06;07;11;12

Фотолюминесценция кристаллов $A^2B^4C_2^5$ и $A^1B^3C_2^6$, пассивированных в сульфидном растворе

© В.Н. Бессолов, М.В. Лебедев, В.Ю. Рудь, Ю.В. Рудь

Физико-технический институт имени А.Ф. Иоффе РАН, С.-Петербург Государственный технический университет, С.-Петербург

Поступило в Редакцию 19 марта 1998 г.

Исследовалось влияние химической обработки поверхности кристаллов полупроводниковых соединений $A^2B^4C_2^5$ и $A^1B^3C_2^6$, (CdSiAs₂, ZnSnP₂, CuGaSe₂, r-AgInS₂) в растворе сульфида аммония в третбутиловом спирте на фотолюминесцентные свойства. Показано, что интенсивность фотолюминесценции после обработки существенно возрастает, причем спектральная форма и энергетическое положение максимумов полос остаются неизменными.

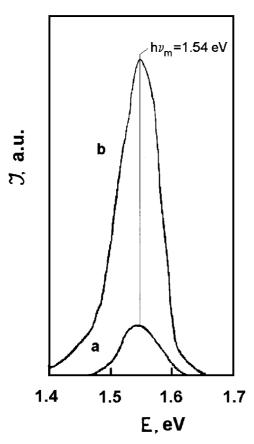
Тройные полупроводниковые соединения $A^2B^4C_2^5$ и $A^1B^3C_2^6$, являясь структурными и электронными аналогами полупроводников A^3B^5 и A^2B^6 , в последние годы начинают активно использоваться в фотопреобразовательной технике. Известно, что свойства поверхности полупроводников оказывают заметное влияние на характеристики оптоэлектронных приборов. В этой связи разработка путей модификации электронных свойств поверхности является актуальной проблемой.

Для модификации электронных свойств поверхности полупроводников A^3B^5 активно используется метод сульфидной пассивации, заключающийся в обработке полупроводника в сульфидсодержащих растворах или газах. Сульфидирование поверхности полупроводника приводит к существенному снижению скорости поверхностной рекомбинации, вызывая возрастание интенсивности фотолюминесценции [1] и улучшение ряда характеристик многих полупроводниковых приборов [2–5]. Использование же для приготовления сульфидных растворов спиртов с низким значением диэлектрической проницаемости в качестве растворителей позволяет существенно поднять эффективность пассивации поверхности GaAs [6] и зеркал InGaAs/AlGaAs лазеров [7].

2

Электрические и люминесцентные свойства тройных полупроводников

Полупроводник	$T = 300 \mathrm{K}$		$T = 77 \mathrm{K}$	
	p, cm^{-3}	$\mu_p^{300\mathrm{K}},\mathrm{cm}^2/(\mathrm{V}\cdot\mathrm{s})$	hv_m , eV	I_m/I_{m0}
CdSiAs ₂ ZnSnP ₂ CuGaSe ₂ r-AgInS ₂	$3 \cdot 10^{6}$ $8 \cdot 10^{16}$ $5 \cdot 10^{17}$ $2 \cdot 10^{16}$	350 45 20 35	1.54 1.425 1.475 2.015 1.910 1.720	6.0 5.0 2.3 4.0 1.8 1.2


Недавно было показано [8], что обработка поверхности $CuInSe_2$ (одного из материалов класса халькопиритов) в водном растворе сульфида аммония приводит к пассивации поверхностных состояний и к ослаблению закрепления поверхностного уровня Ферми.

Для достижения более эффективной электронной пассивации в данной работе обработка поверхности кристаллов $A^2B^4C_2^5$ и $A^1B^3C_2^6$ проводилась в растворах сульфид аммония в третбутиловом спирте.

Объектами исследований служили электрически однородные пластины монокристаллов тройных соединений: CdSiAs₂, ZnSnP₂, CuGaSe₂, r-AgInS2 с произвольной кристаллографической ориентацией и средними размерами $2 \times 2 \times 1$ mm. Тройные соединения $A^2B^4C_2^5$ (CdSiAs₂, ZnSnP₂) выращивались направленной низкотемпературной кристаллизацией из нестехиометрических расплавов и имели структуру типа халькопирита с параметрами кристаллической решетки, соответствующими известным в литературе [9]. Тройные соединения $A^1B^3C_2^6$ (CuGaSe₂ и AgInS₂) выращивались направленной кристаллизацией из близких к стехиометрии расплавов. Режим выращивания обеспечивал получение монокристаллов CuGaSe₂ со структурой халькопирита, а AgInS₂ с орторомбической структурой; параметры кристаллической решетки для этих кристаллов также соответствовали приводимым в литературе [9]. Кристаллы были выращены без преднамеренного введения посторонних примесей и имели р-тип проводимости, а значения концентрации и холловской подвижности дырок для них приведены в таблице.

Сульфидирование проводилось в растворе сульфида аммония $((NH_4)_2S)$ в третбутиловом спирте $(t\text{-}C_4H_9OH)$ при комнатной температуре. Время сульфидирования было различным для разных кристаллов и изменялось в пределах $10\text{--}100\,\text{min}$.

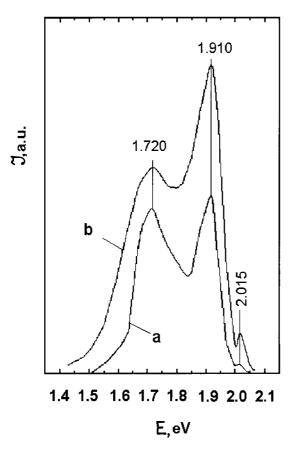

Письма в ЖТФ, 1998, том 24, № 22

Рис. 1. Спектр фотолюминесценции монокристалла CdSiAs $_2$ со структурой халькопирита до (a) и после (b) обработки в растворе сульфида аммония в третбутиловом спирте. $T=77\,\mathrm{K}.$

Фотолюминесценция возбуждалась излучением He-Cd-лазера ($\lambda=0.44~\mu\text{m},\,P=15~\text{mW}$); глубина поглощения излучения составляла $10^{-5}-10^6~\text{cm}.$ Спектры фотолюминесценции регистрировались с помощью монохроматора МДР-3 с фотоэлектронным умножителем ФЭУ-62. Спектральное разрешение установки было не ниже 1~meV.

2* Письма в ЖТФ, 1998, том 24, № 22

Рис. 2. Спектр фотолюминесценции монокристалла r-AgInS $_2$ с орторомбической структурой до (a) и после (b) обработки в растворе сульфида аммония в третбутиловом спирте. $T=77\,\mathrm{K}$.

Измерения проводились при температуре жидкого азота. Зондированием поверхности возбуждающим сфокусированным излучением (диаметр пятна около $0.1\,\mathrm{mm}$) выбирались исходные кристаллы, для которых параметры спектров фотолюминесценции были хорошо воспроизводимыми от точки к точке.

Письма в ЖТФ, 1998, том 24, № 22

Экспериментальные результаты таковы. Спектры фотолюминесценции несульфидированных CdSiAs₂ (рис. 1), ZnSnP₂ и CuGaSe₂ содержат одну полосу, а спектр несульфидированного r-AgInS₂ (рис. 2) — три полосы, энергетическое положение максимумов hv_m которых представлено в таблице. Большинство наблюдаемых полос фотолюминесценции в этих кристаллах обусловлено излучательными переходами с участием различных уровней дефектов решетки, а в случае r-AgInS₂ наиболее коротковолновый пик может быть сопоставлен с межзонным излучением.

Анализ полученных результатов позволяет сделать вывод о том, что сульфидирование поверхности кристаллов $CdSiAs_2$ (рис. 1), $ZnSnP_2$ и $CuGaSe_2$ приводит к возрастанию интенсивности фотолюминесценции, причем форма полос и энергетическое положение их максимумов при этом не меняются. Возрастание интенсивности фотолюминесценции для этих кристаллов по отношению к интенсивности несульфидированного полупроводника I_m/I_{m0} представлено в таблице.

Сульфидирование поверхности r-AgInS $_2$ приводит к возрастанию интенсивности всех трех полос фотолюминесценции, но в разной степени (рис. 2, таблица). Наиболее сильное возрастание (в 4 раза) наблюдалось для высокоэнергетичной полосы (энергия максимума 2.015 eV), связанной с межзонной люминесценцией. Более длинноволновые полосы с энергиями максимума 1.91 и 1.72 eV, обусловленные излучательными переходами в донорно-акцепторных парах или между локальными уровнями дефектов и сводными зонами, также возрастают, но в меньшей степени по сравнению с краевой полосой (в 1.8 и 1.2 раза соответственно) (рис. 2, таблица).

Экспериментальные результаты свидетельствуют о том, что сульфидирование кристаллов тройных соединений двух различных классов и различного атомного состава в растворе сульфида аммония в третбутиловом спирте приводит к существенному снижению скорости поверхностной безызлучательной рекомбинации. Неизменность формы и положения максимума спектра при сульфидировании свидетельствует о том, что снижение скорости поверхностной рекомбинации происходит без изменения доминирующего механизма излучательной рекомбинации носителей.

Таким образом, метод сульфидной пассивации в спиртовых растворах, успешно примененный для пассивации полупроводников A^3B^5 [6,7], позволяет существенно улучшать электронные свойства поверхности кристаллов $A^2B^4C_2^5$ и $A^1B^3C_2^6$, что может найти применение для повышения эффективности приборов на основе этих полупроводников [10].

Письма в ЖТФ, 1998, том 24, № 22

Список литературы

- Scromme B.J., Sandroff C.J., Yablonovich E., Gmitter T. // Appl. Phys. Lett. 1987. V. 51. N 24. P. 2022–2024.
- [2] Moulin P.D., Tobin S.P., Lundstrom M.S., Carpenter M.S., Melloch M.R. // IEEE Electron Device Lett. 1988. V. 9. N 8. P. 368–370.
- [3] Nottenburg R.N., Sandroff C.J., Humphrey D.A., Hollenbeck T.H., Bhat R. // Appl. Phys. Lett. 1988. V. 52. N 3. P. 218–220.
- [4] Huang L.J., Rajesh K., Lau W.M., Ingrey S., Landheer D., Noël J.-P., Lu Z.H. // J. Vac. Sci. Technol. A. 1995. V. 13. N 3. P. 792–796.
- [5] Howard A.J., Ashby C.I.H., Lott J.A., Schneider R.P., Corless R.F. // J. Vac. Sci. Technol. A. 1994. V. 12. N 4. P. 1063–1067.
- [6] Bessolov V.N., Konenkova E.V., Lebedev M.V. // J. Vac. Sci. Technol. B. 1996.V. 14. N 4. P. 2761–2766.
- [7] Bessolov V.N., Lebedev M.V., Shernyakov Yu.M., Tsarenkov B.V. // Mater. Sci. & Engineer. B. 1977. V. 44. P. 380–382.
- [8] Nelson A.J., Schwerdtfeder C.R., Herdt G.C., King D., Contreras M., Ramanathan K., O'Brien W.L. // J. Vac. Sci. Technol. A. 1997. V. 15. N 4. P. 2058–2062.
- [9] Физико-химические свойства полупроводников. Справочник. М.: Наука, 1978. 340 с.
- [10] Рудь Ю.В. // ФТП. 1994. Т. 28. В. 7. С. 1105–1148.