01:02:04

Увеличение константы скорости диссоциативного прилипания электронов к молекулам водорода за счет их колебательной накачки при течении в канале

© Ф.Г. Бакшт, В.Г. Иванов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 15 июля 1998 г.

Исследуется электронно-колебательная кинетика в потоке колебательновозбужденного водорода, протекающего в канале. Показывается, что при соответствующей организации течения и надлежащем выборе материала стенок канала можно получить существенное увеличение константы $\langle K_{\mathrm{DA}} \rangle$ скорости диссоциативного прилипания (ДП) электронов к молекулам водорода. Эффект определяется средней колебательной энергией $\langle E_{\nu}^{(0)} \rangle$ молекул H_2 , поступающих в канал.

1. В [1] показано, что может быть достигнуто существенное увеличение константы ДП $\langle K'_{\mathrm{DA}} \rangle = \sum_{v} f'_v \cdot K_v(T'_e)$ за счет дополнительной колебательной накачки молекул H_2 в потоке водорода в канале, стенки которого находятся при комнатной температуре T и выполнены из материала с большим значением потенциального барьера для адсорбции H_2 . Здесь f'_v — нормированная на единицу колебательная функция распределения (КФР) молекул H_2 на выходе из канала; $K_v(T'_e)$ — константа ДП электрона к молекуле, возбужденной на уровень v [2,3]; T'_e — температура электронов в камере, куда истекает из канала колебательно-накачанный водород. Предполагается, что первоначальное колебательное возбуждение H_2 осуществляется в низковольтном $Cs-H_2$ разряде. Параметры плазмы такого разряда достаточно точно определяются теоретически [4]. В качестве материала стенок канала рассматривается грань монокристалла Cu (111), для которой хорошо изучены вероятности адсорбции [5] и десорбции [6–8] молекул H_2 с

поверхности. В отличие от [1] расчеты выполнены с учетом конечной степени покрытия Θ стенок канала адсорбированными атомами H.

2. Распределение концентраций $N_{\rm H_2}$ и $N_{\rm H}$ молекулярного и атомарного водорода по длине канала и КФР f_{ν} молекул H_2 в канале определяются из уравнений (2)–(4) и (6) в [1], в которых потери на стенках колебательно возбужденного и атомарного водорода выражаются как N_{ν}/τ_{ν} и $N_{\rm H}/\tau_{\rm H}$, где N_{ν} — концентрации колебательно-возбужденных молекул в канале;

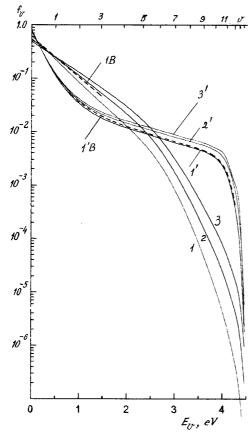
$$au_{v} = rac{L^{2}}{\pi^{2}D_{sd}} + rac{L}{v_{\mathrm{H}_{2}}} rac{2 - \gamma_{v}}{\gamma_{v}}, \quad au_{\mathrm{H}} = rac{L^{2}}{\pi^{2}D_{12}} + rac{L}{v_{\mathrm{H}}} rac{2 - \gamma_{\mathrm{H}}}{\gamma_{\mathrm{H}}}$$
 (1), (2)

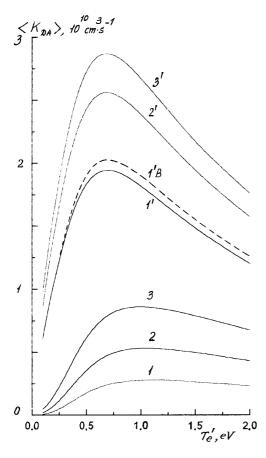
— эффективные времена жизни частиц [1,9]; D_{sd} и D_{12} — соответственно коэффициент самодиффузии молекул H_2 и атомов H в молекулах H_2 ;

$$\gamma_{\nu}(\Theta) = w_{\nu}(T)(1-\Theta)^2, \ \gamma_{\rm H}(\Theta) = w_{\rm H}(T)\cdot(1-\Theta) + \sigma_{\rm ER}^{(eff)}\cdot\sigma_{\rm H}\Theta$$
 (3), (4)

— соответственно доли возбужденных на уровень v молекул и атомов, исчезающих на поверхности стенок канала, от общего числа частиц, падающих на поверхность [6–7, 10–11]; $w_v(T)$ и $w_{\rm H}(T)$ — вероятности прилипания возбужденной на уровень v молекулы ${\rm H_2}$ [5] и атома ${\rm H}$ к поверхности ${\rm Cu}(111)$ при температуре T газа в канале; $\sigma_H\cong 1.5\cdot 10^5~{\rm cm}^{-2}$ — плотность сорбционных центров на поверхности ${\rm Cu}(111)$ [12]; $\sigma_{\rm ER}^{(eff)}\cong 5\,{\rm A}^2$ — эффективное сечение поверхностной рекомбинации по механизму Илей–Райдила (И–Р) [6,7]. Считалось, что при $T\cong 300~{\rm K}$ $w_{\rm H}\cong 1$ (ср. с [13]). Используемое значение $\sigma_{\rm ER}^{(eff)}$ — результат обработки экспериментальных данных [12], выполненной в [7]. При указанных значениях $w_{\rm H}$ и $\sigma_{\rm ER}^{(eff)}$, $\gamma_{\rm H}(\Theta)\sim 1$ и $\tau_{\rm H}\cong L^2/\pi^2D_{12}$, т. е. $\tau_{\rm H}$ практически не зависит от $\gamma_{\rm H}(\Theta)$ и $w_{\rm H}$.

Согласно [5], w_{ν} и $1/\tau_{\nu}$ отличны от нуля лишь для $\nu \geqslant 5$. В противоположность этому десорбция со стенок колебательно возбужденных молекул H_2 как по механизму U-P [6], так и по механизму Ленгмюра—Хиншельвуда (Л–X) [8] происходит в диапазоне колебательных чисел $1 \leqslant \nu \leqslant 4$ (при десорбции по Л–X КФР определяется из принципа детального равновесия). Вследствие сравнительно больших заселенностей N_{ν} и частых переходов на нижних уровнях $\nu \leqslant 4$ десорбция колебательно-возбужденных молекул со стенок мало влияет на КФР в канале. Это влияние учитывалось приближенно в предположении, что


десорбирующиеся молекулы равномерно распределяются по ширине L канала. Степень покрытия Θ определялась из уравнения


$$\begin{split} \left[2\sum_{\nu}N_{\nu}/\tau_{\nu}(\Theta) + N_{\rm H}/\tau_{\rm H}\right]L \\ &= 2L\cdot(N_{\rm H}/\tau_{\rm H})\cdot\sigma_{\rm FR}^{(eff)}\sigma_{\rm H}\Theta/\gamma_{\rm H}(\Theta) + 2\delta_{\rm LH}\Theta^{2}. \end{split} \tag{5}$$

Левая часть (5) — это количество атомов H, адсорбирующихся в единицу времени на стенках в расчете на единицу длины канала. Правая часть (5) — удвоенное количество молекул H_2 , десорбирующихся с обеих стенок канала по механизмам И-P и J-X. При определении константы δ_{LH} скорости десорбции по J-X использованы экспериментальные данные [8].

3. На рис. 1 изображены КФР $f_{\nu}^{(0)}$ молекул H_2 в разряде, т.е. на входе в канал (кривые I-3), и соответствующие КФР f_{ν}' на выходе из канала (кривые I'-3'). Через $N_{\rm H_2}^{(0)}, N_{\rm H}^{(0)}, N_{\rm Cs}^{(0)}, T_0$ и j_s обозначены концентрации Н2, Н, полная концентрация Сs, температура газа в разряде и плотность тока эмиссии. Кривым 1-3 соответствуют разные напряжения $U=arphi_1-arphi_2$ на разряде и соответственно разные величины электронной температуры T_e и средней колебательной энергии $\langle E_{\nu}^{(0)} \rangle$ молекул H_2 [1]. Длина h канала выбрана примерно оптимальной для наибольшего увеличения константы ДП $\langle K_{\mathrm{DA}} \rangle$. Существенно, что $h\gg Var{ au}_{v}$, где $ar{ au}_{v}$ — характерное время колебательного девозбуждения уровней, а V — гидродинамическая скорость в канале. Поэтому система уравнений (4) в [1], из которой находятся N_{ν} , содержит малые параметры перед производными. Это приводит к тому, что f_{ν}' не зависит от начальной КФР $f_{\scriptscriptstyle V}^{(0)},$ а определяется только колебательной энергией $\langle E_{\nu}^{(0)} \rangle$ на входе в канал (см. [14]). Чтобы показать это, на рис. 1 приведен результат расчета, в котором начальная КФР $f_{v}^{(0)}$ заменена на обрезанное распределение Больцмана для $0 \leqslant v \leqslant 4$ (прямая $1\,B$) с той же колебательной энергией $\langle E_{\nu}^{(0)} \rangle$, что и $f_{\nu}^{(0)}$ (кривая 1). Получающееся при этом на выходе канала колебательное распределение (кривая 1'B) практически совпадает с точной расчетной кривой 1'.

На рис. 2 приведены константы ДП $\langle K_{\mathrm{DA}}^{(0)} \rangle = \sum_{\nu} f_{\nu}^{(0)} K_{\nu}(T_e')$ (кривые $I{-}3$), соответствующие исходной КФР $f_{\nu}^{(0)}$, и константы $\langle K_{\mathrm{DA}}' \rangle$

Рис. 2. Зависимость констант скорости диссоциативного прилипания от температуры T_e' электронов в камере: $I-3-\langle K_{\mathrm{DA}}^{(0)}\rangle;\ I'-3'-\langle K_{\mathrm{DA}}'\rangle;\ I'B-$ значение $\langle K_{\mathrm{DA}}'\rangle$ на выходе из канала, соответствующее начальному распределению Больцмана IB на рис. 1. Параметры разряда те же, что на рис. 1.

на выходе из канала (кривые 1'-3'). Видно, что $\langle K'_{\mathrm{DA}} \rangle$ существенно превышает $\langle K'_{\mathrm{DA}} \rangle$. Учет конечной величины Θ приводит к тому, что отношение $\langle K'_{\mathrm{DA}} \rangle / \langle K'_{\mathrm{DA}} \rangle$ заметно превышает соответствующую величину,

найденную в [1]. Согласно сказанному выше, f_{ν}' и $\langle K_{\mathrm{DA}}' \rangle$ зависят только от $\langle E_{\nu}^{(0)} \rangle$. Это существенно, так как ввиду отсутствия надежных данных о константах переходов между уровнями для больших ν , заселенности $N_{\nu}^{(0)}$ верхних уровней H_2 в разряде могут определяться со значительной погрешностью. В то же время колебательная энергия $\langle E_{\nu}^{(0)} \rangle$, сосредоточенная на нижних уровнях, определяется достаточно надежно. Чтобы оценить зависимость результатов от расчетных констант, нами были использованы константы $\nu-t$ обмена с атомами H из [15] (в отличие от предыдущих расчетов, где использовались данные [16]). Это привело к существенному увеличению $N_{\nu}^{(0)}$ для больших ν , но почти не отразилось не только на $\langle E_{\nu}^{(0)} \rangle$ и $\langle K_{\mathrm{DA}}' \rangle$, но и на $\langle K_{\mathrm{DA}}^{(0)} \rangle$ (при вычислении $\langle K_{\mathrm{DA}}^{(0)} \rangle$ существенны лишь значения $f_{\nu}^{(0)}$ при $\nu \leqslant 7-8$).

Таким образом, показана возможность существенного увеличения константы ДП $\langle K_{\mathrm{DA}} \rangle$ при соответствующей организации течения колебательно возбужденного водорода в канале.

Авторы благодарят С.М. Школьника за полезное обсуждение.

Работа выполнена при подержке гранта INTAS № 94-316.

Список литературы

- [1] Бакшт Ф.Г., Иванов В.Г. // ЖТФ. 1998. Т. 68. В. 10. С. 10–19.
- [2] Wadehra J.M. // Phys. Rev. A. 1984. V. 29. N 1. P. 106–110.
- [3] Skinner D.A., Brunetau A.M., Berlemont P., Courteille C., Leroy R., Bacal M. // Phys. Rev. E. 1993. V. 48. N 3. P. 2122–2132.
- [4] Baksht F.G., Djuzhev G.A., Elizarov L.I., Ivanov V.G., Kostin A.A., Shkolnik S.M. // Plasma Sources. Sci. Technol. 1994. V. 3. N 2. P. 88–98.
- [5] Cacciatore M., Billing G.D. // Surf. Sci. 1990. V. 232. N 1/2. P. 35-50.
- [6] Persson M., Jackson B. // J. Chem. Phys. 1995. V. 102. N 2. P. 1078–1093.
- [7] Jackson B., Persson M. // J. Chem. Phys. 1995. V. 103. N 14. P. 6257–6269.
- [8] Anger G., Winkler A., Rendulic K.D. // Surf. Sci. 1989. V. 220. N 1. P. 1-17.
- [9] Ионих Ю.З. // О и С. 1981. Т. 51. В. 1. С. 76-83.
- [10] Pick M.A., Sonnenberg K. // J. Nuclear Materials. 1985. V. 131. P. 208-220.
- [11] Andrew P.L., Haasz A.A. // J. Appl. Phys. 1992. V. 72. N 7. P. 2749–2757.
- [12] Rettner C.T. // Phys. Rev. Lett. 1992. V. 69. N 2. P. 383-386.
- [13] Bischler U., Sandl P., Bertel E. // Phys. Rev. Lett. 1993. V. 70. N 23. P. 3603–3606.

- [14] Бакшт Ф.Г., Дюжев Г.А., Елизаров Л.И., Иванов В.Г., Никитин А.Г., Школьник С.М. // Письма в ЖТФ. 1993. Т. 19. В. 22. С. 39–43.
- [15] Garcia E., Lagana A. // Chem. Phys. Lett. 1986. V. 123. N 5. P. 365–370;
 J. Phys. Chem. 1986. V. 90. N 6. P. 987–989.
- [16] Schatz G.C. // Chem. Phys. Lett. 1983. V. 94. N 2. P. 183–187.