О двух видах релаксации поляризации полидоменных сегнетоэлектриков в электрическом поле

© В.В. Гладкий, В.А. Кириков, Е.С. Иванова, С.В. Нехлюдов

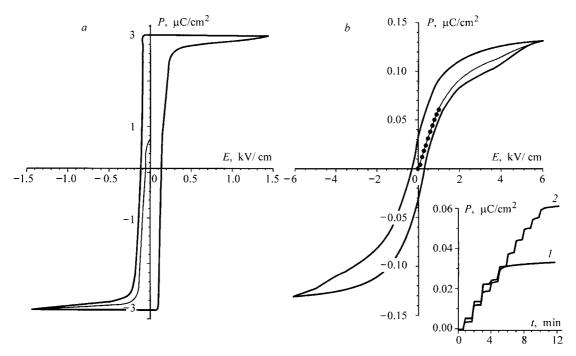
Институт кристаллографии им. А.В. Шубникова Российской академии наук, 117333 Москва, Россия

(Поступила в Редакцию 20 июля 1998 г.)

На примере кристаллов TGS и Rb_2ZnCl_4 исследованы особенности кинетики поляризации и деполяризации полидоменных сегнетоэлектриков с прямоугольной и тонкой "вытянутой" петлей диэлектрического гистерезиса. Показано, что в отличие от первого для второго кристалла локальная свободная энергия асимметрична относительно направления поляризации, нет определенного значения коэрцитивного поля, а в медленной термоактивационной релаксации принимает участие только часть объема кристалла. Во всех случаях медленная релаксация следует универсальному эмпирическому степенному закону. На основе экспериментальных данных построены функции распределения времен релаксации в кристаллах, проведены сравнительные оценки параметров релаксации и энергетических барьеров для доменных стенок.

В результате многолетних исследований релаксационных процессов в диэлектриках были получены обширные сведения об особенностях кинетики поляризации различных поли- и монокристаллических материалов [1]. В последние годы в основном из-за возможных технических применений наибольший интерес вызывают неоднородные системы (смешанные или дефектные кристаллы, пространственно модулированные структуры [2,3], стекла и т. п.), для которых характерны множество долгоживущих метастабильных состояний и как следствие чрезвычайно медленная релаксация к термодинамическому равновесию.

Полидоменные сегнетоэлектрики являются примером таких неоднородных систем и, по-видимому, могут служить модельным объектом для экспериментального исследования общих особенностей медленной кинетики структуры и физических свойств благодаря возможности использования высокочувствительных электрических методов измерения. Медленная релаксация поляризации кристалла триглицинсульфата (TGS) в слабых электрических полях исследовалась нами в [4], где была показана возможность восстановления по экспериментальным данным спектров распределения потенциальных барьеров для доменных стенок по энергиям и выявлена их трансформация при изменении состояния доменной структуры, поверхности и величины поля. Анализ экспериментальных данных проводился в предположении о термоактивационном характере процесса и о независимости центров релаксации (зародышей), а также об их аддитивном вкладе в общую поляризацию. Для кристалла TGS эти предположения представляются вполне естественными, поскольку во время измерений в слабых полях, много меньших коэрцитивного, отсутствовал быстрый процесс переключения поляризации над барьерами. В настоящей работе приводятся результаты регистрации и анализа другого вида медленной релаксации доменной структуры на примере кристалла Rb₂ZnCl₄ (RZC), для которого отсутствует определенное значение коэрцитивного поля и существует целый интервал таких полей, а равновесное значение поляризации зависит от величины поля. Результаты этих исследований сравниваются с данными для кристалла TGS.


1. Методика эксперимента

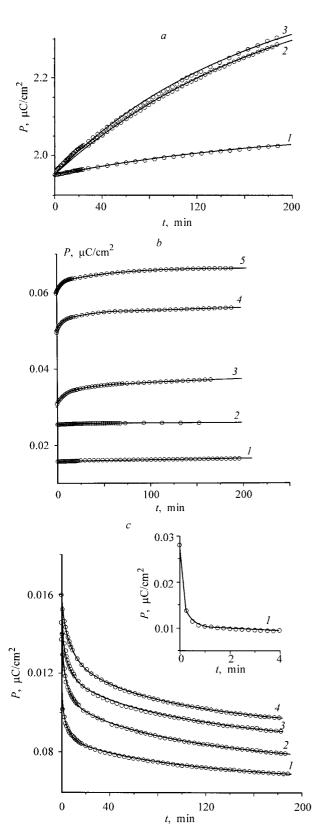
Измерение поляризации кристалла проводилось с помощью равноплечего электрометрического моста, в одно плечо которого включалась эталонная емкость C_0 , во второе — исследуемый кристалл, а в два других — источники постоянных поляризующего кристалл V и компенсирующего у напряжений. Нуль-индикатором в диагонали моста служил электрометр В7-29. При балансировке моста с помощью подбора величины у напряжение на кристалле оказывалось равным V, а электрический заряд на его электродах $Q = C_0 v$. Выбирая определенную величину C_0 , можно задавать необходимую чувствительность схемы $\Delta Q = C_0 \Delta v$. Максимальная чувствительность (при $C_0 = 10 \,\mathrm{pF}, \; \Delta v = 1 \,\mathrm{mV}$) составляла $\Delta Q = 10^{-8} \, \mu$ С. Компенсация напряжения в диагонали моста и регистрация данных измерения осуществлялись автоматически с помощью системы, обеспечивающей построение зависимости компенсирующего напряжения v, а следовательно, и заряда Q или поляризации P = Q/S(S — площадь электродов) от времени на экране персонального компьютера типа ІВМ РС. Подробное описание устройства и работы системы приводится в [4].

Образцы кристаллов имели форму прямоугольных пластин размером $4\times5\times1\,\mathrm{mm}$, вырезанных из монокристалла перпендикулярно полярной оси Y. Большие грани пластины шлифовались и покрывались электропроводящей серебряной пастой. Образцы помещались в криостат, погрешность стабилизации температуры не превышала $0.01\,\mathrm{K}$.

Измерения проводились в полярной фазе кристаллов при фиксированных температурах при трех следующих режимах изменения внешнего электрического поля: регистрация поляризации при медленном ступенчатом циклическом изменении поля с периодом ~1.5 часа

9* 499

Рис. 1. Квазистатические петли диэлектрического гистерезиса поляризации P в электрическом поле E для кристаллов TGS и Rb₂ZnCl₄. a — TGS, T = 293 K, T = 323 K; b — Rb₂ZnCl₄, T = 175 K, T = 194.9 K, на вставке — зависимость P от времени при ступенчатом изменении E.


(квазистатические петли диэлектрического гистерезиса), при практически мгновенном включении постоянного поля относительно небольшой амплитуды и при его выключении после непродолжительной (\sim 5 min) предварительной поляризации (деполяризация).

2. Результаты и обсуждение

Различие процессов поляризации в кристаллах TGS и RZC явно обнаруживается уже при регистрации петель диэлектрического гистерезиса в периодическом электрическом поле (рис. 1). У первого кристалла петля имеет отчетливо выраженную прямоугольную форму и надежно определяемые значения коэрцитивного поля E_c , совпадающего с полушириной петли, и спонтанной поляризации P_s . После уменьшения поля E до нуля остаточная поляризация почти равна P_s и долгое время практически не изменяется (время деполяризации велико). У второго кристалла петля имеет вытянутую форму, возможность надежного определения P_s по изображению петли весьма сомнительна, и при уменьшении E до нуля сравнительно быстро исчезает остаточная поляризация Р (время деполяризации мало). Петли гистерезиса на рис. 1 проходят через экспериментальные значения P, полученные при резком ступенчатом изменении поля E на 20–100 V/cm с интервалом 1 min. За это время заканчивается быстрая стадия релаксации Р и начинается медленный процесс дальнейшего ее изменения. Быстрые стадии у кристаллов также существенно различаются. У

TGS в полях $E < E_c$ поляризация изменяется плавно, следуя определенному временному закону. У RZC в широком интервале значений полей (как меньших, так и больших полуширины петли на рис. 1, b) P сначала изменяется скачком, а затем плавно, и на кривой зависимости P от времени существует точка излома, свидетельствующая о резком изменении механизма релаксации доменной структуры. Фрагмент такой зависимости от нулевого значения P до значения при E = 0.5 (кривая I) и $1 \, \mathrm{kV/cm}$ (кривая 2) приведен на вставке к рис. 1, b. Продолжительность быстрой стадии релаксации P при резком изменении E не превышает $15 \, \mathrm{s}$. Значения P, соответствующие моментам окончания скачков, находятся на кривой первой четверти периода петли, приведенной на рис. 1, b (показаны точками).

Особенность начальных стадий поляризации P для двух кристаллов проявляется также на кривых релаксации в сравнительно большом промежутке времени (рис. 2, a, b). После мгновенного включения поля E в начальный момент времени (t=0) медленной релаксации значения P_0 одинаковы для различных значений $E < E_c$ у TGS (отсутствуют скачки P) и различны у RZC. Скачок P у RZC тем больше, чем больше E. Итак, если у TGS быстрые изменения (скачки) P наблюдаются только в полях $E \geqslant E_c$, то у RZC — в широком интервале значений E. Естественно связать эту особенность кристалла RZC с существованием у него широкого спектра распределения коэрцитивного поля E_c по объему образца. В результате в поле практически любой величины часть кристалла поляризуется быстро (надбарьерный процесс), а часть —

Рис. 2. Медленная поляризация TGS и Rb₂ZnCl₄ в различных электрических полях E. a — TGS, E = 5.6 (I), 15 (2), 25 V/cm (3); b — Rb₂ZnCl₄, процесс поляризации в поле E = 200 (I), 300 (2), 500 (3), 800 (4), 1000 V/cm (5); c — Rb₂ZnCl₄, процесс деполяризации после выключения поля E = 400 (I), 600 (I), 800 (I), 1000 V/cm (I), на вставке — начальный участок процесса, I0 = 1 min.

медленно (термоактивный процесс). При необходимости из приведенных экспериментальных данных можно построить спектр распределения E_c .

Процессы деполяризации кристаллов в принципе должны содержать информацию о спектрах распределения энергетических барьеров для доменных стенок в отсутствие электрического поля. Результаты исследования медленной деполяризации для TGS содержатся в [5], а для RZC приводятся на рис. 2, c. Так же как при поляризации кристалла, после выключения поля поляризация P сначала уменьшается скачком, а затем следует ее медленная релаксация к равновесному нулевому значению (вставка на рис. 2, c). Время предварительной поляризации кристалла в различных по величине полях E до их выключения равнялось 5 min.

Проведем феноменологический анализ медленных стадий поляризации и деполяризации, показанных на рис. 2, так же, как и в [4], считая, что процесс после скачка P проходит термоактивационно и при малом изменении P центры релаксации (зародыши) независимы и вносят аддитивный вклад в суммарную величину P. Тогда

$$y(t) = (P_e - P(t))/(P_e - P_0) = \int_0^\infty f(\tau) \exp(-t/\tau) d\tau,$$
 (1)

где P_e — равновесная поляризация, P(t) — поляризация в момент времени t, P_0 — при t=0, $f(\tau)$ — функция распределения времен релаксации τ , $\int\limits_0^\infty f(\tau)d\tau = 1$.

Если из экспериментальных данных можно определить вид функции y(t), то равенство (1) позволяет легко восстановить функцию распределения $f(\tau)$, поскольку $\tau^2 f(\tau)$ и y(t) связаны преобразованием Лапласа, где первая функция — оригинал, а вторая — ее трансформанта.

В [4] за равновесное значение P_e для TGS принималась спонтанная поляризация P_s , что в случае кристалла, имеющего определенное значение коэрцитивного поля E_c , выглядит вполне оправданным и в рамках теории фазовых переходов Ландау совпадает с общими представлениями о переполяризации сегнетоэлектриков [6]. Однако, если имеется целый спектр распределения E_c , равновесное значение P_e будет зависеть от величины поля E. Самым простым примером этого, по-видимому, являются реальные сегнетоэлектрики, у которых из-за примесей или дефектов, возникающих также в результате ионизирующего излучения [7], существуют внутренние поля смещения E_b . Эти поля приводят к локальной асимметрии зависящей от поляризации двухминимумной свободной энергии и как следствие к принудительной локальной поляризации. В результате если в некоторых участках кристалла внешнее поле $E < E_b$, то они не принимают участия в процессе релаксации. В связи со сказанным выше величина P_e считалась неизвестным параметром, а поиск аналитического выражения, описывающего экспериментальные данные для обоих кристаллов, проводился для непосредственно измеряемой поляризации

$$\Delta P(t) = P(t) - P_0 = (P_e - P_0)(1 - y), \tag{2}$$

где y — функция (1). Так же как в [4], все полученные данные удовлетворительно согласуются со степенной зависимостью

$$y = 1/(1 + t/a)^n,$$
 (3)

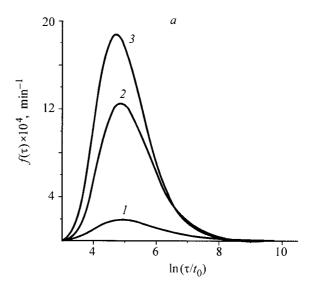
где параметры a и n также неизвестны.

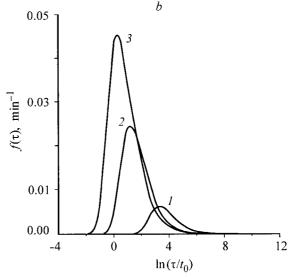
Расчетные кривые зависимостей P(t) на рис. 2 показаны сплошными линиями, а экспериментальные точки с удовлетворительной точностью совпадают с ними. Аппроксимация данных измерения P(t) зависимостью (3) проводилась методом наименьших квадратов по стандартной программе. Отклонение δP экспериментальных значений P от расчетных кривых не превышало $\delta P/P=0.005$. Параметры P_e , a и n для всех случаев выписаны в таблице.

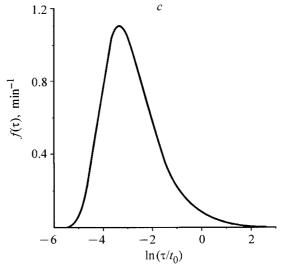
Эмпирический закон (3), возможно, является универсальным для неоднородных систем различного типа. Например, этому же закону следует медленная релаксация диэлектрической проницаемости смешанных кристаллов $K_{(1-x)}Li_x TaO_3$ в состоянии стекла [8]. При $n\ll 1$ закон (3) переходит в логарифмический $y\cong 1-n\ln(1+t/a)$, при $t\gg a$ — в степенной $y\cong 1/t^n$, которые являются частными случаями (3) и регистрировались ранее при многих наблюдениях [1]. По сравнению с известным законом Кольрауша $y\sim \exp(-t/\tau)^\beta$ ($\beta<1$) закон (3) лучше соответствует экспериментальным данным при малых t, поскольку при t=0 производная dy/dt для первого бесконечна, а для второго конечна (рис. 2). Кроме того, закону (3) соответствует простая функция распределения [9]

$$f(\tau) = (1/a\Gamma(n))(a/\tau)^{n+1} \exp(-a/\tau), \tag{4}$$

где $\Gamma(n)$ — гамма-функция. Максимум $f(\tau)$ находится при $\tau_m = a/(1+n)$. Ошибки δP_e , δa , δn определения параметров из экспериментальных данных зависимостей P(t) нетрудно оценить, пользуясь равенствами (2) и (3)


$$\left| \frac{\delta P_e}{(P_e - P_0)} \right| = \left| \frac{\delta P(t)}{P(t) - P_0} \right| = \frac{|\delta P(t)|}{(P_e - P_0)[1 - 1/(1 + t/a)^n]},$$


$$\left| \frac{\delta a}{a} \right| = \frac{(1 + t/a)}{n(t/a)} \left| \frac{\delta P(t)}{P_e - P(t)} \right| = \frac{(1 + t/a)^{n+1} |\delta P(t)|}{n(P_e - P_0)(t/a)},$$


$$\left| \frac{\delta n}{n} \right| = \frac{1}{n \ln(1 + t/a)} \left| \frac{\delta P(t)}{P_e - P(t)} \right| = \frac{(1 + t/a)^n |\delta P(t)|}{n \ln(1 + t/a)(P_e - P_0)},$$

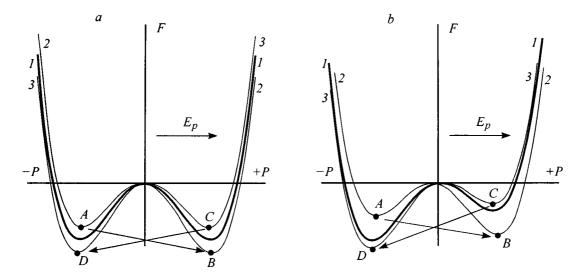
$$\left| \frac{\delta f(\tau)}{f(\tau)} \right| = |n - a/\tau| \left| \frac{\delta a}{a} \right| + n |\ln(a/\tau) - \varphi(n)| \left| \frac{\delta n}{n} \right|, (5)$$

где $\delta P(t)$ — ошибка измерения $P, \varphi(n) = \Gamma'(n)/\Gamma(n)$ — логарифмическая производная $\Gamma(n)$. Существенно, что ошибки зависят от продолжительности регистрации релаксации. При малых временах $(t \ll a)$ они чрезвычайно велики и уменьшаются при возрастании t. При $t \to \infty |\delta P_e| \to |\delta P(t)|, \, \delta a$ и δn сначала уменьшаются, а

Рис. 3. Распределение $f(\tau)$ времени релаксации τ для поляризации TGS (a), Rb₂ZnCl₄ (b) и деполяризации Rb₂ZnCl₄ (c) в различных электрических полях E. a-E=5.6 (I), 15 (2), 25 V/cm (3); b-E=200 (I), 500 (2), 800 V/cm (3); c-E=400 V/cm, $t_0=1$ min.

Крис E. Процесс P_e , μ C/cm² ΔU , eV a, min τ_m , min τ_1 , min τ_2 , min V/cm талл 5.6 150 ± 30 0.070 ± 0.011 140 ± 30 **TGS** Поляри- 3.17 ± 0.17 29 ± 7 3038 ± 3 0.1173 3.02 ± 0.05 210 ± 10 135 ± 9 35.0 ± 2.5 1473 ± 1 0.0944 15 0.55 ± 0.02 зация 25 2.84 ± 0.04 200 ± 10 0.76 ± 0.03 116 ± 8 32 ± 2 1046 ± 2 0.0879 **RZC** Поляри-200 0.0176 ± 0.0002 36 ± 10 0.29 ± 0.04 30 ± 9 6.7 ± 2.2 428 ± 1 0.0628 0.0410 ± 0.0003 4.5 ± 0.8 0.26 ± 0.01 3.5 ± 0.7 0.8 ± 0.2 58.3 ± 0.1 0.0643 зация 500 800 0.0603 ± 0.0005 1.7 ± 0.6 0.19 ± 0.01 1.4 ± 0.5 0.3 ± 0.1 25.00 ± 0.05 0.0658 Деполя-400 $0.024 \pm 0.002 | 0.0730 \pm 0.0005 | 0.022 \pm 0.003 | 0.005 \pm 0.003 | 0.4860 \pm 0.0003 | 0.07$ ризация

Параметры спектров распределения времен релаксации au для кристаллов TGS и RZC


затем увеличиваются: минимум $|\delta a/a|_{\min}$ находится при $t=a/n, \ |\delta a/a|_{\min}=[(n+1)/n]^{n+1}|\delta P(t)/(P_e-P_0)|,$ а минимум $|\delta n/n|_{\min}$ — при значении t^* , определяемом из уравнения $n\ln(1+t^*/a)=1+t^*/a$.

Спектры $f(\tau)$ распределения времен τ медленных стадий релаксации, рассчитанные по формуле (4), для процессов поляризации TGS, RZC и деполяризации RZC приведены на рис. 3. Характер эволюции спектров для поляризации при изменении величины поля Е для обоих кристаллов одинаков: при увеличении Е максимум $f(\tau)$ смещается в сторону меньших значений au. Более подробные данные о влиянии поля на спектр τ для TGS содержатся в [4]. Спектр $f(\tau)$ для деполяризации RZC в пределах ошибок измерений $\delta f(\tau)/f(\tau) \cong 50{-}100\%$ практически не зависит от величины поля (200–1000 V/cm) предварительной поляризации кристалла и расположен в области малых значений au с максимумом при $au_m \approx 1.2\,\mathrm{s}$, а его ширина меньше, чем для процесса поляризации (рис. 3). Для деполяризации TGS, скорость которой существенно меньше, чем в случае RZC, по данным [5] можно получить аналогичную оценку $\tau_m' \approx 100 \, \mathrm{min}$.

В таблице кроме параметров a, n и P_e приведены характеристики спектров: минимальные au_1 и максимальные au_2 значения au и ширина спектров ΔU , определенные на уровне $f(\tau) = 0.1 f(\tau_m)$, где $f(\tau_m)$ — максимальное значение $f(\tau)$. Согласно закону Аррениуса, $\tau = \tau_0 \exp(U/kT)$ (τ_0 — кинетический коэффициент), т.е. $\Delta U = kT \ln(\tau_2/\tau_1)$. Абсолютная ошибка определения ΔU не превышает 0.001 eV. Для других величин ошибки указаны в таблице. В соответствии с (5) точность измерений должна заметно возрастать, если увеличить время регистрации релаксации. Отметим еще раз, что в отличие от [4] при аппроксимации экспериментальных данных для обоих кристаллов степенной зависимостью (3) со свободными параметрами a, n величина P_e также считалась произвольной (третий свободный параметр). Для TGS это дополнительное предположение фактически ничего нового по сравнению с [4] не дает, поскольку при этом P_e по-прежнему практически совпадает со спонтанной поляризацией P_s при всех значениях $E < E_c$ (см. таблицу). Для RZC, однако, величина P_e зависит от E, приблизительно повторяя зависимость P от E первой четверти периода изменения поля (рис. 1, b).

Результаты регистрации P, приведенные выше, позволяют сделать следующие замечания об особенностях зависящей от P локальной свободной энергии F для обоих кристаллов (рис. 4). F(P) для TGS (рис. 4, a) — обычная симметричная двухминимумная функция (кривая 1) [10]. При включении сколь угодно малого поляризующего поля E_p функция F(P) изменяется (кривая 2), и начинается медленная термоактивационная релаксация из состояния A в B. При выключении E_p под действием деполяризующего поля E_d идет обратный процесс релаксации из состояния C в D (кривая 3). Оба процесса показаны на рис. 4, a стрелками. Если $E_p \cong E_d$ мало, то состояния A, В, С, D близки к состояниям, соответствующим минимумам невозмущенной полем функции F(P) (кривая 1), и потенциальные барьеры $U_p = F_A$ при поляризации и $U_d = F_C$ при деполяризации практически одинаковы, $U_p \cong U_d$ (индекс у F — точка на кривой F(P), в которой берется значение F). Действительно, для энергий барьеров, отвечающих временам au_m и au_m' максимумов распределения $f(\tau)$ для поляризации и деполяризации соответственно, имеем $U_p - U_d = kT \ln(\tau_m/\tau_m')$. Значения $au_m \ \sim \ 100$ (см. таблицу) и $au_m' \ \sim \ 100$ (грубая оценка на основании экспериментальных данных [5]), т.е. $U_p - U_d \sim 0$. Коэрцитивное поле $E_c(F_A = 0)$ имеет определенное значение для всего кристалла, так как ширина функции распределения резко уменьшается при $E \to E_c$ [4].

Энергия F для RZC — асимметричная двухминимумная функция. На рис. 4, в приводится схематическое изображение локальной F для половины образца с нулевой суммарной поляризацией (кривая 1) (для другой половины F имеет аналогичный вид, но ее более глубокий минимум находится справа при P > 0). Поляризующее поле E_p изменяет вид F (кривая 2), и при определенном его пороговом значении, когда $F_A \geqslant F_B$, начинается термоактивационная релаксация из состояния A в B. При выключении E_p происходит деполяризация из состояния C в D (кривая 3). Видно, что в отличие от TGS оба процесса существенно различаются: поляризация медленная, а деполяризация относительно быстрая, барьер $U_p = F_A > U_d = F_C$. Для энергий барьеров U_p , U_d , отвечающих временам τ_m и τ_m' максимумов распределения $f(\tau)$ для поляризации и деполяризации соответственно (см. таблицу и рис. 3),

Рис. 4. Схематическое изображение локальных функций свободной энергии F(P) для TGS (a) и Rb_2ZnCl_4 (b).

имеем $U_p - U_d = kT \ln(\tau_m/\tau_m') \cong 0.11$ eV. Поскольку в соответствии с экспериментальными данными параметры кривой F(P) должны иметь некоторое распределение в объеме, значения коэрцитивных полей E_c в локальных точках кристалла различны, и в процессе надбарьерной поляризации всегда принимает участие только часть объема, в которой выполняется условие $F_A \geqslant 0$. Асимметрия F(P) для RZC, возможно, связана с появлением из-за неоднородностей кристалла внутренних смещающих полей E_b , как например в кристаллах TGS, содержащих примеси или подвергнутых ионизирующему облучению [7]. Причина появления E_b противоположных знаков в "чистом" RZC остается пока неясной. Возможно, что это следствие скопления дефектов в антифазных границах и в плоскостях, занимаемых солитонами в несоразмерной фазе при $T > T_c$ [2].

В настоящее время известно большое количество различных сегнетоэлектрических материалов, у которых зависимость поляризации от электрического поля (петля диэлектрического гистерезиса) имеет либо прямоугольную, либо "вытянутую" форму. Последняя характерна в первую очередь для неоднородных систем с различного рода макроскопическими неоднородностями, например для так называемых релаксаторов, стекол или керамик. Приведенные в настоящей работе данные регистрации релаксации для процессов поляризации и деполяризации на примере двух кристаллов позволяют связать особенности формы петли, спектры распределения энергетических барьеров для доменных стенок и локальной свободной энергии. В случае прямоугольной петли свободная энергия в любой точке кристалла — обычная симметричная двухминимумная функция, параметры которой имеют некоторое распределение в объеме, коэрцитивное поле имеет определенную величину, медленная термоактивационная релаксация начинается в сколь угодно малом поле и включает все участки кристалла. В случае

"вытянутой" петли свободная энергия — асимметричная относительно поляризации двухминимумная функция, параметры которой распределены в объеме таким образом, что средняя спонтанная поляризация равна нулю, коэрцитивное поле различно в различных участках кристалла, а в релаксации поляризации принимает участие ограниченная часть образца, объем которой увеличивается при возрастании поля. Существенно, однако, что в обоих случаях термоактивационные процессы релаксации подчиняются единому эмпирическому степенному закону, по-видимому являющемуся универсальным для всех неоднородных систем.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект N_{2} 96-02-18456).

Список литературы

- [1] A.K. Jonscher. Dielectric Relaxation in Solids. Chelsea Dielectric Press Ltd, London (1983). P. 380.
- [2] H.Z. Cummins. Phys. Rep. 185, 5-6, 211 (1990).
- [3] L.E. Cross. Ferroelectrics **151**, 305 (1994).
- [4] В.В. Гладкий, В.А. Кириков, С.В. Нехлюдов, Е.С. Иванова. ФТТ **39**, *11*, 2046 (1997).
- [5] W. Osak, K. Tkacz-Smiech. Appl. Phys. A65, 439 (1997).
- [6] Л.Д. Ландау, Е.М. Лившиц. Электродинамика сплошных сред. Наука, М. (1982). С. 620.
- [7] М. Лайнс, А. Гласс. Сегнетоэлектрики и родственные им материалы. Мир, М. (1981). С. 736.
- [8] F. Alberici, P. Doussineau, A. Levelut. J. Phys. I France 7, 2, 329 (1997).
- [9] В.И. Диткин, А.П. Прудников. Справочник по операционному исчислению. Высш. шк., М. (1965). С. 467.
- [10] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Наука, М. (1995). С. 301.