)) значения $\rho(T)$ совпали, и оценим, насколько сильно учет температурной зависимости радиуса локализации исказит форму температурной зависимости удельного сопротивления. Для примера возьмем экспериментальные данные для образца с $\alpha = 1/3$, показанные на рис. 4. Из рис. 6, b

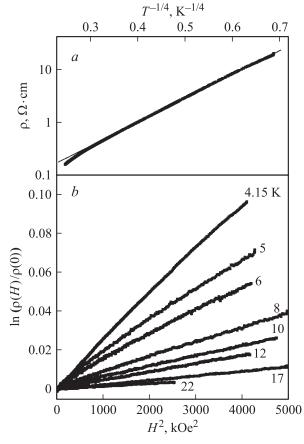


Рис. 5. Температурные зависимости удельного сопротивления и производной $\partial \ln \rho(H)/\partial H^2$ в слабом магнитном поле (a) и полевые зависимости магнитосопротивления при различных температурах (b) для образца карбина с $\alpha=1/4$ (по работам [5,6]). Цифры у кривых на части b соответствуют температуре в K.

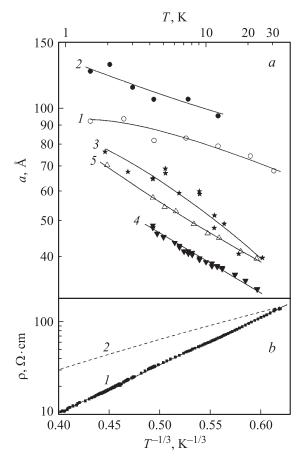


Рис. 6. a — температурные зависимости радиуса локализации, возникающие при обработке экспериментальных данных в модели сжатия волновой функции локализованного состояния в магнитном поле. I — активированное углеродное волокно с $\alpha=1/2$ [1], 2 — углеродный аэрогель с $\alpha=1/2$ [1], 3 — квазипериодическая углеродная сетка с $\alpha=1/3$ [3], 4 — карбин с $\alpha=1/3$ [5,6], 5 — карбин с $\alpha=1/4$ [5,6]. b — наблюдаемая (a0) и расчетная (a2) зависимости удельного сопротивления для образца карбина с a3 [5,6] (кривая a4 на части a6) при учете температурной зависимости радиуса локализации.

видно, как должна была бы выглядеть кривая $\rho(T)$ в том случае, когда имеет место температурная зависимость радиуса локализации, "следующая" из данных магнитосопротивления (рис. 6,a). Хорошо видно, что экспериментальные данные (кривая I на рис. 6,b) и модельный расчет (кривая 2 на рис. 6,b) существенно различаются во всем диапазоне температур, в котором наблюдается прыжковая проводимость, причем это расхождение нельзя связать с ошибкой эксперимента.

Таким образом, можно заключить, что температурнозависимый радиус локализации не позволяет согласованным образом описать температурную зависимость удельного сопротивления при H=0 и магнитосопротивления. В результате применение формулы (3) для количественного описания экспериментальных данных оказывается невозможным и учета одного лишь механизма сжатия волновой функции явно недостаточно для объяснения природы ПМС у углеродных наноматериалов.

Отметим, что в более сильных магнитных полях квадратичная асимптотика ПМС нарушается и имеет место тенденция к насыщению магнитосопротивления как для случая $\alpha=1/2$ (рис. 1,b и 2,b), так и для случая $\alpha=1/3$ (рис. 3,b). Эти результаты трудно объяснить в рамках модели сжатия волновой функции, для которой характерно не насыщение ПМС, а переход к асимптотике сильного поля вида $\ln \rho(H) \sim H^{1/3}T$ [7].

3. Спин-поляризационный механизм магнитосопротивления

3.1. Общая формулировка модели и решение при H=0. Анализ магнитосопротивления УНМ, выполненный в предыдущем разделе, показывает, что для описания эксперимента необходим подход, альтернативный модели сжатия волновой функции в магнитном поле [7,8]. В этом качестве, как правило, рассматриваются модели, учитывающие прыжки не только по свободным, но и по занятым локализованным состояниям [11-13]. Следуя [11], рассмотрим только внутрицентровые корреляции, а дальнодействующими кулоновскими эффектами пренебрежем (как показано выше, такое предположение в случае УНМ представляется достаточно разумным). Пусть D^0 обозначает однократно занятые или свободные состояния, а D^- двукратно занятые. Состояния D^- должны в среднем лежать выше по энергии на величину нацентрового отталкивания U. Однако из-за дисперсии межцентровых расстояний энергетические состояния D^0 и D^- будут

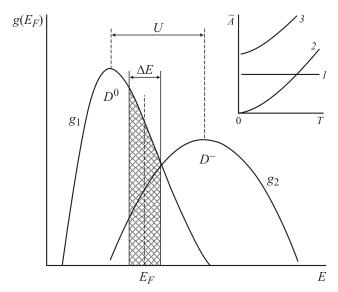


Рис. 7. Предполагаемая структура плотности состояний в модели спин-поляризационного механизма магнитосопротивления. На вставке показаны возможные температурные зависимости параметра \tilde{A} (см. текст).

уширяться и перекрываться. Поэтому в актуальной с точки зрения прыжкового переноса окрестности уровня Ферми ΔE окажутся как D^0 -, так и D^- -состояния. Вписанная выше ситуация схематически представлена на рис. 7.

Таким образом, для данной модели в сетку сопротивлений Миллера—Абрахамса будут входить сопротивления, отвечающие туннельным переходам двух типов. В первый тип входят процессы туннелирования только между D^0 -состояниями, а во второй — переходы вида $D^- \to D^-$, $D^0 \to D^-$ и $D^- \to D^0$. Все прыжки второго типа происходят с участием двукратно занятого центра, на котором спины электронов должны быть ориентированы противоположно. Приложение внешнего магнитного поля поляризует спиновые состояния, в результате чего доля переходов второго типа будет уменьшаться, а соответствующие им сопротивления исключаться из сетки сопротивлений Миллера—Абрахамса. В результате поляризация спинов электронов в магнитном поле приведет к появлению магнитосопротивления.

До проведения расчетов нельзя утверждать, что такой спин-поляризационный механизм будет непременно приводить к ПМС. Однако, учитывая, что радиус локализации D^- -состояний, как правило, существенно больше радиуса локализации D^0 -состояний [13], можно предположить, что поляризация спинов будет исключать туннельные переходы с большей вероятностью и, следовательно, наиболее низкоомные элементы из сетки сопротивлений Миллера-Абрахамса. Поэтому принято считать [11,12], что для данного механизма магнитосопротивления должно быть характерно именно ПМС. Кроме того, в пределе $H \to \infty$ все спины электронов будут ориентированы одинаково и прыжки второго типа будут полностью блокированы. В результате, в сильных магнитных полях полевая зависимость магнитосопротивления должна насыщаться.

Отметим, что количественное решение задачи о влиянии нацентровых корреляций на прыжковую проводимость является весьма сложным даже в случае нулевого магнитного поля [13]. Существующие расчеты при $H \neq 0$ используют различные упрощающие предположения относительно параметров, описывающих D^0 и D^- -состояния. Например, в пионерской работе [11] считалось, что все локализованные состояния описываются единой плотностью состояний $g(E_F)$, а радиусы локализации для D^0 - и D^- -состояний удовлетворяют условию $a_2 > a_1$ (здесь и далее индексы 1 и 2 обозначают параметры состояний D^0 и D^- соответственно). В такой модели для d=3 возникает ПМС, причем удается найти аналитическое выражение для сопротивления насыщения в пределе $H \to \infty$. Однако для асимптотик слабого поля в данной модели никаких аналитических выражений получить не удается, и в результате, сопоставление расчета [11] с экспериментом оказывается крайне затруднительным.

В работе [12] спин-поляризационный механизм магнитосопротивления исследовался в предположении, что

оба состояния D^0 и D^- характеризуются одним и тем же радиусом локализации $a_1=a_2=a$, в то время как плотности состояний различны $g_1\neq g_2$. В этом приближении для d=2,3 были получены ПМС насыщения и асимптотика слабого поля вида $\ln[\rho(H)/\rho(0)]\sim H/T$ [12]. Необходимо отметить, что до сих пор не найдены экспериментальные системы с прыжковой проводимостью, в которых в пределе $H\to 0$ наблюдалось бы линейное по полю ПМС. В частности, в рассматриваемых УНМ в слабом магнитном поле $\ln[\rho(H)/\rho(0)]\sim H^2$ (рис. 1–5). Поэтому расчет [12] также не может быть сопоставлен с экспериментом.

Анализ существующих теоретических работ [11,12], посвященных спин-поляризационному механизму магнитосопротивления в прыжковой области, показывает, что весьма актуальной была бы упрощенная модель этого явления, которая, во-первых, формализовала бы приведенные выше качественные рассуждения и, во-вторых, позволила бы получить аналитические выражения для магнитосопротивления, допускающие непосредственное сопоставление с экспериментом. Поскольку путь точного расчета, использованный в [11], едва ли может рассматриваться в качестве перспективного, для решения поставленной задачи необходимо привлечь эвристические соображения.

Пусть $n_1(\xi)$ и $n_2(\xi)$ — числа актуальных состояний в окрестности E_F , отвечающих прыжкам первого и второго типа соответственно, а ξ определяет критерий связности $\xi_{ij} \leq \xi$ рассматриваемой перколяционной задачи (для ξ_{ij} предполагаются справедливыми стандартные выражения [7] $\xi_{ij} = 2R_{ij}/a_{1,2} + \Delta E_{ij}^{1,2}/k_BT$). Предполагаем, что для отыскания порога протекания ξ_c , задающего проводимость системы $\rho \sim \exp(\xi_c)$ [7,13], можно воспользоваться условием

$$n_1(\xi) + n_2(\xi) = n_c(d),$$
 (4)

где $n_c(d)$ — некоторый инвариант, зависящий от размерности пространства. Формула (4) может рассматриваться в качестве модели сетки сопротивлений Миллера—Абрахамса, содержащей состояния D^0 и D^- , и, по-видимому, не может быть выведена из первых принципов.

Сделанное $ad\ hoc$ предположение позволяет легко решить поставленную задачу. Будем характеризовать прыжки первого типа параметрами a_1 и $g_1(E_F)=g_1$, а прыжки второго типа параметрами a_2 и $g_2(E_F)=g_2$. Поскольку во втором случае в процессе токопереноса участвуют не только состояния D^- , но и D^0 , величину g_2 в общем случае нельзя прямо отождествить с плотностью состояний D^- и ее следует рассматривать в качестве эффективного параметра, который можно найти, например, путем сравнения полученного решения при H=0 с результатами точного расчета [11,13]. Поскольку радиус локализации для состояний D^- превышает значение радиуса локализации для состояний D^0 ,

а пространственная часть интеграла перекрытия будет определяться большим из двух радиусов локализации, в первом приближении можно считать, что параметр a_2 совпадает с радиусом локализации в D^- -зоне. С учетом введенных обозначений для концентраций n_1 и n_2 , следуя [7], можно записать выражения вида $n_{1,2}(\xi) \sim \xi^{d+1} g_{1,2} a_{1,2}^d k_B T w_{1,2}$. Множители w_1 и w_2 представляют собой вероятности прыжков первого и второго типов, связанные с их спиновыми состояниями и зависящие от внешнего магнитного поля. Вероятности должны удовлетворять очевидным условиям $w_1 + w_2 = 1$ и $w_1 = 1$, $w_2 = 0$ при $H \to \infty$. Кроме того, предполагаем, что при H = 0 $w_1 = w_2 = 1/2$, т.е. прыжки первого и второго типов являются равновероятными.

С учетом сделанных предположений из формулы (4) находим выражение для порога протекания

$$\xi_c = \left\{ \frac{n_c(d)}{k_B T [g_1 a_1^d + (g_2 a_2^d - g_1 a_1^d) w_2]} \right\}^{1/(d+1)}.$$
 (5)

Из (5) следует, что в нулевом магнитном поле справедлива формула (1) с $\alpha=1/(d+1)$ и

$$T_0 = \frac{2n_c(d)}{k_B(g_1 a_1^d + g_2 a_2^d)}. (6)$$

Если параметры для двух типов прыжков совпадают, $g_1 = g_2 = g$ и $a_1 = a_2 = a$, то формула (6) переходит в стандартное выражение для T_0 в законе Мотта [7,13].

Легко видеть, что прыжки в модели (4)–(6) происходят в энергетической области размера $\Delta E \sim k_B T (T_0/T)^\alpha$ и характеризуются двумя длинами: $R_{1,2} \sim \frac{a_{1,2}}{2} (T_0/T)^\alpha$. В силу условия $a_1 < a_2$ прыжкам по локализованным состояниям с участием D^- -центров будет отвечать бо́льшая длина прыжка $R_2 > R_1$. Тем не менее оба типа прыжков будут формировать единую критическую подсетку, определяющую сопротивление эффективной сетки сопротивлений Миллера—Абрахамса в рассматриваемой модели.

3.2. Магнитосопротивление. Для того чтобы найти зависимость ξ_c от магнитного поля, необходимо определить полевую зависимость w_2 (формула 5). В общем случае для этого требуется решить соответствующую статистическую задачу [13] и найти числа заполнения для D^0 - и D^- -состояний как функции T и H. Однако такой подход оказывается достаточно сложным даже в случае H=0 [13], поэтому для дальнейших оценок воспользуемся обычным приближением Ферми-газа с эффективным магнитным моментом μ . Пусть $w_{\pm}=\exp(\mp \mu H/k_BT)\left[\exp(-\mu H/k_BT)+\exp(\mu H/k_BT)\right]^{-1}$ — вероятности проекций спина s=1/2 и s=-1/2 соответственно. Тогда по определению

$$w_2 = w_+ w_- + w_- w_+ = \frac{1}{2 \operatorname{ch}^2 \frac{\mu H}{k_B T}}.$$
 (7)

Подставляя (7) в (5) и учитывая (6), находим выражение для магнитосопротивления

$$\ln\left[\frac{\rho(H)}{\rho(0)}\right] = \left(\frac{T_0}{T}\right)^{\alpha} \left[\left(\frac{1}{1 - A th^2 \frac{\mu H}{k_B T}}\right)^{\alpha} - 1\right], \quad (8)$$

где $A=(g_2a_2^d-g_1a_1^d)/(g_2a_2^d+g_1a_1^d)$. Формула (8) дает следующую асимптотику для слабого магнитного поля $\mu H/k_BT\ll 1$:

$$\ln\left[\frac{\rho(H)}{\rho(0)}\right] = \alpha A \left(\frac{T_0}{T}\right)^{\alpha} \left(\frac{\mu H}{k_B T}\right)^2 \tag{9}$$

и выражение для магнитосопротивления насыщения при $\mu H/k_BT\gg 1$

$$\ln\left[\frac{\rho(H)}{\rho(0)}\right]_{\text{sat}} = \left(\frac{T_0}{T}\right)^{\alpha} \left[\left(\frac{x+1}{2}\right)^{\alpha} - 1\right], \quad (10)$$

где $x = g_2 a_2^d / g_1 a_1^d$.

Видно, что полученное решение дает в слабом магнитном поле квадратичное магнитосопротивление, температурная зависимость которого существенно отличается от формулы (3), а в сильном поле предсказывает насыщение в качественном согласии с результатами работы [11]. При этом знак эффекта зависит от соотношения между параметрами $g_2 a_2^d$ и $g_1 a_1^d$: в случае $g_2 a_2^d > g_1 a_1^d$ будет наблюдаться ПМС, а для $g_2 a_2^d < g_1 a_1^d$ — ОМС. В случае $g_2 a_2^d = g_1 a_1^d$ в рассматриваемой модели магнитосопротивление будет отсутствовать, так как прыжки первого и второго типов оказываются полностью эквивалентными, а магнитное поле приведет лишь к формальному перераспределению числа прыжков различного типа. Отметим, что при выборе параметров $g_1 = g_2 = g$ и $a_1 < a_2$, соответствующему случаю, исследованному в [11], в нашей модели будет наблюдаться ПМС, что также согласуется с результатами точного расчета.

Несмотря на то что рассмотренная в настоящем разделе модель описывает поведение магнитосопротивления, ожидаемое для спин-поляризационного механизма, необходимо иметь в виду, что формула (10), дающая формальное выражение для магнитосопротивления в пределе $H \to \infty$, не является точной. Поскольку прыжки обоих типов должны происходить в единой окрестности уровня Ферми, максимальная величина магнитного поля будет ограничена сверху $H \leq H^* = \Delta E/\mu = k_B T/\mu \left(\frac{T_0}{T}\right)^{lpha}$. В результате, возможно лучшее выражение для $\ln \left[\frac{
ho(H)}{
ho(0)}
ight]_{\rm sat}$ может быть получено из формулы (8), в которой аргумент гиперболического тангенса заменяется на $(T_0/T)^{\alpha}$. К сожалению, лишь в ограниченном числе работ у углеродных наноматериалов наблюдалась тенденция к насыщению ПМС, причем данные о температурной зависимости магнитосопротивления насыщения в литературе отсутствуют. В связи с этим далее ограничимся рассмотрением асимптотики слабого поля, т.е. квадратичного магнитосопротивления в области прыжковой проводимости моттовского типа.

3.3. Схема анализа экспериментальных данных. При сопоставлении результатов, полученных в п. 3.2, с экспериментом необходимо иметь в виду, что спин-поляризационный механизм не исключает из рассмотрения эффектов сжатия волновой функции и в реальной экспериментальной системе может реализоваться несколько различных вкладов в магнитосопротивление.

Поскольку для сжатия волновой функции поправка зависит от куба длины прыжка $\Delta \xi_{ij} \sim a R_{ij}^3 / l_H^4$ [7,8], естественно считать, что этот эффект будет сказываться в первую очередь на прыжках максимальной длины, т. е. на прыжках второго типа, связанных с D^- -состояниями. В результате для оценки вклада в магнитосопротивление, связанного со сжатием волновой функции, можно воспользоваться формулой (3), положив в ней $a = a_2$. Поскольку параметры α и T_0 известны из измерений температурной зависимости удельного сопротивления в нулевом магнитном поле, для анализа экспериментальных данных удобно постулировать функциональную зависимость, определяемую формулой (9), и найти значения параметра А при каждой фиксированной температуре, для которой измерялась полевая зависимость магнитосопротивления. Обозначим такой параметр как $\tilde{A}(T)$. Несложно показать, что одновременный учет спин-поляризационного механизма и механизма сжатия волновой функции приводит к следующему выражению:

$$\tilde{A}(T) = A + B \left(\frac{T}{T_0}\right)^{2-2\alpha},\tag{11}$$

где

$$B = t_d a_2^4 \frac{e^2 k_B^2 T_0^2}{c^2 \hbar^2 \mu^2 \alpha}.$$
 (12)

Таким образом, по температурной зависимости $\tilde{A}(T)$ можно судить о том, какие вклады определяют магнитосопротивление в прыжковой области и провести их разделение (вставка на рис. 7). Действительно, если доминирует спин-поляризационный механизм, то параметр $\tilde{A}(T)$ будет температурно-независимым $\tilde{A}(T)=$ const (кривая I). В случае когда ПМС определяет механизм сжатия волновой функции, $\tilde{A}(T)$ при $T\to 0$ будет стремиться к нулю по закону $\tilde{A}(T)\sim T^{2-2\alpha}$ (кривая I). Для ситуации когда вклады от сжатия волновой функции и спин-поляризационного механизма окажутся сравнимыми, зависимость $\tilde{A}(T)$ примет вид, представленный кривой I.

4. Анализ экспериментальных данных и выводы

Обработка экспериментальных данных рис. 1–5 была проведена по алгоритму, описанному в п. 3.3. Найденные значения $\tilde{A}(T)$ представлены как функции $T^{2-2\alpha}$ на рис. 8. Видно, что формула (11) хорошо описывает магнитосопротивление углеродных наноматериалов различной природы. При этом экспериментальная

зависимость $\tilde{A}(T)$ соответствует случаю 3 на рис. 7, т.е. ситуации, когда в ПМС надо учитывать оба вклада — и от механизма сжатия волновой функции, и от спин-поляризационного механизма. Интересно, что и случай $\alpha = 1/2$ (рис. 8, a) полностью укладывается в предложенную нами схему описания магнитосопротивления. Поскольку существенным элементом рассмотренной модели является конечная и слабо зависящая от энергии плотность однократно и двукратно занятых электронных состояний, такое поведение, по-видимому, может свидетельстовать о квазиодномерном характере прыжков у УНМ на основе аэрогелей и активированных углеродных волокон [3]. Отметим, что именно такой тип прыжкового токопереноса реализуется у некоторых образцов карбинов [4-6]. Рассчитанные по методу наименьших квадратов из данных рис. 8 значения коэффициентов A и B в формуле (11), а также показатель степени α и характерная температура T_0 , определенные из рис. 1-5, суммированы в таблице. В предположении, что у УНМ $\mu = \mu_B$ с помощью (12) была получена оценка радиуса локализации a_2 , а исходя из значения A, рассчитан параметр $x = g_2 a_2^d / g_1 a_1^d$ (см. таблицу).

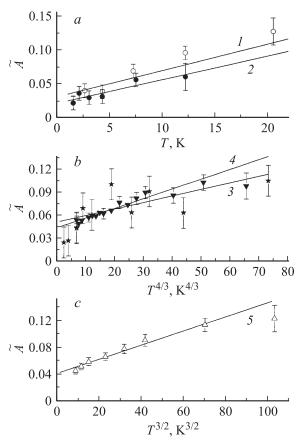


Рис. 8. Анализ экспериментальных данных, основанный на расчете коэффициента \tilde{A} и представлении его как функции $T^{2-2\alpha}$ в случаях $\alpha=1/2$ (a), $\alpha=1/3$ (b) и $\alpha=1/4$ (c). Прямые линии представляют собой аппроксимации по методу наименьших квадратов, с помощью которых находились коэффициенты A и B в формуле (11). Цифры у кривых соответствуют данным, показанным на рис. 1–5 соответственно.

Транспортные характеристики УНМ

Образец УНМ	α	T_0, K	$A, 10^{-2}$	$B, 10^{-3}$	a_2, \mathring{A}	х
Углеродный аэрогель [1]	1/2	26	2.24	3.46	115	1.04
Активированные углеродные волокна [1]	1/2	88	3.18	3.86	88	1.06
Углеродная сетка [3]	1/3	682	5.1	0.86	64	1.11
Карбины [4-6]	1/3 1/4	1825 12717	4.36 4.15	1.27 1.07	33 44	1.09 1.09

Обращает на себя внимание, что для всех УНМ параметр х оказывается весьма близким к единице и превышает ее всего лишь на 4-9%. Если считать, следуя работе [12], что $g_1 = g_2 = g$, то полученный результат требует практически полного совпадения радиусов локализации для прыжков первого и второго типов, что представляется несколько искусственным. В действительности физически разумное условие $a_1 < a_2$ в сочетании с экспериментальным результатом x > 1означает, что у УНМ, по-видимому, должно выполняться условие $g_1 > g_2$. Такая ситуация будет реализовываться, когда нацентровое отталкивание U будет достаточно большим и в окрестности энергии Ферми в полосе D^0 окажется лишь хвост плотности состояний из полосы D^- (рис. 7). Поскольку выражение (6) для T_0 можно представить в виде $T_0=T_0^*$ $\frac{2}{1+x}$, где T_0^x — значение характерной температуры в законе Мотта в отсутствие D^- -состояний, для $x \approx 1$ учет прыжков второго типа будет давать лишь малую поправку к температурной зависимости проводимости в нулевом магнитном поле. Однако, как следует из результатов настоящей работы, эта "поправка" оказывается существенной при количественном описании магнитосопротивления и позволяет преодолеть трудности, свойственные подходу, в котором учитывается только механизм сжатия волновой функции в магнитном поле.

Рассмотрим теперь полученные оценки радиуса локализации для УНМ (см. таблицу). Поскольку a_2 представляет собой своего рода "оценку сверху" для радиуса локализации в полосе D^0 , найденные величины a_2 , лежащие в интервале $30-115\,\text{Å}$, представляются разумными. Воспользовавшись известным соотношением $a_2\approx 4a_1$, следующим из решения квантовомеханической задачи для иона водорода H^- (аналога D^- -центра) [14], приходим к оценке $a_1\sim 8-30\,\text{Å}$, полностью согласующейся с представлениями о характере локализации электронных состояний в различных неупорядоченных материалах [13,15]. Интересно, что в случае карбинов значения $a_1\sim 8-11\,\text{Å}$ хорошо согласуются с корреляционной длиной неупорядоченной углеродной сетки $L_{\rm cor}\sim 10\,\text{Å}$ [5,6], определяющей характерный

размер неоднородностей и пространственный масштаб флуктуаций случайного потенциала в этих углеродных наноматериалах.

Учитывая, что рассмотренная в настоящей работе модель предсказывает экспоненциальную зависимость магнитосопротивления, уместно задаться практически важным вопросом о том, при каких условиях ПМС у углеродных наноматериалов может быть увеличено. На первый взгляд кажется, что, управляя структурой материала, можно попытаться увеличить радиус локализации, в результате чего вклад, связанный со сжатием волновой функции, будет расти как

$$\ln \rho \sim a^{4-\frac{3}{d(d+1)}}$$

(формулы (3) и (6)). Однако одновременно параметр T_0 в законе Мотта будет убывать, и в результате все эффекты сдвинутся в область более низких температур, что едва ли приемлемо для различных практических приложений. Поэтому более перспективным является поиск материалов с большими значениями коэффициента А. Такие материалы должны отличаться значительным вкладом от прыжков с участием D^- -центров, выражающимся в увеличении параметра д2, зависящего в свою очередь от корреляционной энергии U. Например, если величина U окажется достаточно малой для того, чтобы обеспечить выполнение условия [11] $g_1 \approx g_2$, то при стандартном соотношении $a_2 \approx 4a_1$ формулы (8)–(10) дают оценку для максимальной амплитуды ПМС вида $\ln[\rho(H)/\rho(0)] \sim (T_0/T)^{\alpha}$. Очевидно, при этом окажется выгодным увеличивать параметр T_0 , т.е. рассматривать УНМ с достаточно малыми значениями радиуса локализании.

В заключение отметим, что предложенная простая модель, учитывающая совместное влияние спин-поляризационного механизма и эффекта сжатия волновой функции локализованного состояния, позволяет адекватно описать магнитосопротивление углеродных наноматериалов в области прыжковой проводимости моттовского типа и указать возможные направления поиска объектов с большой величиной магнитосопротивления среди данного класса соединений.

Подробная проверка модели была выполнена для случая слабых магнитных полей, отвечающих квадратичному по магнитному полю магнитосопротивлению, что делает актуальным сопоставление теоретических предсказаний с экспериментами, выполненными в сильных магнитных полях и при сверхнизких температурах, для которых можно ожидать насыщения спинполяризационного вклада. Учитывая, что результаты как известных ранее [7,8,11], так и выполненных в настоящей работе расчетов предсказывают разную полевую зависимость спин-поляризационного вклада и вклада от сжатия волновой функции, в таких опытах может быть получена новая информация, позволяющая уточнить предположения, составляющие основу предложенного в

настоящей работе теоретического подхода. К сожалению, опубликованные к настоящему времени данные о поведении ПМС в сильном магнитном поле носят фрагментарный характер и не позволяют провести подробное сравнение с различными теоретическими расчетами. Проведение экспериментальных исследований в этом направлении представляется весьма перспективным для выяснения природы магнитосопротивления углеродных наноматериалов.

Список литературы

- A.W.P. Fung, Z.H. Wang, M.S. Dresselhaus, G. Dresselhaus, R.W. Pekala, M. Endo. Phys. Rev. B 49, 24, 17 325 (1994).
- [2] G.T. Kim, E.S. Choi, D.C. Kim, D.S. Suh, Y.W. Park, K. Liu, G. Duesberg, S. Roth. Phys. Rev. B. 58, 24, 16064 (1998).
- [3] V.A. Samuilov, J. Galibert, V.K. Ksenevich, V.J. Goldman, M. Rafailovich, J. Sokolov, I.A. Bashmakov, V.A. Dorosinets. Physica B 294–295, 319 (2001).
- [4] С.В. Демишев, А.А. Пронин, Н.Е. Случанко, Н.А. Самарин, А.Г. Ляпин, В.В. Бражкин, Т.Д. Варфоломеева, С.В. Попова. Письма в ЖЭТФ 72, 7, 547 (2000).
- [5] С.В. Демишев, А.А. Пронин, В.В. Глушков, Н.Е. Случанко, Н.А. Самарин, М.В. Кондрин, А.Г. Ляпин, В.В. Бражкин, Т.Д. Варфоломеева, С.В. Попова. ЖЭТФ 122, 1, 140 (2002).
- [6] С.В. Демишев, А.А. Пронин, В.В. Глушков, Н.Е. Случанко, Н.А. Самарин, М.В. Кондрин, А.Г. Ляпин, В.В. Бражкин, Т.Д. Варфоломеева, С.В. Попова. Письма в ЖЭТФ 78, 8, 984 (2003).
- [7] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников. Наука, М. (1979).
- [8] M.E. Raikh, J. Czingon, Qiu-yi Ye, F. Koch, W. Schoepe, K. Ploog. Phys. Rev. B 45, 11, 6015 (1992).
- [9] S.V. Demishev. In Hopping and Related Phenomena 5 (Proc. of the 5th Int. Conf. on Hopping and Related Phenomena / Eds C.J. Adkins, A.R. Long, J.A. McInnes). World Scientific, Singapore (1994). P. 179.
- [10] С.В. Демишев, Д.Г. Лунц, А.Г. Ляпин, Н.Е. Случанко, Н.А. Самарин. ЖЭТФ **110**, *I*(7), 334 (1996).
- [11] A. Kurobe, H. Kamimura. Journal Phys. Soc. Jap. **51**, *6*, 1904 (1982).
- [12] K.A. Matveev, L.I. Glazman, Penny Clarke, D. Ephron, M.R. Beasley. Phys. Rev. B 52, 7, 5289 (1995).
- [13] И.П. Звягин. Кинетические явления в неупорядоченных полупроводниках. Изд-во МГУ, М. (1984).
- [14] В.М. Галицкий, Б.М. Карнаков, В.И. Коган. Задачи по квантовой механике. Наука, М. (1981). С. 418.
- [15] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982).