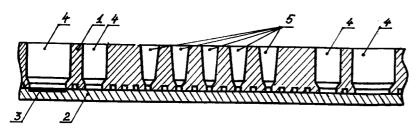
06:07

Многоямковые лазерные гетероструктуры, полученные методом жидкостной эпитаксии

© А.Ю. Лешко, А.В. Лютецкий, А.В. Мурашова, Н.А. Пихтин, И.С. Тарасов, И.Н. Арсентьев, Б.Я. Бер, Ю.А. Кудрявцев, Ю.В. Ильин, Н.В. Фетисова

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург


Поступило в Редакцию 10 февраля 1998 г.

Разработана технология многоямковых лазерных гетероструктур InGaAsP/InP методом жидкостной эпитаксии. С помощью глубинного профилирования на вторично-ионном масс-спектрометре исследованы профили распределения состава многоямковых лазерных гетероструктур.

Методом жидкофазной эпитаксии получены многоямковые лазерные гетероструктуры InGaAsP/InP с активными областями, имеющими длины волн излучения 1.3 и 1.55 μ m, и исследованы их излучательные характеристики.

Основные результаты в улучшении параметров лазерных диодов в системе твердых растворов InGaAsP/InP достигнуты при использовании свойств напряженных эпитаксиальных слоев InGaAs в лазерных гетероструктурах, изготовленных МОС-гидридной технологией [1,2]. В напряженных слоях InGaAs из-за упругой деформации изменяется зонная структура полупроводника, уменьшая Оже-рекомбинацию и оптическое поглощение, связанное с переходами дырок в спин-орбитально отщепленную зону [3], что и позволяет улучшить излучательные характеристики лазерных диодов.

Успехи в разработке технологии жидкостной эпитаксии тонких слоев твердых растворов InGaAsP [4] позволили применить ее при изготовлении лазерных гетероструктур. Для лазерных гетероструктур, полученных жидкостной эпитаксией и обладающих меньшей однородностью по толщине и составу, сохранение малых внутренних оптических потерь при увеличении длины резонатора становится актуальным. Применение многоямковой активной области [5] в лазерной структуре позволяет

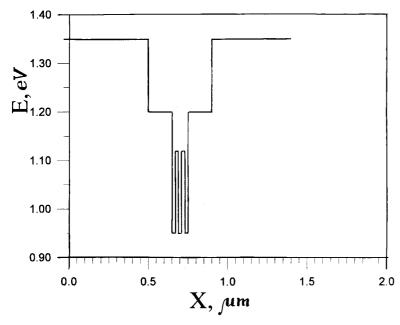


Рис. 1. Схема графитовой лодочки для жидкофазной эпитаксии многоямковых лазерных гетероструктур: I — неподвижный корпус кассеты; 2 — подвижный слайдер; 3 — подложка; 4 — ячейки для растворов-расплавов волноводных и эмиттерных слоев; 5 — ячейки для растворов-расплавов квантово-размерных слоев

оптимально сочетать свойства тонких напряженных слоев InGaAs и гетероструктур раздельного ограничения с малыми оптическими потерями.

Поэтому цель настоящей работы состояла в разработке технологии жидкофазной эпитаксии многоямковых лазерных гетероструктур и исследовании их свойств.

В основу технологии изготовления многоямковых лазерных гетероструктур был положен один из вариантов получения тонких эпитаксиальных слоев методом жидкостной эпитаксии [6]. Основная его идея заключается в уменьшении времени контакта переохлажденного раствора-расплава с подложкой за счет увеличения скорости перемещения подложки относительно растворов-расплавов в ячейках уменьшенных размеров. Суть предложенного технологического подхода заключается в формировании многоямковой гетероструктуры за один процесс перемещения подложки относительно ячеек с растворамирасплавами, что обусловливает постоянную скорость перемещения подложки относительно всех ячеек и, как следствие, одинаковую толщину квантовых ям. Изменение толщин эпитаксиальных слоев различных составов достигается за счет изменения размеров ячеек, содержащих растворы-расплавы. Исходя из требований технологического процесса, была сконструирована графитовая кассета (рис. 1), позволяющая формировать многоямковую гетероструктуру, зонная диаграмма которой приведена на рис. 2. Профиль распределения состава многоямковой

Рис. 2. Схематическое изображение зонной диаграммы многоямковой лазерной гетероструктуры.

лазерной структуры по глубине исследовался с помощью глубинного профилирования на вторично-ионном масс-спектрометре (ВИМС) САМЕСА IMS-4f. В качестве первичного пучка использовались ионы $^{133}\mathrm{Cs^+}$ с энергией $10\,\mathrm{keV}$, что соответствовало кинетической энергии при подлете к мишени $5.5\,\mathrm{keV}$ при угле падения, отсчитанном от нормали к мишени, 42° . Первичный пучок с током $20\,\mathrm{nA}$ сканировал на мишени кратер размером $400\times400\,\mu\mathrm{m}$. Отбор вторичных ионов производился из центрального пятна диаметром $60\,\mu\mathrm{m}$. В качестве вторичных ионов были выбраны ионизованные кластеры $x\,\mathrm{Cs}$ ($x=\mathrm{Ga},\mathrm{In},\mathrm{As},\mathrm{P}$), что обеспечивало существенное подавление матричного эффекта при проведении количественного анализа [7,8]. Скорость ионного травления определялась по измерению глубины кратера с помощью механического профилометра DEKTAK.

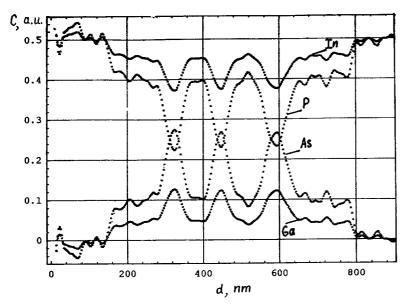
Количественный анализ проводился с использованием относительных коэффициентов чувствительности $RSF_{xCs^+/InCs^+}$ (x = In; Ga; As; P), нормированных на коэффициент чувствительности для кластера $InCs^+$. Относительная атомная концентрация Cx(M) сорта x при стационарном режиме распыления матрицы состава M может быть записана как:

$$Cx(M) = \frac{I_{xCs^{+}}(M)/RSF_{xCs^{+}/InCs^{+}}(M)}{\Sigma I_{yCs^{+}}(M)/RSF_{yCs^{+}/InCs^{+}}(M)},$$
(1)

где x, y = In, Ga, As, P; $I_{x\text{Cs}^+}(\text{M})$ регистрирует ток ионизированных кластеров $x\text{Cs}^+$. Тогда для матрицы InP, учитывая, что $C_{\text{In}} = C_{\text{P}} = 0.5$, имеем:

$$RSF_{PCs^{+}/InCs^{+}}(InP) = \frac{I_{PCs^{+}}(InP)}{I_{InCs^{+}}(InP)}.$$
 (2)

Пренебрегая в первом приближении зависимостью относительных коэффициентов чувствительности от состава матрицы, мы получим для твердого раствора M = (In, Ga)(As, P) следующее соотношение:


$$\frac{C_{\rm P}(\rm M)}{C_{\rm In}(\rm M)} = \frac{I_{\rm PCs^+}(\rm M)}{I_{\rm InCs^+}(\rm M)} \frac{I_{\rm InCs^+}(\rm InP)}{I_{\rm PCs^+}(\rm InP)}.$$
 (3)

Кроме того, мы учтем, что условие изопериодичности твердых растворов (In, Ga)(As, P) лазерной гетероструктуры накладывает дополнительную связь концентраций $C_{\rm In}$ и $C_{\rm P}$ [9]:

$$C_{\rm P} = \frac{1.9378 \, C_{\rm In} - 0.5162}{0.9676 - 0.1244 \, C_{\rm In}}.\tag{4}$$

Видно, что два условия (3) и (4) позволяют при профилировании лазерной ненапряженной структуры, которая содержит слой InP, использовать его как внутренний стандарт и, измеряя лишь отклонение токов двух аналитических кластеров PCs^+ и $InCs^+$, оценить распределение по глубине всех четырех атомных компонентов.

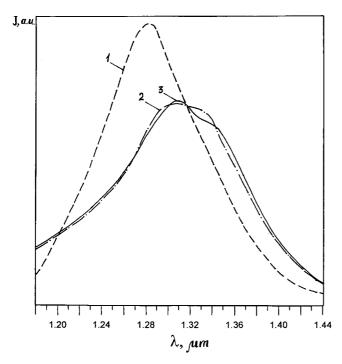

Профиль состава InGaAsP/InP лазерной гетероструктуры в относительных атмных концентрациях, измеренный с применением этой методики, приведен на рис. 3. Толщина эпитаксиальных слоев, образующих квантовые ямы, составляет $100 \div 130$ Å, толщина промежуточных слоев составляет аналогичную величину. Толщина переходных слоев составляет величину порядка $40 \div 50$ Å, что является близким к предельным

Рис. 3. ВИМС-профили состава In–Ga–As–P многоямковой фотолюминесцентной гетероструктуры (d — глубина травления).

значениям в эпитаксиальных слоях, полученных модифицированным методом жидкостной эпитаксии [6]. Поэтому получение более тонких, толщиной в несколько десятков ангстрем, эпитаксиальных слоев методом жидкостной эпитаксии затруднено.

Были также проведены исследования фотолюминесцентных свойств многоямковых гетероструктур. На рис. 4 приведены спектры ФЛ различных типов многоямковых гетероструктур. В гетероструктурах первого типа состав полупроводникового твердого раствора в квантовых ямах активной области был одинаков. В гетероструктурах второго типа ширина запрещенной зоны полупроводникового твердого раствора в квантовых ямах отличалась на величину $\Delta E \cong 15 \,\mathrm{meV}$. В гетероструктурах третьего типа были изготовлены две квантовые ямы, различающиеся по составу Eg на величину $\Delta E \cong 30 \,\mathrm{meV}$. Форма ФЛ спектров позволяет сделать вывод о наличии квантовых ям с различным составом твердой фазы.

Рис. 4. Спектры фотолюминесценции изотипных многоямковых гетероструктур: I — с одинаковым составом твердого раствора в активной области; 2 — отличающимися по составу на $\Delta Eg=15\,\mathrm{meV};\ 3$ — отличающимися по составу на $\Delta Eg=30\,\mathrm{meV}.$

На основе разработанной технологии получения многоямковых гетероструктур методом жидкостной эпитаксии были изготовлены лазерные многоямковые гетероструктуры с шириной запрещенной зоны в квантовых ямах от 0.8 до 0.95 eV. Из таких лазерных гетероструктур были изготовлены мезаполосковые лазеры по методике, подробно описанной в [4]. Ширина мезаполоскового контакта составляла $\sim 5\,\mu$ m, что обеспечивало генерацию на одной нулевой поперечной моде. Эффективная толщина активной области из трех квантовых ям составляла 600 Å. В лазерных диодах из структур с согласованными по параметру решетки эпитаксиальными слоями активной области удавалось повторить

харктеристики одномодовых лазерных диодов с одиночными активными областями [4]. Отсюда следует, что конструктивное изменение лазерной гетероструктуры с внесением дополнительных тегерограниц не приводит к увеличению внутренних оптических потерь. Следовательно, разработанная методика жидкостной эпитаксии многослойных гетероструктур позволяет изготавливать двух-четырехъямковые лазерные гетероструктуры.

Итак, в работе получены следующие результаты:

- 1. Разработана технология многоямковых лазерных гетероструктур InGaAsP/InP методом жидкостной эпитаксии.
- 2. Получены одномодовые мезаполосковые InGaAsP/InP лазерные диоды с многоямковой активной областью.

Авторы выражают благодарность за помощь в изготовлении образцов Т.Н. Дрокиной, Н.Д. Ильинской, Н.Ф. Кадощук и Е.А. Кухаревой.

Работа была выполнена при поддержке проекта № 96–2005 по МНТП "Физика твердотельных наноструктур".

Список литературы

- Chen T.R., Eng L.E., Zhyang Y.H., Xu Y.J., Zaren H., Variv A. // Appl. Phys. Lett. 1990. V. 57. N 26. P. 2762–2763.
- [2] Zah C.E., Bhat R., Pathak B., Caneau C., Favire F.J., Andreadakis N.C., Hwang D.M., Koza M.A., Chen C.Y., Lee T.P. // Electron. Lett. 1991. V. 27. N 16, P. 1414–1415.
- [3] Yokouchi N., Yamanaka N., Iwai N., Kasukawa A. // Electron. Lett. 1995. V. 31.N 2. P. 104–105.
- [4] Иванов М.А., Ильин Ю.В., Ильинская Н.Д., Корсакова Ю.А., Лешко А.Ю., Лунев А.В., Лютецкий А.В., Мурашова А.В., Пихтин Н.А., Тарасов И.С. // Письма в ЖТФ. 1995. Т. 21. В. 5. С. 70–75.
- [5] Zah C.E., Bhat R., Favire F.J., Menocal S.G. Yz., Andreadakis N.C., Cheung K.W., Hwang D.M., Koza M.A., Lee T.P. // IEEE J. Quantum Electron. 1991. V. 27. N 6. P. 1440–1450.
- [6] Алферов Ж.И., Гарбузов Д.З., Арсентьев И.Н., Бер Б.Я., Вавилова Л.С., Красовский В.В., Чудинов А.В. // ФТП. 1985. Т. 19. В. 6. С. 1108–1113.
- [7] Ghaser H., Oechner H. // Fresenius J. Anal. Chem. 1991. V. 341. P. 54-56.
- [8] Абрамов А.В., Бер Б.Я., Дерягин Н.Г., Меркулов А.В., Третьяков Д.Н. // Письма в ЖТФ. 1995. Т. 21. В. 3. С. 34–38.
- [9] Kuphal E. // J. Crystal Grows. 1984. V. 67. N 3. P. 441–457.
- 5* Письма в ЖТФ, 1998, том 24, № 21