Магнитоакустический резонанс на ядерных спиновых волнах в кубическом антиферромагнетике RbMnF₃

© Х.Г. Богданова, В.А. Голенищев-Кутузов, М.Р. Назипов, С.В. Петров*, М.М. Шакирзянов

Казанский физико-технический институт Российской академии наук,

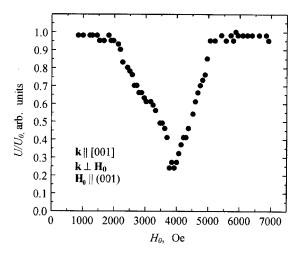
420029 Казань, Россия

*Институт физических проблем им. П.Л. Капицы Российской академии наук, 117973 Москва, Россия

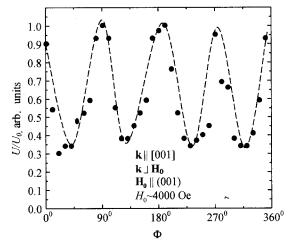
E-mail: bogdanova@dionis.kfti.kcn.ru

(Поступила в Редакцию 23 июля 1998 г.)

Экспериментально изучено явление магнитоакустического резонанса на ядерных спиновых волнах в кубическом антиферромагнетике RbMnF₃. Обнаружено резонансное по постоянному магнитному полю H_0 изменение амплитуды прошедшего через образец акустического импульса с максимумом затухания при $H_0 \approx 4 \cdot 10^3$ Ое, обусловленное возбуждение в условиях ЯМАР ядерных спиновых волн. Исследование угловой зависимости затухания показало 90°-ную периодичность в соответствии с тем, что направление [001], вокруг которого производится вращение, является осью 4-го порядка кристалла. Из анализа закона дисперсии ЯСВ получено, что продольный ультразвук, распространяющийся вдоль оси [001], перпендикулярно H_0 , возбуждает ту ветвь ЯСВ, частота которой зависит от величины постоянного магнитного поля.


1. В работе [1] сообщалось об акустическом возбуждении ядерных спиновых волн (ЯСВ) в условиях ядерного магнитоакустического резонанса (ЯМАР) в спиновой системе ядер 55Мп в легкоплоскостном антиферромагнетике (AФ) KMnF₃. Настоящая работа посвящена экспериментальному изучению условий акустического возбуждения ЯСВ в спин-системе ядер 55Мn в кубическом АФ RbMnF₃. Существование ЯСВ в двухподрешеточном АФ RbMnF₃ определяется эффективным косвенным взаимодействием магнитных моментов ядер \mathbf{m}_{i} и \mathbf{m}'_{i} через магноны, радиус которого r(i) (i = 1, 2)достигает макроскопических размеров для обеих ветвей магнонного спектра ($r \approx (10^3 - 10^4)a$, a — межатомное расстояние в кристалле) [2]. Это обеспечивает формирование двух ветвей ($\omega_{n_i}(\mathbf{q})$) ЯСВ при гелиевых температурах, когда спин-система ядер ⁵⁵Mn находится в неупорядоченном парамагнитном состоянии [2]. Широкая по сравнению с шириной линии ЯМР зона ЯСВ [2,3] и эффективное магнитоупругое (МУ) взаимодействие [3] позволяют надеяться на возможность наблюдения ЯМАР и акустического возбуждения ЯСВ также и в соединении RbMnF₃. Поскольку экспериментальная методика основана на измерении коэффициента затухания ультразвукового импульса при прохождении через образец в условиях ЯМАР, заранее были выбраны такое направление распространения продольного звука и ориентация постоянного магнитного поля ${\bf H}_0$, при которой исключалось резонансное поглощение упругой энергии однородными колебаниями ядерной намагниченности на частотах ЯМР ($\omega_{n_i}(0)$) (эффект ядерного акустического резонанса (ЯАР)). Эффект ЯАР подробно исследовался в данном соединении как теоретически, так и экспериментально в [3].

2. Экспериментально изучалась зависимость коэффициента затухания продольного ультразвука с частотой $\nu_s = 640 \, \mathrm{MHz}$, распространяющегося вдоль оси четвертого порядка [001] ($\mathbf{k} \parallel [001]$, \mathbf{k} — волновой вектор зву-


ка), от величины и направления постоянного магнитного поля ${\bf H}_0$, приложенного в плоскости (001) (${\bf H}_0 \perp {\bf k}$). Описание аппаратуры и методика измерений подробно изложены в [1,4].

Монокристаллы RbMnF₃, на которых проводились измерения, были изготовлены в форме параллелепипедов с размерами $4 \times 4 \times 5$ mm, ребра которых совпадали с основными кристаллографическими осями [100], [010], [001]. Торцевые поверхности были плоскими и взаимно параллельными с точностью до 1/5 длины акустической волны. Ультразвуковые волны возбуждались в импульсном режиме на одной из торцевых поверхностей (001) образца и детектировались на противоположной. Измерения проводились при $T = 4.2 \, \mathrm{K}$. Гелиевый криостат с образцом вращался вокруг своей оси R, всегда перпендикулярной \mathbf{H}_0 . Угол между осью R и волновым вектором ${\bf k}$ устанавливался равным 0°. Величина постоянного магнитного поля менялась от 0 до 8000 Ое. Использовался однократно прошедший через образец акустический импульс. Отношение его амплитуды (U) к амплитуде падающего звука (U_0) определяет измеряемый в эксперименте коэффициент затухания $\alpha = U/U_0$.

При исследовании зависимости затухания ультразвука от величины магнитного поля, приложенного в плоскости (001), было обнаружено резонансное по полю изменение коэффициента затухания α (рис. 1). Максимум затухания наблюдался при $H_0 \approx 4000$ Ое. Ширина линии на половине высоты составила по полю $\Delta H \approx 1000$ Ое. Исследование угловой зависимости коэффициента затухания α от направления поля в плоскости (001) при значении $H_0 = 4000$ Ое (путем вращения образца вокруг оси криостата $R \parallel [001]$) показало ожидаемую 90° -ную периодичность в соответствии с тем, что направление [001] является осью 4-го порядка (рис. 2). При определенных направлениях постоянного магнитного поля затухание ультразвука полностью отсутствовало ($\alpha = 1$). Причем угол между максимальными и минимальными значения-

Рис. 1. Зависимость отношений U/U_0 от величины постоянного магнитного поля H_0 .

Рис. 2. Угловая зависимость отношений U/U_0 на частоте 664 MHz.

ми коэффициента затухания составлял 45° . Из соображений симметрии можно предположить, что экстремумы в угловой зависимости связаны с направлениями \mathbf{H}_0 , параллельными кристаллографическим осям типа [110] и [010] в плоскости (001). Это объясняется прежде всего тем, что в достаточно сильных полях от направления \mathbf{H}_0 зависит положение намагниченностей подрешеток, что в свою очередь и определяет величину компонент МУ взаимодействия.

3. В рассматриваемом случае МУ взаимодействие продольных акустических колебаний, распространяющихся вдоль оси $[001] \parallel \mathbf{k}$, с намагниченностями подрешеток \mathbf{M}_i (i=1,2) в кубическом АФ в системе координат с осями $x \parallel [100], y \parallel [010], z \parallel [001]$ записывается в виде [3,5]

$$V_{ME} = \frac{B_1}{M_0^2} (M_{1z}^2 + M_{2z}^2) U_{zz}(z,t) + \frac{B_3}{M_0^2} M_{1z} M_{2z} U_{zz}(z,t), (1)$$

где B_1 и B_3 — МУ постоянные, $M_0 = |M_1| = |M_2|$ — равновесное значение намагниченностей подрешеток,

 $U_z(z,t)$ — упругие смещения под действием внешнего акустического поля и $U_{zz}(z,t)$ — соответствующая компонента упругих деформаций, определяемая как $U_{zz}(z,t) = \partial U_z(z,t)/\partial z$. В постоянном магнитном поле $H_0 = H_{01} \approx 4000 \,\mathrm{Oe}$, при котором наблюдается резонансное изменение коэффициента затухания $\alpha(H_0)$, антиферромагнитное соединение RbMnF₃ в гелиевых температурах находится в состоянии, когда вектор ферромагнетизма $\mathbf{M} = (\mathbf{M}_1 + \mathbf{M}_2) \parallel \mathbf{H}_0$, а вектор антиферромагнетизма ${\bf L}=({\bf M}_1-{\bf M}_2)\perp {\bf H}_0$ ("спин-флоп" фаза [3,6]). Кубический АФ находится в "спин-флоп" фазе, если выполняется неравенство $H_0^2 > 2H_E H_A$, где H_E — обменное поле, H_A — поле кубической анизотропии. Для известных величин обменного поля $H_E \approx 0.82 \cdot 10^6\,\mathrm{Oe}$ и поля анизотропии $H_A \approx 4.6\,\mathrm{Oe}$ в кристалле $RbMnF_3$ [3] данное неравенство хорошо выполняется уже в полях $H_0 \geqslant 3000\,\mathrm{Oe}$. Величина вектора **M**, равная $|\mathbf{M}|=2M_2\sin\frac{H_0}{2H_E}$, в применяемых полях H_0 очень мала и $|\mathbf{L}| \gg |\mathbf{M}|$. С учетом этого неравенства выражение (1) для МУ взаимодействия можно представить в виде

$$V_{ME} = \frac{B}{2M_0^2} L_z^2 U_{zz}(z, t).$$
 (2)

В полярной системе координат, где θ — полярный угол вектора **L**, отсчитываемый от направления [001], φ — азимутальный угол, отсчитываемый от направления [100], вектор **L** характеризуется компонентами

$$L_x = L_0 \cos \varphi \sin \theta$$
, $L_y = L_0 \sin \theta \sin \varphi$, $L_z = L_0 \cos \theta$, $L_0 = 2M_0$,

а МУ взаимодействие задается в виде

$$V_{ME} = 2B\cos^2\theta U_{zz}(z,t). \tag{3}$$

Воздействие акустических волн на ядерную спинсистему в магнетиках осуществляется посредством магнитоупругих полей \mathbf{h}_{iu} (i=1,2), определяемых как вариационных производные от МУ энергии $\mathbf{h}_{iu}(z,t) = \delta V_{ME}(z,t)/\delta \mathbf{M}_i$ и обусловленных колебаниями намагниченностей подрешеток \mathbf{M}_i (или векторов \mathbf{L} и \mathbf{M}) [7]. В нашем случае малые колебания вектора \mathbf{L} , вызванные полем упругих деформаций $U_{zz}(z,t)$, характеризуются малыми изменениями угла θ ($\Delta\theta$, $\theta=\theta_0+\Delta\theta$), где θ_0 — равновесное значение θ . Считая деформации U_{zz} малыми и разлагая выражение (3) по степеням $\Delta\theta$ с точностью до 2-го порядка малости, имеем

$$V_{ME} \approx 2B \sin 2\theta_0 \Delta \theta U_{zz}(z,t).$$
 (4)

Выражение (4) для МУ взаимодействия не содержит явной зависимости от угла φ . Однако, согласно [6,8], известно, что в "спин-флоп" фазе вектор L лежит в плоскости, перпендикулярной \mathbf{H}_0 , и меняет свое равновесное положение от состояния $\mathbf{L} \parallel [010] \ (\theta_0 = \pi/2)$ при $\mathbf{H}_0 \parallel [100]$ до состояния $\mathbf{L} \parallel [111] \ (\theta_0 = \arcsin 2/3 \ \mathrm{B})$

плоскости (1 $\bar{1}0$)) при $\mathbf{H}_0 \parallel [110]$ и от данного состояния до состояния $\mathbf{L} \parallel [100] \; (\theta_0 = \pi/2)$ при $\mathbf{H}_0 \parallel [010]$. Таким образом, если ввести угол Ф, характеризующий направление ${\bf H}_0$ в плоскости (001) (отсчитывается от направления [100]), то при изменении Ф в интервале $0\leqslant\Phi\leqslant\pi/4$ угол θ_0 меняется от значения $\theta_0=\pi/2$ до $\theta_0 = \arcsin 2/3$ и от значения $\theta_0 = \arcsin 2/3$ до $\theta_0 = \pi/2$ при изменении Φ в интервале $\pi/4 \leqslant \Phi \leqslant \pi/2$ (аналогично при H_0 , находящимся в остальных четвертях, образуемых в плоскости (001) осями [100] и [010]). Очевидно, что угол θ_0 является функцией угла Ф. Однако получить аналитическое выражение для функции $\theta_0(\Phi)$ удается лишь в отмеченных выше частных случаях, когда направление \mathbf{H}_0 совпадает с кристаллографическими осями кубического кристалла. Численные же расчеты требуют знания всех необходимых параметров.

В то же время на основании вышеизложенного можно объяснить основные моменты в угловой зависимости коэффициента затухания α от направления \mathbf{H}_0 . Согласно выражению (4), из вышесказанного следует, что продольные акустические колебания, распространяющиеся вдоль оси [001], не взаимодействуют с колебаниями намагниченностей подрешеток при \mathbf{H}_0 || [100] и \mathbf{H}_0 || [010], и что МУ взаимодействие максимально при \mathbf{H}_0 || [110]. Этот вывод согласуется с данными [3,5]. Таким образом, можно утверждать, что наблюдаемый на эксперименте максимум затухания соответствует направлению поля \mathbf{H}_0 || [100] и что при \mathbf{H}_0 || [010] или [100] $\alpha=1$. То есть акустический импульс проходит через образец без затухания.

Согласно расчетам, проведенным в [3], коэффициент поглощения энергии ультразвука, обусловленного резонансными переходами между уровнями энергии в спинсистеме ядер 55 Mn (явление ЯАР), равен нулю при Н \parallel [110]. И следовательно, резонансное по магнитному полю изменение интенсивности звука в рассматриваемом интервале частот ($\nu_s \approx 640\,\mathrm{MHz}$) обусловлено иными причинами. На наш взгляд, наблюдаемый эффект резонансного затухания связан, как и в кристалле КМnF3 [1], с возбуждением ЯСВ акустическим полем вблизи точки пересечения дисперсных кривых звука и ЯСВ, т.е. в условиях ЯМАР.

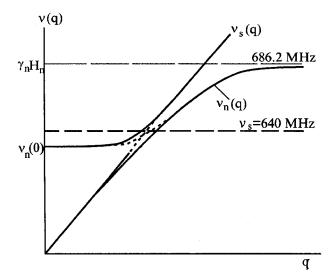
Из анализа спектра частот ЯСВ в кубическом RbMnF₃ [9,3] следует, что при значении $H_0 \approx 4000\,\mathrm{Oe}$ на частоте $\nu_s \approx 640\,\mathrm{MHz}$ возможно пересечение лишь одной из ветвей ЯСВ $\nu_{ni}(\mathbf{q})$ с кривой дисперсии звука $\nu(\mathbf{k})$. Данная ветвь ЯСВ связана с полезависимой ветвью магнонного спектра, соответствующей колебаниям вектора \mathbf{L} в вертикальной плоскости, проходящей через ось [001] [8]. Частота этой ветви ЯСВ определяется выражением [9]

$$\nu_{n1}(\mathbf{q}) \approx \nu_n \left\{ 1 - \frac{2H_E H_N}{\gamma_e^{-2} \omega_{e1}^2(0) + H_E^2 (a\mathbf{q})^2 / 12} \right\}^{1/2},$$

$$\nu_n = \gamma_n H_n, \tag{5}$$

где γ_e, γ_n — гиромагнитные отношения для электронов и ядер, H_n, H_N — сверхтонкие поля соответственно на

ядрах и электронах **q** — волновой вектор ЯСВ, $\omega_{e1}(0)$ — частота однородного АФМР, равная


$$\omega_{e1}^{2}(\theta) = \gamma_{e}^{2}(H_{0}^{2} + 3B(\theta_{H}, \Phi)H_{E}H_{A} + 2H_{E}H_{N}).$$
 (6)

Коэффициент $B(\theta_H, \Phi)$ в (6) зависит от ориентации постоянного магнитного поля относительно кристаллографических осей [100], [010], [001] и в случае, когда \mathbf{H}_0 лежит в плоскости (001), задается выражением [8] (θ_H — полярный, Φ — азимутальный углы вектора \mathbf{H}_0)

$$B(\pi/2, \Phi) = -4\cos 4\Phi/(7 + \cos 4\Phi), \quad \theta_H = \pi/2.$$
 (7)

При $\Phi=\pi/4$ $B(\Phi)$ имеет максимальное значение, равное $B(\Phi)=2/3$. В этом случае частота ЯМР, соответствующая однородным колебаниям ядерной намагниченности с ${\bf q}=0$, также максимальна (см. (6)) и при значениях полей $H_0=4000$ Ое, $H_E=0.82\cdot 10^6$ Ое, $H_A=4.6$ Ое, $H_N=9.43/T$ (T=4/2) [3] приблизительно равна $\nu_{n1}(0)\approx 635$ МНz.

Таким образом, частота ЯСВ, совпадающая с частотой звука ν_s , попадает в область с сильной дисперсией $\nu_{n1}(\mathbf{q})$. Причем волновой вектор ЯСВ \mathbf{q} , определенный из выражения (6), при $\nu_{n1}(\mathbf{q}) = 640 \,\mathrm{MHz}$, $\gamma_n H_n/2\pi = 686.2 \,\mathrm{MHz}, \ a = 3 \cdot 10^{-8} \,\mathrm{cm}$ практически совпадает по величине с волновым вектором звука | k |, вычисляемого из условия $\nu_s = V k$ при скорости звука $V = 5.51 \cdot 10^5 \,\mathrm{cm} \cdot \mathrm{s}^{-1}$. Отсюда следует, что в точке пересечения кривых дисперсии звука и ЯСВ выполняется условие магнитоакустического резонанса на ЯСВ, аналогичное эффекту МАР на магнонах [10]. При этом в образце распространяется связанная магнитоупругая волна, характеризуемая в каждой точке магнитной и упругой компонентами. И очевидно, что наблюдаемое в условиях ЯМАР уменьшение интенсивности акустической компоненты связано с преобразованием упругой энергии в магнитную энергию ЯСВ [10]. Резонансный по

Рис. 3. Спектры ядерных магнитоупругих волн в условиях существования ЯСВ.

магнитному полю характер затухания звука обусловлен тем, что с увеличением H_0 точка пересечения дисперсных кривых подводится к частоте звука, возбуждаемого в образце, вследствие изменения $\nu_{n1}(\mathbf{q})$ (рис. 3).

Заметим, что акустическое возбуждение второй (поленезависимой [3]) ветви ЯСВ при заданной геометрии векторов \mathbf{k} и \mathbf{H}_0 ($\mathbf{k} \perp \mathbf{H}_0$, $\mathbf{k} \parallel$ [001]) и заданной частоте звука невозможно. С одной стороны, эта ветвь ЯСВ связана с колебаниями вектора \mathbf{L} в плоскости, параллельной (001), характеризующимися изменением азимутального угла φ . Возбуждение этого типа колебаний \mathbf{L} упругим полем требует изменения взаимной ориентации векторов \mathbf{k} и \mathbf{H}_0 [1,3]. С другой стороны, частота второй ветви ЯСВ определяется, согласно [2,3], выражениями

$$\nu_{n2}(\mathbf{q}) = \nu_n \left\{ 1 - \frac{2H_E H_N}{\gamma_e^{-2} \omega_{e2}^2(0) + H_E^2(aq)^2 / 12} \right\}^{1/2}, \quad (8)$$

$$\omega_{e2}(0) = \gamma_e (2H_E H_N + 3C(\theta_H, \Phi)H_E H_A)^{1/2},$$
 (9)

где $\omega_{e2}(0)$ — частота однородного АФМР, соответствующего поленезависимой моде магнонного спектра [11]. Коэффициент $C(\theta_H, \Phi)$, входящий в выражение для $\omega_{e2}(0)$, как и коэффициент $B(\theta_H, \Phi)$, зависит от ориентации постоянного магнитного поля \mathbf{H}_0 относительно кристаллографических осей, и при $\mathbf{H}_0 \parallel$ [110] $C(\pi/2, \pi/4) = 2/3$ [11]. Подставляя в (8) и (9) известные значения частот и полей (см. выше), получаем при $|\mathbf{q}| = 0 \ \nu_{n2}(0) \approx 561.7 \ \mathrm{MHz}$. Отсюда следует, что для выполнения условий ЯМАР на второй ветви ЯСВ при заданном законе дисперсии звука $\nu_s = Vk$ необходимо использовать ультразвук с гораздо меньшей частотой, чем $\nu_s = 640 \ \mathrm{MHz}$.

В заключение необходимо отметить, что полное теоретическое описание акустического возбуждения ЯСВ в условиях ЯМАР требует решения совместной системы уравнений движения электронных и ядерных намагниченностей и уравнений теории упругости, полученных с учетом сверхтонкого и МУ взаимодействий. Подобный расчет проводился при изучении акустического возбуждения ЯСВ в легкоплоскостном АФ КМпГ3 в [1,12]. В данной работе не ставили такой цели и поэтому ограничились лишь анализом возможности акустического возбуждения в условиях ЯМАР ЯСВ в кубическом АФ RbMnГ3. В дальнейшем предполагаем провести наряду с экспериментальным изучением условий возбуждения обеих ветвей ЯСВ также и подробный теоретический расчет этого явления.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 96-02-16489).

Список литературы

- Х.Г. Богданова, В.А. Голенищев-Кутузов, М.И. Куркин, В.Е. Леонтьев, М.Р. Назипов, В.В. Николаев, М.М. Шакирзянов. ЖЭТФ 112, 5(11), 1830 (1997).
- [2] М.И. Куркин, Е.А. Туров. ЯМР в магнитоупорядоченных веществах и его применения. Наука, М. (1990). 244 с.
- [3] J.B. Merry, D.I. Bolef. Phys. Rev. **B4**, 5, 1572 (1971).
- [4] Х.Г. Богданова, В.А. Голенищев Кутузов, В.Е. Леонтьев, М.Р. Назипов, М.М. Шакирзянов. ПТЭ 4, 60 (1997).
- [5] R.L. Melcher, D.I. Bolef. Phys. Rev. 186, 2, 491 (1969).
- [6] P.H. Cole, W.J. Ince. Phys. Rev. 150, 2, 377 (1966).
- [7] В.И. Ожогин, В.Л. Преображенский. УФН 155, 4, 593 (1988).
- [8] Dale T. Teany, M.J. Freiser, R.W.H. Stevenson. Phys. Rev. Lett. 9, 5, 212 (1962).
- [9] Е.А. Туров, М.П. Петров. Ядерный магнитный резонанс в ферро- и антиферромагнетиках. Наука, М. (1969). 260 с.
- [10] А.И. Ахиезер, В.Г. Барьяхтар, С.В. Пелетминский. Спиновые волны. Наука, М. (1967). 368 с.
- [11] M.J. Freiser, P.E. Seideu, Dale T. Teaney. Phys. Rev. Lett. 10, 7, 293 (1963).
- [12] Kh.G. Bogdanova, V.A. Golenishev-Kutuzov, V.E. Leont'yev, M.I. Kurkin, M.R. Nazipov, M.M. Shakirzuanov. Appl. Magn. Res. 14, 4 (1998).