Расщепление сигналов ЯМР в параллельных полях в легкоплоскостном антиферромагнетике FeBO₃

© Х.Г. Богданова, В.Е. Леонтьев, М.М. Шакирзянов

Казанский физико-технический институт Российской академии наук, 420029 Казань. Россия

E-mail: bogdanova@dionis.kfti.kcn.ru

(Поступила в Редакцию 26 июня 1998 г.)

Представлено экспериментальное наблюдение расщепления линии ЯМР 57 Fe на два пика поглощения в статическом магнитном поле \mathbf{H}_0 , приложенном параллельно переменному полю \mathbf{H}_1 в плоскости базиса. Исследованы полевая зависимость интенсивности и изменения резонансных частот пиков поглощения от поля H_0 . Полученные результаты удается объяснить особенностями слоистой доменной структуры бората железа.

В работе [1], посвященной исследованию ЯМР в легкоплоскостном антиферромагнетике FeBO3, было экспериментально показано, что сигнал ЯМР от ядер ⁵⁷Fe при параллельной ориентации РЧ (\mathbf{H}_1) и постоянного (\mathbf{H}_0) магнитных полей, приложенных в "легкой" базисной плоскости (111), исчезает при значении $H_0 > H_{\rm sat}$ $(H_{\rm sat} \cong 16\,{\rm Oe}\,$ в FeBO₃). Этот результат объяснялся тем, что при исчезновении доменных границ в полях $H_0 > H_{\rm sat}$ пропадает основной вклад в сигнал ЯМР от ядер, расположенных в доменных границах, который существенно превышает вклады от ядер внутри доменов, а также тем, что в однодоменном образце при больших полях коэффициент усиления сигнала при $\mathbf{H}_1 \parallel \mathbf{H}_0$ стремится к нулю с ростом H_0 [1,2]. Исходя из этого предполагалось, что в полях $H_0 \cong H_{\mathrm{sat}}$ происходит монодоменизация образца бората железа. Однако в дальнейшем в [3] на основании данных по ЯМР в перпендикулярных полях $({f H}_1 \perp {f H}_0)$ было показано, что при $H_0 \geq 16\,{
m Oe}$ исчезает лишь определенный тип доменных границ в образце (границ типа Нееля), но сохраняются слои-домены с различным направлением вектора антиферромагнетизма в "легкой" плоскости, что, на наш взгляд, обусловливает наблюдаемое в эксперименте расщепление сигнала ЯМР на три пика поглощения в полях $H_0 > H_{\rm sat}$. Полная монодоменизация образца происходила в наших экспериментах в полях $H_0 \sim 200\,\mathrm{Oe}$, о чем свидетельствует исчезновение боковых пиков и увеличение интенсивности центрального пика поглощения в соответствии с теоретическими расчетами. Необходимо отметить, что эти эффекты наблюдались при больших мощностях РЧ поля.

В настоящей работе изложены результаты экспериментов по ЯМР 57 Fe для геометрии, когда векторы \mathbf{H}_0 и \mathbf{H}_1 были параллельны и располагались в "легкой" плоскости (111) намагничения образца. Полученные результаты доказывают, что особенности доменной структуры FeBO $_3$ в процессе монодоменизации в магнитном поле проявляются в сигналах ЯМР и в рассматриваемом случае.

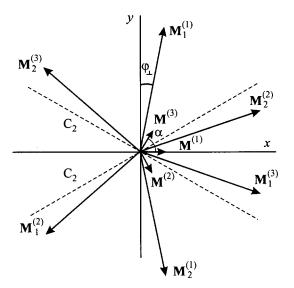
Доменная структура двухподрешеточного легкоплоскостного антиферромагнетика (АФЛП) со слабым ферромагнетизмом FeBO3, согласно магнитооптическим исследованиям [4,5], представляет собой при $T \leq 77\,\mathrm{K}$

разделенные 120° границами типа Блоха (S_{\parallel}) , параллельными "легкой" плоскости, слои-домены с различным направлением вектора антиферромагнетизма $\mathbf{L}^{(k)} = \mathbf{M}_1^{(k)} - \mathbf{M}_2^{(k)}$ [1,5] ($\mathbf{M}_{1,2}^{(k)}$ — намагниченности подрешеток, k = 1, 2, 3 — номер слоя-домена). Вектор $\mathbf{L}^{(k)}$ в отдельном слое-домене перпендикулярен к оси второго порядка C_2 , лежащей в "легкой" плоскости [6,7]. В свою очередь в каждом слое имеются домены, разделенные 180° границами типа Нееля (S_{\perp}) , перпендикулярными базисной плоскости. Границы Неееля проявляют значительную подвижность в очень слабых полях H_0 , приложенных в плоскости базиса и полностью исчезают при $H_0 = H_{\rm sat} \equiv H_{H1} \sim 16\,{\rm Oe}\,\,[1]$. Дальнейший рост H_0 обусловливает из-за поворота векторов $\mathbf{M}^{(k)} = \mathbf{M}_1^{(k)} - \mathbf{M}_2^{(k)}$ до состояния $\mathbf{M}^{(k)} \parallel \mathbf{H}_0$ во всех слоях-доменах исчезновение границ Блоха между слоями [1,3,4,8]. Необходимо отметить, что эффективные поля спонтанной магнитострикции, которые и определяют ориентацию намагниченностей подрешеток в слояхдоменах [4,9], имеют в кристалле FeBO₃ величину порядка $H_{H2} \sim 200 \,\mathrm{Oe} \, [10]$. Отсюда следует, что об исчезновении границ Блоха и о монодоменизации образца можно говорить лишь в полях H_0 , превышающих величину H_{H2} . Таким образом, магнитная структура FeBO₃ в достаточно слабых полях ($H_{H1} < H_0 \ll H_{H2}$) схематично может быть представлена в виде, изображенном на рис. 1, где плоскость ху есть "легкая" базисная плоскость (111). В случае $\mathbf{H}_0 \parallel x \parallel \mathbf{M}^{(1)}$ (соответствующем эксперименту) угол между ${\bf M}^{(2)}, \ {\bf M}^{(3)}$ и ${\bf H}_0$ равен $\alpha < \pi/2$ и α стремится к нулю с увеличением H_0 .

Как уже упоминалось, характерной особенностью сильных магнетиков является то, что в очень слабых полях $H_0 < H_{H1}$ основной вклад в сигнал ЯМР дают ядра, расположенные в доменных границах, поскольку коэффициент усиления для них существенно (примерно в 10^2 раз) превышает коэффициент усиления для ядер в доменах [11]. С ростом H_0 и исчезновением доменных границ при $H_0 > H_{H1}$ основной вклад в сигнал должны внести ядра, расположенные в слоях-доменах, коэффициент усиления для которых зависит от взаимной ориентации векторов $\mathbf{M}_i^{(k)}$ и \mathbf{H}_0 , а также векторов \mathbf{H}_1

и \mathbf{H}_0 . Коэффициент усиления сигнала ЯМР в отдельном слое-домене, согласно [2], при $\mathbf{H}_1 \parallel \mathbf{H}_0$ и при $\mathbf{H}_1 \perp \mathbf{H}_0$ имеет вид

$$\eta_{\parallel}^{(k)} = \left| \frac{H_n \cos \xi^{(k)}}{H_0 \sin \xi^{(k)} + \Delta H_a} \right|, \qquad \mathbf{H}_1 \parallel \mathbf{H}_0;$$


$$\eta_{\perp}^{(k)} = \left| \frac{H_n \sin \xi^{(k)}}{H_0 \sin \xi^{(k)} + \Delta H_a} \right|, \qquad \mathbf{H}_1 \perp \mathbf{H}_0, \qquad (1)$$

где $\xi^{(k)}$ — угол между направлением \mathbf{H}_0 и направлением намагниченности в подрешетке k-го домена, ΔH_a — обменно-усиленное эффективное поле магнитной анизотропии и спонтанной магнитострикции в базисной плоскости. Из выражения (1) следует, что при $\mathbf{H}_0 \parallel \mathbf{M}^{(1)}$ коэффициенты усиления сигнала ЯМР от внутридоменных ядер достаточно велики лишь в слоях-доменах с номерами 2 и 3, тогда как $\eta_{\parallel}^{(1)} \sim 0$, вследствие $\xi^{(1)} \cong \pi/2$, $\cos \xi^{(1)} \cong 0$.

Аналогично существенную зависимость как от величины, так и от взаимной ориентации векторов $\mathbf{M}_i^{(k)}$ и \mathbf{H}_0 проявляют частоты ЯМР $(\omega_i^{(k)})$, определяемые при $H_0 > H_{H1}$ выражениями $(\mathbf{H}_0 \parallel x \parallel \mathbf{M}^{(1)},$ см. рис. 1) [3]

$$\omega_{1}^{(1)} = \omega_{n} - \gamma_{n} H_{0} \sin \varphi_{\perp}, \quad \omega_{1}^{(2)} = \omega_{n} + \gamma_{n} H_{0} \sin(\alpha - \varphi_{\perp}),
\omega_{1}^{(3)} = \omega_{n} - \gamma_{n} H_{0} \sin(\alpha + \varphi_{\perp}), \quad \omega_{2}^{(1)} = \omega_{n} - \gamma_{n} H_{0} \sin \varphi_{\perp},
\omega_{2}^{(2)} = \omega_{n} - \gamma_{n} H_{0} \sin(\alpha + \varphi_{\perp}), \quad \omega_{2}^{(3)} = \omega_{n} + \gamma_{n} H_{0} \sin(\alpha - \varphi_{\perp}),
\omega_{1}^{(1)} = \omega_{2}^{(1)} \equiv \omega_{0}, \qquad \omega_{1}^{(2)} = \omega_{2}^{(3)} \equiv \omega_{+},
\omega_{1}^{(3)} = \omega_{2}^{(2)} \equiv \omega_{-}, \qquad \alpha < \pi/2, \qquad (2)$$

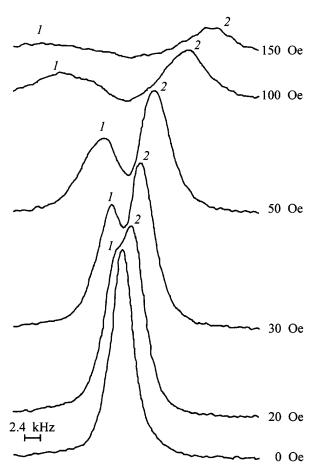
где γ_n — ядерное гиромагнитное отношение, $\omega_{n1}=\omega_{n2}=\omega_n$ — частота ЯМР в сверхтонком поле H_n , φ — угол скоса $(\sin\varphi\approx\varphi\approx(H_0+H_D)/H_E)$, определяемый отклонением намагниченностей подрешеток от строгой

Рис. 1. Ориентация намагниченностей в слоях-доменах бората железа при $H_0 > 16$ Oe.

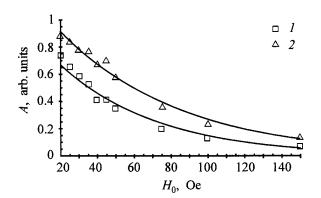
антипараллельности и характеризующий слабый ферромагнетизм $FeBO_3$, H_D — поле Дзялошинского, H_E обменное поле. Причем разность частот $\Delta\omega = \omega_0 - \omega_\pm$, $\Delta\omega=\omega_+-\omega_-$ уже при небольших значениях $H_0>H_{H1}$ больше ширины линии ЯМР $(\delta \omega_n/\gamma_n \,\cong\, 20\,\mathrm{Oe})$ монодоменного образца. Таким образом, если данная модель процесса монодоменизации бората железа в постоянном магнитном поле, подтверждаемая экспериментальными результатами в случае $\mathbf{H}_1 \perp \mathbf{H}_0$, верна (подробно в [3]), то из вышесказанного следует, что в случае параллельной ориентации ${\bf H}_0$ и ${\bf H}_1$ (${\bf H}_1 \parallel {\bf H}_0$) при $H_0 > H_{H1}$ должно наблюдаться расщепление сигнала ЯМР на два пика поглощения, которые расходятся с ростом H_0 . Существенным отличием рассматриваемого случая параллельной ориентации полей ${\bf H}_0$ и ${\bf H}_1$ в базисной плоскости от случая ${\bf H}_1 \perp {\bf H}_0$ является следующее. При полной монодоменизации образца вследствие стремления углов $\xi^{(2)}$ и $\chi^{(3)}$ к $\chi^{(1)}\cong\pi/2$ коэффициенты усиления при $\mathbf{H}_1 \parallel \mathbf{H}_0$ в соответствующих слоях-доменах $\eta_{\parallel}^{(2)}$ и $\eta_{\parallel}^{(3)}$ быстро уменьшаются и, следовательно, сигнал ЯМР должен исчезнуть $(\eta_{||}^{(k)} \to 0)$, тогда как при $\mathbf{H}_1 \perp \mathbf{H}_0$ пропадают лишь боковые пики и увеличивается интенсивность центрального пика, так как, с одной стороны, $\sin \xi^{(2)} = \sin \xi^{(3)} \Longrightarrow \sin \xi^{(1)} \cong 1$ и, с другой стороны, частоты ω_+ , согласно (2), стремятся к значению ω_0 , поскольку угол lpha o 0 вследствие поворота $\mathbf{M}^{(2)}$ и $\mathbf{M}^{(3)}$ до состояния $\mathbf{M}^{(k)} \parallel \mathbf{H}_0$ [3].

Экспериментальные результаты и обсуждение

В работе исследовались зависимости спада свободной индукции (ССИ) и его частотного спектра после Фурье-преобразования от величины внешнего магнитного поля H_0 .


Измерения проводились для параллельной ориентации РЧ и постоянного полей ($\mathbf{H}_1 \parallel \mathbf{H}_0$), при этом векторы \mathbf{H}_0 и \mathbf{H}_1 лежали в "легкой" плоскости намагничения (111).

Способ приготовления образцов, их характеристики, а также методика измерений подробно изложены в [12–14].


В рассматриваемом случае в полях $H_0 \geq 20$ Ое и при $H_1 \geq H_{1 {
m cr}}$ было обнаружено расщепление сигнала ЯМР ядер $^{57}{
m Fe}$ FeBO $_3$ на два пика поглощения на частотах, близких к частоте ЯМР в нулевом магнитном поле $\omega = \omega_n \; (\omega_n/2\pi = 75.395 \, {
m MHz}) \; ({
m puc.} \; 2).$ Оба сигнала поглощения возникали во всем диапазоне интенсивности РЧ поля $H_1 \geq H_{1 {
m cr}}$, при этом зависимости амплитуды обоих сигналов от величины H_0 носят почти монотонный характер (рис. 3). Изменение резонансных частот этих линий $\Delta \nu_\pm = \Delta \omega_\pm/2\pi = (\omega_\pm - \omega_n)/2\pi$ имеет линейную зависимость от H_0 (рис. 4). Здесь $H_{1 {
m cr}}$ — величина переменного магнитного поля, при которой впервые проявляются пики поглощения для данного значения $H_0 \geq 20$ Ое. Величина $H_{1 {
m cr}}$ соответствует ослаблению выходной мощности передатчика на 39 dB ($P_{
m max} \cong 1 \, {
m kW}$).

Наблюдаемое расщепление сигнала ЯМР лишь при больших мощностях РЧ поля обусловлено, на наш взгляд, следующим обстоятельством. Коэффициенты

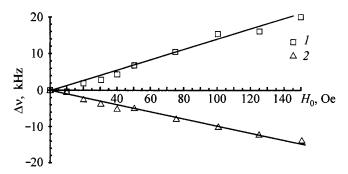

усиления $\eta_{\parallel}^{(k)}$ быстро уменьшаются с ростом H_0 не только как $1/H_0$, но и вследствие поворота векторов $\mathbf{M}^{(k)}$ к направлению \mathbf{H}_0 ($\boldsymbol{\xi}^{(k)} \to \pi/2$, $\cos \boldsymbol{\xi}^{(k)} \to 0$ (1)). В то же время хорошо известно [14], что для наблюдения сигнала ЯМР требуется, чтобы угол отклонения ядерной намагниченности от положения равновесия, определяемый величиной $\eta_{\parallel}^{(k)}H_1$, был близок к $\pi/2$. Отсюда следует, что для компенсации уменьшения коэффициента усиления с ростом H_0 необходимо существенное

Рис. 2. Спектры ЯМР ⁵⁷ Fe при различных величинах поля H_0 (ослабление мощности $\Delta P = -20\,\mathrm{dB}$).

Рис. 3. Полевая зависимость интенсивности ССИ $(\Delta P = -20\,\mathrm{dB}).$

Рис. 4. Зависимости изменения частоты пиков поглощения (1,2) от поля H_0 . Точки — эксперимент, сплошные линии соответствуют (2).

увеличение амплитуды переменного поля H_1 . Очевидно, что именно этот фактор не позволил авторам [1], проводившим исследование ЯМР в FeBO₃ при небольших мощностях РЧ поля, наблюдать описываемые здесь и в [3] эффекты расщепления сигналов ЯМР.

В заключение отметим, что результаты настоящей работы, как и результаты [3], подтверждающие модель доменной структуры бората железа и динамику процесса монодоменизации образца в постоянном магнитном поле, позволяют использовать предложенную экспериментальную методику ЯМР, основанной на применении сильных РЧ полей, при исследовании доменной структуры магнитоупорядоченных веществ.

Работа выполнена при финансовой поддержке РФФИ (96-02-16-489).

Список литературы

- [1] Н.М. Саланский, Е.А. Глозман, В.Н. Селезнев. ЖЭТФ **68**, 4, 1413 (1975).
- [2] D.H. Anderson. Phys. Rev. 151, 1, 247 (1966).
- [3] Х.Г. Богданова, В.А. Голенищев-Кутузов, Л.И. Медведев, М.М. Шакирзянов. ФТТ 33, 2, 379 (1991).
- [4] D.E. Lacklison, J. Chadwick, J.L. Page. Appl. Phys. D5, 1, 810 (1972).
- [5] J. Haisma, W.T. Stacy. J. Appl. Phys. 44, 7, 3367 (1973).
- [6] В.Д. Дорошев, И.М. Крыгин, С.Н. Лукин, А.Н. Молчанов, А.Д. Прохоров, В.В. Руденко, В.Н. Селезнев. Письма в ЖЭТФ 29, 5, 286 (1979).
- [7] Т.К. Соболева, Е.Ф. Стефановский. ФНТ 6, 10, 1314 (1980).
- [8] А.Г. Гуревич. Магнитный резонанс в ферритах и антиферромагнетиках. Наука, М. (1973). 591 с.
- [9] Е.А. Туров, В.Г. Шавров. УФН **140**, *3*, 429 (1983).
- [10] R. Diehl, W. Jantz, B.I. Nolang, W. Wettling. Current Topics in Mater. Sci. / Ed. E. Kadlis. 11, 242 (1986).
- [11] Е.А. Туров, М.П. Петров. Ядерный магнитный резонанс в ферро- и антиферромагнетиках. Наука, М. (1969). 260 с.
- [12] Р.А. Багаутдинов, Х.Г. Богданова, В.А. Голенищев-Кутузов, Г.Р. Ениксева, Л.И. Медведев. ФТТ 28, 3, 924 (1986).
- [13] Х.Г. Богданова, В.А. Голенищев-Кутузов, Л.И. Медведев, М.И. Куркин, Е.А. Туров. ЖЭТФ 95, 2, 613 (1989).
- [14] М.И. Куркин, Е.А. Туров. ЯМР в магнитоупорядоченных веществах и его применение. Наука, М. (1990). 244 с.