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Recent theoretical and experimental work on linear exciton-light coupling in single and coupled semiconductor
microcavities is reviewed: emphasis is given to angular dispersion and polarization effects in the strong-coupling
regime, where cavity-polariton states are formed. The theoretical formulation is based on semiclassical theory. The
energy of single-cavity modes is determined by the bare Fabry–Pérot frequency ωc as well as by the center of
the stop band ωs of the dielectric mirrors; the phase delay in the dielectricl mirrors carries a nontrivial angle- and
polarization dependence. The polarization splitting of cavity modes depends on the mismatch between ωc and ωs,
and increases with internal angle as sin2 θeff. Interaction between the cavity mode and quantum well (QW) excitons
is described at each angle by a two-oscillator model, whose parameters are expressed in terms of microscopic
quantities. Weak and strong coupling regimes and the formation of cavity polaritons are described. Comparison
with experimental results on a GaAs-based cavity with In0.13Ga0.87As QWs shows that a quantitative understanding
of polariton dispersion and polarization splitting has been achieved. Coupling of two identical cavities thorugh
a central dielectric mirror induces an optical splitting between symmetric and antisymmetric modes. When QW
excitons are embedded in both cavities at antinode positions, the system behaves as four coupled oscillators, leading
to a splitting of otherwise degenerate exciton states and to separate anticrossing of symmetric and antisymmetric
modes. These features are confirmed by experimental results on coupled GaAs cavities with In0.06Ga0.94As QWs.
An analysis of reflectivity lineshapes requires the inclusion of the effect of resonance narrowing of cavity polaritons.
Finally, the polarization splitting in a coupled cavity depends both on the single-cavity factors and on the angle- and
polarization dependence of the optical coupling between the cavities. Inclusion of all these effects provides a good
description of the experimental findings.

1. Introduction

The physics of quantum well excitons embedded in
semiconductor microcavities is characterized by two regimes.
In the weak-coupling case the decay rate and emission
pattern of the exciton may be modified, but a radiative
decay still occurs; in the strong-coupling regime, instead, a
reversible energy exchange between exciton and cavity mode
takes place. This is related to the formation of mixed exciton-
photon states, usually termed cavity polaritons, since they are
the analog of the (quasi-) stationary exciton-polariton states
occurring in bulk semiconductors [1].

The strong-coupling regime of quantum well (QW)
excitons in microcavities (MCs) is a peculiar and
interesting phenomenon, which allows cavity quantum
electrodynamic effects to be studied in a solid-state
environment, and which has been the subject of numerous
investigations in recent years. After the pioneering
observation of a Rabi (polariton) splitting in III–V
Fabry-Pérot MCs [2], important developments have been
the measurement of the polariton dispersion by angle-
resolved photoluminescence [3], demonstration of a Rabi

splitting at room temperatire [4] and of Rabi oscillations
in real time [5], tuning of the exciton-cavity coupling by
electric [6] and magnetic [7–10] fields or temperature [6],
saturation and bleaching effects [11], studies of relaxation
and time-resolved photoluminescence [12–15], effects of
disorder and motional narrowing [16–22]. Crossover from
polariton doublet to Mollow triplet under high excitation has
been demonstrated [23]. Larger Rabi splittings have been
observed in II–VI microcavities [24,25], where stimulation
effects have also been reported [25], and in organic
microcavities [26,27]. Reviews of these and related topics,
as well as of semiclassical and quantum treatments, can be
found in [28–30].

Recently the system of two coupled MCs with embedded
QWs has also been investigated [31–33], as a way to further
increase the flexibility in controlling both radiation and
material degrees of freedom. In particular, coupled MCs
allow a sizeable and measurable radiative splitting of excitons
in QWs separated by a macroscopic distance (> 2µm) to
be achieved [33]. A radiative splitting between excitons in
electronically uncoupled QWs exists in principle also for
QWs without MCs [34] or in a single cavity [35], but in
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this case the effect is very small and easily washed out
by disorder. Coupled cavities made of porous silicon have
also been studied [36]. Angle- and polarization resolved
reflectivity experiments on coupled cavities yield detailed
information on exciton-photon interactions, which call for
accurate yet sufficiently simple theoretical treatments.

A basic piece of information for all the above-mentioned
studies is a precise knowledge of polariton dispersion for
MCs containing QW excitons. A difficulty which must
be faced by a theoretical treatment is to give a realistic
description of the phase delay an penetration depth of light
in the dielectric mirrors. A derivation of the phase delay [37]
and of an accurate secular equation for mixed cavity
modes in single cavities [38] have been given previously
only for normal incidence. In extending these treatments
to oblique incidence, the different polarizations of light
(transverse electric, TE, and transverse magnetic, TM) must
be considered. Theoretically, the difference in TE and TM
polatized reflectivity spectra of quantum well microcavities
was discussed in [39,40]; the only experimental reports
of a polarization splitting of cavity polaritons are those
of [41,33].

In this paper we present a comprehensive theoretical and
experimental study of cavity-polariton dispersion in single
and coupled MCs with embedded QWs. By the use of linear
semiclassical theory we derive analytic formulas for cavity-
mode dispersion and cavity-polariton eigenfrequencies for
both TE and TM light polarizations. Angle- and polarization-
resolved reflectivity results on single and coupled GaAs
cavities with InGaAs QWs are presented and compared
with theoretical predictions; in particular, the effect of cavity
mismatch and absorption of the intensity of reflectivity
features, as well as the different factors which influence the
polarization splitting, are studied in detail. A full theoretical
analysis of the single-cavity results of [41] is presented, which
is found to be in good agreement with the experiment.
From a careful analysis of reflectivity results for coupled
cavities, evidence of line narrowing of cavity polaritons in
the resonance region is obtained.

The rest of this paper is organized as follows. In Sec. 2 we
give a brief account of the theoretical framework. In Sec. 3
we derive formulas for reflection phase delay and penetration
depth in dielectric mirrors when the frequency is close to
the center of the stop band, thereby extending the results
of [37] to the case of oblique incidence. In Sec. 4 we
study a single cavity and obtain results for the empty-cavity
mode, polariton dispersion, and polarization splitting; the
role of energy-dependent refractive index in determining the
polariton dispersion is emphasized. Experimental results
are then presented and compared with theory. In Sec. 5
we treat coupled cavities, and derive analytic formulas for
optical splitting of the two modes, empty-cavity dispersion
and polariton energies; experimental results on coupled
cavities are presented and discussed. Section 6 contains
concluding remarks. Some derivations and results of the
analytic treatment are given in the Appendices.

2. Theoretical framework

The present treatment is based on the semiclassical
theory of exciton-radiation interaction. This approach [42],
which consists in solving Maxwell equations together with
a constitutive relation between electric and displacement
fields, yields the same results as a full quantum mechanical
theory as far as linear polariton properties are considered;
this follows from the fact that the quantum exciton-
radiation Hamiltonian is quadratic in the exciton and photon
operators [28].

For a layered system it is useful to formulate Maxwell
equations in terms of a transfer matrix approach [43–45].
We take the z-axis to coincide with the growth direction;
for any incidence angle and for TE (or s) and TM (or p)
polarizations the transfer matrix T (zl → zr) is a 2×2 matrix
which acts on the basis of right- and left-travelling waves
and which propagates the electric field from a point zl to a
point zr in the structure. The transfer matrix is unimodular,
when the refractive indices nl , nr of left and right media
are the same, otherwise det(T) = nl/nr . Evaluation of
the transfer matrix T of the whole structure — which is
simply obtained by multiplying from the left the transfer
matrices of the different regions — provides the reflection
and transmission coefficients, which in this paper are always
considered for light incident from the left:

r = −
T21

T22
, t =

det(T)

T22
=

nl

nr

1
T22

; (1)

the reflectivity R and transmittivity T are then given by

R = |r|2, T =
nr

nl
|t|2 =

nl

nr

1
|T22|2

. (2)

Absorption is given by A = 1 − R− T . The poles of the
reflection and transmission coefficients, namely the complex
frequencies ω which satisfy the equation T22(ω) = 0, give
finally the energies and halfwidths of a resonance.

Useful parametrized forms of the transfer matrix can
be given for the special cases of a non-absorbing or of
a symmetric structure; they are derived by imposing the
requirements of invariance under the time-reversal operation,
or under specular reflection, respectively. The most general
transfer matrix of a non-absorbing structure is expressed
as [38]

Tnon–abs =
nl

nr

[
1/t∗ −r∗/t∗

−r/t 1/t

]
(3)

in terms of the reflection and transmission coefficients. The
mirror image of the structure has a transfer matrix T̃ given
by

T̃non–abs =

[
1/t∗ r/t

r∗/t∗ 1/t

]
. (4)

If in addition the structure is symmetric, the two matrices T
and T̃ are identical, therefore t/t∗ = −r/r∗ . For a general
symmetric structure (but which may be absorbing, so that
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time reversal is not a good symmetry operation) the transfer
matrix can be expressed as [43,44]

Tsym =
1
t

[
t2 − r2 r

−r 1

]
, (5)

where again r, t represent the reflection and transmission
coefficients from the left side.

We describe each layer in the structure by a local dielectric
constant, the only exception being the QW regions. For the
QWs we use a nonlocal susceptibility evaluated by linear
response theory, which incorporates the microscopic details
of the exciton envelope function. The QW transfer matrix
at oblique incidence for TE and TM polarizations has the
form (5). The difference between TE and TM polarized light
appears in reflection and transmission coefficients. These
depend on the scattering amplitudes of the e. m. field modes
coupled to the exciton polarized along different directions:
T-mode (in-plane polarized, transverse), L-mode (in-plane
polarized, longitudinal), and Z-mode (polarized along the
growth direction) [39,46]. For TE polarization

rTE
QW = −

iΓT

∆ + iΓT
, tTE

QW = 1 + rTE
QW, (6)

while for TM polarization

rTM
QW = rL − rZ, tTM

QW = 1 + rL + rZ, (7)

with

rL = −
iΓL

∆ + iΓL
, rZ = −

iΓZ

∆− δZT + iΓZ
; (8)

the case of TM polarization is more complex since the
scattering amplitudes of L- and Z modes interfere. In
the above formulas ∆ = ω − ωex + iγex (we neglect the
weak dependence of the exciton frequency ωex on in-plane
wavevector and polarization), δZT is the splitting between Z
and T exciton polaritons in the QW [45], γex is the non
radiative exciton broadening. A radiative broadening follows
from coupling of the QW exciton to the radiation field
through Maxwell equations [47–49], and it depends on the
angle θc in the medium. For the in-plane polarized T and
L modes it is given by ΓT = Γ0/ cos θc, ΓL = Γ0 cos θc,

where Γ0 = π
nc

(
e2

4πε0mc

)
fxy is the radiative decay rate of the

QW exciton amplitude at zero in-plane wavevector ( fxy is the
oscillator per unit area, m is the free electron mass and ε0 is
the vacuum permittivity). Concerning the z-polarized mode,
for the heavy hole exciton resonance ΓZ = 0, while for the
light hole exciton ΓZ = 4Γ0

(
(cos θc)

−1 − cos θc
)
. In the

following we will only consider the heavy hole excitons.
Substituting the above coefficients r and t into the general
transfer matrix (5), for a symmetric structure one can obtain
in this case:

TαQW =
1
∆

[
∆− iΓα −iΓα

iΓα ∆ + iΓα

]
, α = TE,TM. (9)

Here Γ(TE) ≡ ΓT , Γ(TM) ≡ ΓL = ΓT cos2 θc. The angle θc

in the cavity is related to the external angle θ by
sin θc = (sin θ)/nc.

3. Dielectric mirrors

The simplest semiconductor microcavity structure is a
planar Fabry-Pérot cavity, bounded by dielectric mirrors
termed distributed Bragg reflectors (DBRs) [50–52].
A DBR is a periodic quarter wave stack consisting of
alternating layers of high and low refractive index materials,
with the optical thickness of each layer a quarter wave
at the operating wavelength. The most useful feature of
a DBR, which is a consequence of propagation of e. m.
waves in periodic layered media, is the existence of a ”stop
band” region in which radiation cannot propagate; in this
frequency region constructive interference between rays
reflected from successive periods leads to reflectivity values
close to unity. The center of the stop band (denoted by
ωs in this paper) is determined by the λ/4 condition,
whereas the fractional bandwidth depends on the refractive
indices n1 and n2 of the two materials according to
∆ωs/ωs = (4/π) arcsin

(
|n2 − n1|/(n2 + n1)

)
. A proper

treatment of the phase delay on reflection by a DBR is a
preliminary issue in order to calculate the angular dispersion
of cavity polaritons for TE and TM polarizations. Previous
work on angular dependence of phase delay in Fabry-Pérot
filters (but neglecting the difference of polarizations) is
described in [53].

We consider a DBR with layer thicknesses a, b, and
refractive indices n1, n2 which can be either in the order
n1 < n2 (as exemplified in Fig. 1) or n1 > n2; our
treatment applies to both situations. First we consider the
periodic structure with N periods of Fig. 1, a and calculate
its transfer matrix TN (see e. g. [52]). Then we take a DBR
surrounded from the left by a cavity medium with refractive

Рис. 1. Refractive index profiles of (a) the periodic DBR
structure, and (b) the DBR surrounded on the left by a cavity
with refractive index nc and on the right by an external medium
with refractive index next.
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index nc and from the right, by an external medium with
refractive index next (Fig. 1, b), which is our structure of
interest, and evaluate its transfer matrix by multiplying TN

with appropriate interface matrices. The resulting transfer
matrix is expressed in the general form (3) for non-absorbing
materials.

We now derive an approximate, parametrized expression
for the reflection coefficient of the DBR showing its
dependence on angle and polarization. At frequencies close
to the center of the stop band ωαs (θ), α = TE, TM, the
reflection coefficient of a DBR at a fixed angle may be
assumed to have a constant amplitude and a phase which
is linear in (ω − ωαs (θ)):

rαDBR(ω) = ±
√

Rα exp
[
i

nc

c
LαDBR(ω − ωαs ) cos θc

]
. (10)

The upper (lower) sign holds for n1 < n2 (n1 > n2). Thus
when n1 < n2 the phase of the reflection coefficient is zero
at the center of the stop band, and the electric field has a
maximum at the boundary between cavity and DBR. This
case is realized e. g. for a GaAs cavity with AlAs/GaAs
Bragg mirrors, in this case we have nc = n2 = n(GaAs),
n1 = n(AlAs). In the opposite case n1 > n2 the phase
of the reflection coefficient equals π at the center of the
stop band (like for a metallic mirror), and the electric field
vanishes at the boundary.

The quantity LαDBR(θ) represents a penetration depth of
the field in the dielectric mirror, dependent on both angle

Рис. 2. Phase of the reflection coefficient of a AlAs/GaAs DBR
close to the center of the stop band (ωs = 1.4 eV at normal
incidence), at θ = 0 and at θ = 60◦ for TE and TM polarizations.
Solid lines: numerical simulations with N = 12. Dotted lines:
analytic formula (see Eq. (10)). Inset: angular dependence of
mirror penetration depth for the two polarizations.

and polarization. At normal incidence it equals 2Lτ , where
Lτ is defined in [37] as the distance at which a fixed-phase
mirror has to be displaced in order to produce the same
phase delay on reflection. For TE-polarization this kind of
parametrization has been used in [40]. Expressions for the
parameters Rα(θ), LαDBR(θ), ωαs (θ) appearing in Eq. (10)
are given in Appendix A.

In Fig. 2 we show the phase of the reflection coefficient
of a AlAs/GaAs DBR, calculated with the formulas of
Appendix A, compared with the results of a numerical
simulation. The parameters are close to those of the
experimental results to be shown later. We have assumed
the λ/4 condition to be satisfied at ~ωs = 1.4 eV, with
refractive indices n1 = 3.01 for AlAs and n2 = 3.55
for GaAs. We have considered the cases of normal
incidence, and of θ = 60◦ for TE and TM polarizations.
The comparison shows that the assumed linear dependence
of the phase of the DBR is a very good approximation in
a wide range of frequencies around the center of the stop
band. For the chosen parameters the stop band extends
from 1.28 to 1.52 eV: the phase of the reflection coefficient
varies from −π to π in this interval. The inset shows
the penetration depth for both polarizations as a function
of angle. The penetration depth increases for TM, and
decreases for TE polarization; this angular dependence
will play an important role in determining the polarization
splitting of cavity polaritons.

4. Single microcavity

We consider a symmetric Fabry-Pérot cavity structure of
length Lc with a symmetric layer characterized by reflection
and transmission coefficients rc, tc placed at its center. The
transfer matrices of the right and left mirrors are expressed
in the forms (3) and (4), respectively, and that of the central
structure in the form (5) with r = rc and t = tc; the transfer
matrix T of the whole structure is easily found by multiplying
from the left the transfer matrices of the various layers. The
eigenmodes are found from the poles of the transmission
coefficient (1), i. e., by setting the element T22 equal to zero.
The equation T22(ω) = 0 for the eigenfrequencies can be
put in the following form [39] (with kz = (ncω/c) cos θc):[

rDBR(rc + tc) eikzLc

][
rDBR(rc − tc) eikzLc − 1

]
= 0. (11)

This is an equation for the frequency ω in the complex
plane. One can easily prove [40] that the first bracket in
Eq. (11) is equal to zero at the eigenfrequency of a mode
even with respect to the center of the cavity, while the zero
of the second bracket corresponds to an odd cavity mode.
The above equation is general and applies to several specific
situations, e. g. an empty cavity (rc = 0, tc = 1), a cavity
with one quantum well (rc = rQW, tc = tQW), a cavity with
two sets of QWs in symmetric positions [35,40], or even a
coupled cavity if the central object is another DBR.

4.1. E m p t y c a v i t y . By specifying Eq. (11) to the case
of an empty cavity, the eigenfrequencies of the cavity modes
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are determined by the equation r2
DBR exp(2ikzLc) = 1. By

using the parametrization (10) and taking the logarithm, the
equation for the complex frequency becomes (for simplicity
the polarization index is understood in all subsequent
formulas)

2
nc

c

[
Lcω + LDBR(θ)

(
ω − ωs(θ)

)]
cos θc

= 2πm+ i ln R, (12)

where R = |rDBR|2 is the mirror reflectivity and the integer m
represents the number of half wavelengths contained in
the cavity region. The complex frequency is denoted by
ωαm(θ) − iγαm(θ) (α = TE,TM), where ωm is the real
frequency of the mode and γm is the mode halfwidth
(HWHM); they are determined by the real and imaginary
parts of Eq. (12), respectively. The real part of (12) gives
the phase-matching condition, and leads to a cavity–mode
frequency ωm which can be expressed in the form

ωm(θ) =
Lcωc(θ) + LDBR(θ)ωsθ

Leff(θ)
, (13)

where Leff = Lc + LDBR is an effective cavity length, and
ωc = mπc/(ncLc cos θc) is the Fabry-Pérot frequency if
there is no phase delay in the mirrors. This expression
shows that the cavity mode frequency is a weighted average
of ωc and ωs; in most cases LDBR is much larger than
Lc, so that ωm is mostly determined by the center of the
stop band. This often unappreciated result implies that the
frequency of the cavity mode has only a weak dependence
on cavity thickness, while it depends more sensitively on
the DBR layer thicknesses: this behavior is verified in
numerical simulations as well as in experiments. A useful
approximate formula for the dependence of mode energy
on cavity length Lc is δωm/ωm ' δLc/Leff . The imaginary
part of (12) gives the halfwidth in the limit R→ 1, when
ln R' −(1− R) as

γm(θ) =
e
(
1− R(θ)

)
2ncLeff(θ) cos θc

. (14)

The above results are given in more general form in
Appendix B, where the case of an asymmetric cavity is
also considered. The main difference in optical properties of
an asymmetric compared to a symmetric cavity is that the
minima of reflectivity do not reach zero, i. e., reflectivity dips
are much less pronounced.

Although the results of Appendix A are valid for any
values of the refractive indices, simpler expressions for
the cavity mode dispersion can be given for the common
case in which nc, n1, n2 are close to each other. Let
us denote by neff the common value of the refractive
index: then the center of the stop band is very closely
the same for the two polarizations (as seen from the
formulas of Appendix A, and also found numerically), and
behaves as ωs(θ) = πc/

(
neff(a + b) cos θeff

)
, where a, b

are the DBR layer thicknesses: it has therefore the

same angular dependence as the Fabry-Pérot frequency
ωc(θ). When the cavity-mode frequency at θ = 0 is
factorized, this leads to the frequently used dispersion
formula ωm(θ) = ωm(0)/ cos θeff: this formula can also
be viewed as a definition for the effective refractive
index [51,53–55]. However the definition implicitly assumes
that the refractive index is a constant, i. e., independent of
energy. When the energy-dependence of the refractive index
is taken into account, it is easy to show that the cavity mode
dispersion becomes

ωm(θ) =
neff[ωm(0)]ωm(0)

neff[ωm(θ)] cos θeff
. (15)

Although the energy dependence of the refractive index is
small, it has an important effect on the angular dependence
of the cavity-mode and therefore on the polariton dispersion,
as will be shown in Sec. 4.3 by the comparison with the
experiments.

An approximate formula for the polarization splitting can
also be given for the case nc ' n1 ' n2. While ωs is
very nearly the same for both polarizations, the penetration
depth LDBR depends markedly on polarization, as it increases
with angle for TM and it decreases for TE polarization
(see inset of Fig. 2). From Eq. (13) it can be seen that
if ωc = ωs, the cavity mode frequency is independent of Leff

and thus it depends very little on polarization. Therefore
the polarization splitting is controlled by the mismatch
between the center of the stop band ωs and the Fabry-
Pérot frequency ωc. We can exploit the fact that ωs(θ)
varies roughly as 1/ cos θeff, just like ωc(θ), and obtain the
approximate form

ωTM
m (θ)− ωTE

m (θ) '
Lc
(
LTM

DBR(θ) − LTE
DBR(θ)

)
Leff(0)2

×

(
ωs(0)− ωc(0)

)
cos θeff

. (16)

The penetration depths can be evaluated by means of the
formulas in Appendix A. In the limit n1 ' n2 ' nc ≡ neff

the following approximate formula is obtained:

ωTM
m (θ)− ωTE

m (θ) '
LcLDBR(0)

Leff(0)2

2 cos θeff sin2 θeff

1− 2 sin2 θeff

×
(
ωs(0)− ωc(0)

)
. (17)

This equation (which is valid for both cases n1 < n2 and
n1 > n2) is somewhat less accurate compared to Eq. (16),
but it displays more clearly the angular dependence:
basically, the polarization splitting is proportional to
ωs(0)− ωc(0), and it increases with angle like sin2 θeff. We
emphasize that the TM mode can be at higher or lower
energy, according to which of ωs(0) or ωc(0) is higher: the
first case is realized when the DBR period a + b < λ/2,
while the second case (TE higher) occurs when a+b> λ/2.

4.2. S i n g l e c a v i t y w i t h q u a n t u m w e l l s .
We now consider a cavity of width Lc with one QW at
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Рис. 3. Refractive index profile of (a) the single cavity structure,
and (b) the coupled cavity structure. A set of three QWs at the
center of each cavity is indicated.

the center (see Fig. 3, a). The dispersion equations for TE
and TM polarized polariton modes can be written in the
form of Eq. (11), where rc, tc are now the amplitude
reflection and transmission coefficients of light from the QW,
Eqs. (6), (7). For the heavy-hole exciton tQW = 1 + rQW,
thus in Eq. (11) the vanishing of the second bracket gives
simply rDBR exp(ikzLc) = −1: this is equivalent to saying
that the QW exciton state (which is symmetric w.r.t. the
center of the QW) is not coupled to an antisymmetric cavity
mode. The mixed exciton-cavity modes correspond to the
symmetric solutions and are described by zeros of the first
bracket in Eq. (11), which in the case of the heavy hole
exciton resonance reduces to [38]

Γα

ω − ωex + iγex
= i

1− rαDBReikzLc

1 + rαDBReikzLc
, α = TE,TM. (18)

Far from the frequency of a cavity mode the r.h.s. of (18) is
always finite, and the dressed exciton energy can be found
by perturbation theory as ω = ωex − iγex + ∆ωex, where
the radiative shift ∆ωex is of the order of the radiative
broadening Γ. On the other hand the r.h.s. of (18) vanishes
at the frequency of a symmetric cavity mode, and in this
case the radiative shift of the exciton cannot be found
by perturbation theory: rather, the vanishing of the r.h.s.
marks the crossover to a nonperturbative regime of exciton-
radiation coupling. The proper way to proceed is to expand
the r.h.s. for frequencies close to resonance. We use again
the parametrization (10): since the factor rDBR exp(ikzLc)
equals unity at the complex frequency of the cavity mode
ωm − iγm (see the discussion leading to Eqs. (12)–(14)),
it can be written as exp

(
i ncLeff

c (ω − ωm + iγm) cos θc
)

and
the r.h.s. of (18) can be expressed in terms of the (small)
difference ω − ωm + iγm. Expanding up to first order in

(ω −ωm + iγm), the exciton and the cavity mode are found
to behave like two coupled, damped oscillators:

(ω − ωex + iγex)(ω − ωm + iγm) = V2, (19)

where

Vα(θ) =

(
2cΓα(θ)

ncLαeff(θ) cos θc

)1/2

, α = TE,TM (20)

is the exciton–cavity coupling depending on angle and
polarization. Using the expressions for the angle-dependent
radiative widths given in Sec. 1 we have

VTE(θ) =

(
1

4πε0

2πe2 fxy

n2
cmLTE

eff (θ)

)1/2
1

cos θc
, (21)

VTM(θ) =

(
1

4πε0

2πe2 fxy

n2
cmLTM

eff (θ)

)1/2

. (22)

Equation (19) is often derived by diagonalizing a 2 × 2
Hamiltonian, in which two oscillators of frequencies
ωex− iγex and ωm− iγm are coupled by a matrix element V .
The present treatment yields a rigorous derivation of this
two-oscillator model, together with microscopic expressions
for the various parameters, with their angle- and polarization-
dependence.

The occurrence of two distinct regimes is clearly evident
when Eq. (19) is solved in the resonant case (ω0 = ωm):

ω = ωex − i
(γex + γm)

2
±

√
V2 −

1
4

(γex − γm)2. (23)

For purely homogeneous broadening as assumed here, the
linewidth in the strong-coupling regime is the average of γex

and γm. The weak coupling regime corresponds to an
imaginary square root in (23) (i. e., 2V < |γex − γm|); the
exciton decay is still an irreversible process like in an isolated
QW, but the emission rate in the direction of the cavity mode
may be increased by orders of magnitude [56]. Instead,
the strong coupling regime occurs for 2V > |γex − γm|,
and corresponds to a real square root in (23). In this case
optical confinement leads not only to a quantitative, but also
to a qualitative modification of the emission properties of
the system. The eigenmodes are mixed exciton–radiation
states and exhibit a splitting in the frequency domain (Rabi
splitting) given by

Ω = 2

√
V2 −

1
4

(γex − γm)2. (24)

The maximum value of the splitting occurs when the two
linewidths γex and γm are equal. The frequency splitting
corresponds to energy oscillations in the time domain
between the exciton and cavity modes.
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When N identical QWs are placed in the microcavity,
cooperative effects arise. Radiative coupling rearranges
the N exciton states into a single, ”bright” state which is
maximallly coupled to light, and N− 1 ”dark” states which
have little interaction with the radiation field [57–60]. The
dark states come into play when considering scattering and
thermalization of cavity polaritons [14]; also, they can be
mixed up with the bright state when disorder is present [60].
Apart from these cases the dark states do not play a role
for the optical response of cavity-embedded QW excitons,
which is determined only by the degree of cooperation in
the bright state. This is measured by an effective number
of wells, which can be calculated by summing the squared
electric field at the QW positions, and is given by [54,38,40]

Neff =
N
2
±

1
2

sin Nkl
sin kl

, (25)

where the upper (lower) sign is appropriate for a symmetric
(antisymmetric) electric field inside the microcavity, and l
indicates the period of the multiple QW. By working to
linear order in Γ0 (which amounts to neglecting multiple
interferences between the wells) all the previous formulas
remain valid, provided Γ0 is replaced with NeffΓ0. An exact
formalism considering additional polariton modes arising
due to the radiative coupling between different wells is
developed in [40], and the case of two non-identical QWs in a
microcavity including radiative coupling is studied in [35,61].

In principle all quantities appearing in the previous
equations depend on angle and/or polarization: exciton
frequency ωex, cavity–mode frequency ωαm, cavity mode
linewidth γm, exciton–photon matrix element V . However
in practice the angle and polarization dependence of ωm is
by far the dominant effect. In fact ωex may be taken as
independent of angle, since spatial dispersion of the exciton
is negligible at the small internal angles accessible to optical
experiments. Also, V and γm can be seen to change only
by a few percent even at large external angles; since both
quantities are usually of the order of a few meV or smaller,
their variation with angle is a small fraction of a meV and
can be neglected.

4.3. E x p e r i m e n t s . The experiments were carried out
on a sample [62] consisting of a one-wavelength (λ) GaAs
cavity sandwiched by 20 period λ/4 Al0.13Ga0.87As/AlAs
DBRs. The top and bottom DBR were p- and n-doped,
respectively. The cavity contains a set of centrally placed
10 nm wide In0.13Ga0.87As QWs with 10 nm barriers. The
structure was grown by metal-organic vapour phase epitaxy
(MOVPE) on a GaAs substrate. The sample was placed in
a cryostat with angular access of ∼130◦, permitting values
up to θ = 60◦ to be achieved. White light illumination from
a projector lamp with angular spread < 1◦ was employed.
The reflected light was dispersed by a grating spectrometer,
and detected by a Ge photodiode.

The real structure differs from the one assumed in the
theoretical treatment (Fig. 3, a) due to the presence of
the GaAs substrate. Thus the cavity structure is slightly

unbalanced: the incident beam impinges on the top mirror
(air side) with a calculated reflectivity R1 = 0.9964,
whereas the bottom mirror (substrate side) has a reflectivity
R2 = 0.9874 [63]. As already remarked, the main effect of
unbalancing is that reflectivity dips are much less pronounced
and do not reach zero; the previous expressions for mode
energies in the high-reflectivity limit remain unchanged,
however.

A series of polarization-resolved reflectivity spectra at
different angles was shown in Fig. 1 of [41]. We just recall
the main features: at low angles the cavity mode (C) is at
lower energy compared to the exciton (X), which appears
weakly in reflectivity. On increasing the angle the cavity
mode shifts to higher energy and an anticrossing behavior
typical of the strong-coupling regime is seen. The two
reflectivity dips have equal intensities at an angle θ = 30◦;
at this angle mixed cavity polaritons with equal exciton and
photon amplitudes are realized. For larger angles the cavity
mode rapidly shifts to higher energy and the exciton is again
barely visible.

With increasing angle the reflectivity dips become more
pronounced for TM and less pronounced for TE polarization.
This can be understood from Eqs. (A2) and (A5), since
the reflectivity R1 of the top mirror increases with angle
for TE and decreases for TM polarization (while R2 has
a smaller variation with angle due to the presence of the
substrate): thus the cavity becomes more unbalanced for TE
and less unbalanced for TM, thereby explaining the trend of
reflectivity dips [64]. This also implies that in an unpolarized
experiment the TM component dominates in determining
the position of reflectivity structures (see Sec. 5.3). An
analysis of linewidths and their angular dependence and
a numerical transfer matrix fit to the dip intensities are
presented in [41].

In Fig. 4 we show the measured and calculated dispersion
of cavity polaritons for both polarizations. The calculations
were made using the analytic formulas of the previous
Sections and of Appendix A, for a symmetric structure
with N = 20 quarter-wave pairs in each DBR. The
cavity and DBR layer thicknesses were slightly adjusted
in order to account for the observed mode energies and
polarization splitting: we used Lc = 257 nm, a = 73 nm,
b = 63.8 nm. These values are consistent with wide-
band reflectivity spectra, as discussed below. The energy-
dependent refractive indices are taken from the 300 K data
of [65], decreased by 1.3% for use at 10 K. At 8650 Å
the values are 3.5467 for GaAs and 3.0108 for AlAs; the
refractive index of GaAs increases by about 0.9% from 1.40
to 1.45 eV [65]. For the QW exciton ωex = 1415.4 meV,
fxy = 4.2 · 1012 cm−2 [66], leading to Γ0 = 0.052 meV,
with three QWs and Neff = 2.52. We also take
γex = 0.9 meV from the experimental linewidth of the
exciton (FWHM ∼ 1.8 meV).

The first feature to be noticed is the anticrossing at
θ ' 30◦, with a Rabi splitting of ∼5 meV. The penetration
depth is calculated to be LDBR = 780 nm and the
effective length Leff ' 1.04µm, yielding a Rabi splitting
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Рис. 4. Dispersion of cavity polaritons in a GaAs cavity
with three In0.13Ga0.87As QWs and AlAs/Al0.13Ga0.87As mirrors.
Continuous and dashed lines are the theoretical curves for TM
and TE polarizations respectively; squares and triangles are the
experimental data from positions of reflectivity dips.

2~V = 4.7 meV, in good agreement with the experimental
value. The Rabi splitting for QW excitons in microcavities
yields an accurate measurement of the oscillator strength
through formulas (21)–(22), provided the penetration depth
in the dielectric mirrors is properly taken into account.

Next we consider the polariton dispersion at high angles
(where it almost concides with the cavity-mode dispersion).
The energy dependence of the index of refraction, although
weak, is crucial for obtaining good agreement with the
experimental results. This can be understood from Eq. (15)
(neglecting the TM–TE difference for the moment). If
the refractive index is taken to be independent of energy,
the effective index is neff ' 3.25 and the cavity-mode
frequency at θ = 60◦ would be 1454 meV, which is about
10 meV higher than the experimental result. A similar
discrepancy was noticed before [54] and could not be
explained. However since the effective index increases by
0.7% from 1.4 to 1.45 eV, the use of formula (15) leads
to a cavity-mode energy of 1444 meV at θ = 60◦, in
agreement with the experimental value. Thus including the
energy-dependence of the index of refraction fully solves the
problem of mode dispersion at high angles. We also note
that the strong sensitivity of the cavity-mode energy to the
refractive index in the DBR layers through ωs(0) implies
that a weak nonlinearity in one of the DBR layers might be
amplified and give rise to a strong nonlinear response of the
microcavity system [67].

Finally we turn to the polarization splitting.
Experimentally the TM mode is higher in energy; the

TM–TE splitting of the upper cavity polariton is ∼1.7 meV
at the largest angle θ = 60◦. From the discussion of
Sec. 4.1, and in particular Eq. (16), this implies that the
frequency of the center of the stop band ωs is greater than
the bare Fabry-Pérot frequency ωc. This expectation is
confirmed by wide-band reflectivity spectra where the cavity
dips are found to be displaced to lower energy relative
to the center of the stop band by ∼ 10 meV, implying
ωc < ωs. Furthermore the parameters we employ for our
calculations give ωc = 1.358 eV and ωs = 1.409 eV at
θ = 0, consistent with both the experimental deduction of
ωc < ωs from the wide band spectra, and with the observed
sign of the TM–TE splitting. The angular dependence of
the splitting is then controlled by the penetration depths
(see inset of Fig. 2). Using the same set of parameters
as before, in Fig. 5 we compare the calculated TM–TE
splitting of upper and lower cavity polaritons with the
experimental results. The formation of mixed exciton-cavity
modes around θ = 30◦ is also reflected in the TM–TE
splitting, which has a peculiar behavior in the anticrossing
region. The polarization splitting of the bare cavity mode
increases like sin2 θeff (see Eq. (17)): this behavior appears
outside the anticrossing region for the lower polariton at
low angles, and for the upper polariton at large angles.
Although the experimental results show some unavoidable
spread (note the scale on the energy axis), agreement
between experiment and theory is very satisfactory. Thus
the comparison of calculated and measured polarization
splitting confirms the accuracy of the analytic treatment.

Рис. 5. TM–TE polarization splitting of upper and lower
polaritons in the GaAs cavity of Fig. 4, with the same parameters.
Continuous lines: theoretical curves; closed and open squares:
experimental data.
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5. Coupled microcavities

5.1. E m p t y, c o u p l e d c a v i t i e s . We will now
derive formulas for the energies and widths of the cavity–
modes for two empty coupled microcavities. We first
consider a symmetric structure (see Fig. 3, b): this requires
that the left and right DBRs are the mirror image of each
other, and that the two cavities have the same length Lc,
so that both photon eigenmodes have the same frequency
ωm and width (HWHM) γm in the absence of coupling.
The number of quarter-wave pairs in the symmetric central
mirror is half-integer: we denote it by Nc−1/2 (cfr. Fig. 3, b).

The central mirror couples the two degenerate modes at
ωm of the isolated cavities and breaks their degeneracy. Due
to the symmetry of the system, the cavity modes may be
classified as symmetric (S) and antisymmetric (A). Their
complex energies are given in the limit R,Rc → 1 by
(see Appendix B for a derivation)

ω = ω j − iγ̃m = ωm + (−1) jVopt − iγ̃m, j = 1, 2, (26)

with

Vopt =
c
√

1− Rc

2ncLeff cos θc
(27)

representing the coupling constant between the two cavities,
and

γ̃m =
c(1− R)

4ncLeff cos θc
. (28)

R and Rc are the reflectivities of the external and
central mirrors, respectively, dependent on both angle
and polarization. For even Nc the symmetric mode lies
at higher energy than the antisymmetric one, while for
odd Nc the reverse is true (we are now specifying to
the case n1 < n2, otherwise the identification of S
and A mode is interchanged). Equation (26) follows from
diagonalizing a 2 × 2 Hamiltonian, which describes two
identical cavity modes coupled by a matrix element Vopt.
The angular dependence of Rc for the two polarizations (see
Appendix A) is such that Vopt increases with angle for TM,
and decreases for TE polarization.

Comparison with the single cavity case shows that the
mode widths in the coupled cavity structure are reduced
by a factor of two: the physical interpretation of this result
(which is rigorously derived in Appendix B) is that the decay
rate of the coupled cavity mode is the average of that of
left and right cavities, but each cavity mode can now decay
on one side only of the coupled structure. The predicted
reduction in coupled-cavity linewidth is however difficult to
observe, since it requires comparing the optical behavior of
two different samples.

When the two cavities have different lengths, it is
no longer possible to speak of a symmetric and an
antisymmetric mode: the thicker (thinner) cavity has a larger
weight in the low (high) energy mode. We show here
that the combined effects of cavity mismatch and absorption
give rise to differing intensities of the reflectivity dips. The
dip intensities can be calculated analytically [68] also when

Рис. 6. Calculated normal incidence reflectivity for two empty
coupled GaAs microcavities. (a) Each layer in the structure is
described by a real refractive index. (b) The GaAs layers are
described by a complex refractive index with an imaginary part
κ = 0.005.

the refractive index is assumed to have an imaginary part,
and the results are as follows. Since in the presence of
absorption it is the top (outer) cavity which gives the largest
contribution to the reflectivity spectrum, the corresponding
peak is stronger. On the other hand the relative intensities in
the transmission spectrum do not depend on which cavity is
thicker. These conclusions confirm the results obtained by
numerical simulations in [31].

This behaviour is illustrated in Fig. 6, which displays
the normal incidence reflectivity of two coupled GaAs
microcavities with AlAs/GaAs mirrors. Fig. 6, a is
calculated for a real refractive index, while Fig. 6, b includes
absorption through an imaginary part κ = 0.005 of the
refractive index in the GaAs layers. Fig. 6, a demonstrates
that the cavity mismatch alone yields reflectivity dips
which are much less pronounced, since the structure is
now unbalanced, but produces only a small asymmetry
(unless the cavity mismatch is very large). Furthermore
the reflectivity spectra are the same from both sides,
irrespective of which cavity is thicker (this is implied by the
general form (3) of the transfer matrix for a non-absorbing
structure). In Fig. 6, b the cavity mismatch is taken to be
much smaller than in Fig. 6, a (thus the dip positions are
almost unchanged), but nevertheless the two dips are much
broader and have different intensities: thus even a small
cavity unbalancing does produce a sizeable peak broadening
and asymmetry when combined with a finite imaginary part
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of the refractive index. Moreover, the reflectivity spectra
change when the order of the cavities is changed: when the
top cavity is thinner (dashed line) the dip at higher energy
is stronger than the dip at lower energy, while when the
top cavity is thicker (solid line) the lower dip is stronger.
These conclusions will be important for interpreting the
experimental results of Sec. 5.3.

5.2. C o u p l e d c a v i t i e s w i t h q u a n t u m w e l l s .
We now consider two identical microcavities of length
Lc = λ, each containing a QW at the antinode of the
electric field (see Fig. 3, b). Because of the symmetry of
the system, the dispersion equations for exciton–polaritons
in two coupled microcavities can be written again as two
independent equations for symmetric and antisymmetric
polariton modes:

Γ

∆
=

−i
(√

RRc−
√

Rce−iχ+
√

Reiχ− e−2iχ
)
±

±
√

1− Rc
(
e−iχ +

√
R
)(

1 +
√

Reiχ
) (

1 + e−2iχ + 2
√

Rce−iχ
) , (29)

with χ = nc
c Leff(ω −ωm) cos θc. Expanding the r.h.s in (29)

up to first order in (ω−ωm), we find that the two equations
reduce to

(ω − ωex + iγex)(ω − ωm + Vopt + iγ̃m) = V2, (30)

(ω − ωex + iγex)(ω − ωm−Vopt + iγ̃m) = V2, (31)

with the coupling Vopt between the two cavities and the
linewidth γ̃m given by (27) and (28), respectively. The
effective coupling V represents the exciton–cavity mode
interaction and is calculated to be

V2 =
2Γc

ncLeff cos θc

(1 +
√

R)2(1 +
√

Rc )

(R+ 1 + 4
√

R+ 2
√

RRc )
. (32)

In the limit R,Rc→ 1, V reduces to (21) for TE or to (22)
for TM polarization, i. e. it coincides with the coupling
constant for the single QW embedded in a microcavity.

It is interesting and useful to interpret the results in
terms of an oscillator model. The twofold-degenerate lowest
exciton state in two identical and uncoupled QWs has the
symmetric and antisymmetric eigenfunctions

|S〉 =
(
|QW1〉+ |QW2〉

)
/
√

2, (33)

|A〉 =
(
|QW1〉 − |QW2〉

)
/
√

2, (34)

where |QW1〉 and |QW2〉 are the single exciton wave
functions in the two QWs. On the other hand, as
already stated, coupling between the two photon modes at
equal frequency ωm leads to the formation of symmetric
and antisymmetric coupled cavity modes, with complex
frequencies given by Eq. (26). The symmetric exciton state
only interacts with the symmetric photon mode, and the
antisymmetric exciton only interacts with the antisymmetric
photon mode: since the coupled cavity frequencies do
not coincide, there are four distinct exciton-polariton states
which may be observed in reflection.

The two coupled cavities with QWs are therefore
described by a four–oscillator model, whose hamiltonian can
be written as

ωm− iγ̃m Vopt V 0

Vopt ωm− iγ̃m 0 V

V 0 ωex − iγex 0

0 V 0 ωex − iγex

 (35)

in the basis of localized cavity and exciton states.
Equation (35) includes all the couplings between the
four oscillators present in the system. It also allows for
generalizations, like having different cavity parameters (in
which case ωm differs for the two cavities) or different
QW excitons (in this latter case ωex would have two
different values). By changing basis to the states (33)–(34)
for the exciton and the analogous ones for the cavity
states, the hamiltonian (35) takes a 2 × 2 block form in
which symmetric or antisymmetric exciton states of energy
ωex − iγex are coupled by a matrix element V to symmetric
or antisymmetric cavity modes of energy ωm± Vopt − iγ̃m,
leading again to Eqs. (39)–(31). The simple physical model
used in the first of [33] is therefore recovered.

5.3. E x p e r i m e n t s . The coupled cavity structure was
grown by MOVPE and consists of two λ-thick GaAs cavities
(nominal thickness Lc = 250 nm) and three GaAs/AlAs
dielectric mirrors. The top DBR contains 12 periods, the
central one 14.5 (thus Nc = 15) and the bottom DBR
17.5 periods, ending on a GaAs substrate. Each cavity
contains three 10 nm wide In0.06Ga0.94As QWs separated by
10 nm GaAs barriers. The number of periods in the central
mirror was chosen in order to achieve an optical splitting
between symmetric and antisymmetric cavity modes of the
order of the Rabi splitting: this maximizes the effect of
coupling between the four oscillators present in the system,
and allows the removal of degeneracy of exciton states to
be achieved, as is shown below. The different number of
periods in the top and bottom DBRs partially compensates
for the presence of the substrate. The main effect of
asymmetry in the real structure is again in determining
the absolute values of reflectivity dips, which is not the
main issue here. We also remark that in these high-
finesse microcavities absorption is rather strong so that
transmission, although measurable, is usually only a few
per cent; therefore in order to make a detailed and reliable
comparison between experiment and theory we chose to
concentrate on reflectivity results.

In Fig. 7, a we show the measured unpolarized reflectivity
spectra at different angles. At the lowest angle θ = 10◦

the symmetric and antisymmetric cavity modes are clearly
seen, together with a weak exciton feature. The unsplit
exciton peak indicates that the two sets of QWs have nearly
the same exciton energies; on the other hand the different
intensities of the two cavity peaks point to slightly different
values for the cavity lengths, with the top cavity being
thicker. On increasing the angle the two cavity modes shift
to higher energies and gradually mix with the exciton states.
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Рис. 7. Measured (a) and calculated (b) reflectivity spectra as a function of angle for two coupled GaAs cavities each containing three
In0.06Ga0.94As QWs. Parameters are given in the text and above the curves.

At θ = 20◦ the exciton states appear as two peaks split
by about 2 meV: the removal of degeneracy of spatially
separated exciton states has been achieved. For angles
around θ = 30◦ the four states are strongly mixed and can no
longer be attributed to distinct exciton and cavity states. It is
interesting to observe that the third peak becomes narrower
in the resonance region: this feature will be discussed in
more detail below. For θ > 40◦ the cavity modes are
at higher energies than the excitonic states, which again
become degenerate. The relative intensity of the cavity
modes is similar to that at low angles; however the dips are
broader, since the cavity modes are now degenerate with the
excitonic continuum in the QWs [7].

We notice that the two energetically split excitonic states
are both observed in reflectivity spectra, i. e., they are both
”bright”. This is a new situation compared to the single
cavity case, where if the QW excitons are identical only
one state is bright and the remaining ones are dark and
unobservable (see discussion of Sec. 4.2). Thus the double
cavity configuration allows a qualitatively new phenomenon
to be obtained, namely a sizeable radiative splitting between
bright excitonic states, which cannot be observed either for
free QWs nor for QWs in a single cavity.

Fig. 7, b shows the calculated reflectivity curves at
the same angles for TM polarization (which dominates
the unpolarized spectra, as for the single cavity case).

Parameters are chosen as follows: cavity lengths
L1 = 253.6 nm, L2 = 251 nm, DBR layers a = 70.34 nm,
b = 59.52 nm (close to nominal values, and again adjusted
to reproduce mode energies and polarization splittings).
The penetration depth and effective length at θ = 0 are
LDBR = 670 nm and Leff = 922 nm. The reflectivity of the
central mirror is Rc = 0.97 (note that Eqs. (A2), (A5) apply
also to a symmetric mirror, taking N = Nc, provided the
number of quarter-wave pairs is Nc − 1/2 as in Fig. 3, b),
leading to an optical matrix element Vopt = 5.2 meV. An
imaginary part κ = 0.005 has been added to the index of
refraction for the GaAs layers.

The choice of the excitonic parameters is important.
The exciton frequency is ωex = 1453 meV. The exciton
halfwidth is taken to be different for each curve, in order
to account for the effect of resonance narrowing; starting
from the experimental value γex = 0.5 meV (HWHM) at
low and high angles, reproducing the width of the third
peak requires values of γex down to 0.3 or 0.15 meV at
resonance (the values of γex are indicated on each curve).
The oscillator strength per unit area is fxy = 4.2 · 1012 cm−2

leading again to a radiative width Γ0 = 0.052 meV for
the sets of three QWs. Note that the oscillator strength
of excitons in InxGa1−xAs/GaAs QWs of ∼ 10 nm width
is almost independent of In concentration [66]. The exciton-
cavity matrix element for each QW is calculated to be
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V = 2.5 meV. We also account for absorption in the
excitonic continuum by adding a further contribution to the
imaginary part of the refractive index in the QW regions,
for energies Eb ∼ 8 meV above the excitonic transition
energy [66]. From the known absorption probability for
interband transitions, which is w ' 0.7% for the heavy-
hole to conduction band transition [69,70], we obtain an
absorption coefficient α = 7 · 103 cm−1 and a value
κ = 0.05.

The calculated reflectivity curves reproduce the important
features of the experimental spectra of Fig. 7, a. The
relative intensities of the cavity modes at low or high angles
is explained by the combination of cavity mismatch and
absorption in the GaAs layers, following the theoretical
discussion of Sec. 5.1: the most pronounced dip is the lowest
energy one, corresponding to the top cavity being thicker.
The observed increase of linewidth of the cavity dips at high
angle is reproduced by the calculation when absorption of
the excitonic continuum is included. Furthermore, in the
resonance region the anticrossing behavior and the change
of relative intensities of the various peaks is reproduced
very well; the linewidth of the third peak agrees with
the observed one, but only when a very narrow excitonic
homogeneous broadening is assumed. Thus the present
results give further evidence for the occurrence of line
narrowing of cavity polaritons at resonance. This was first
attributed to ”motional” narrowing due to the very light in-
plane mass of cavity polaritons [16,17]; recently it has been
shown [18–21] that a resonance narrowing occurs also for
any mechanism of inhomogeneous broadening of the exciton
line, although the ”motional” effect is necessary to eliminate
scattering between low-k polariton states.

It can be noticed from Fig. 7 that the relative intensities
of the various dips are well reproduced by the calculation,
but the intensity of the third dip is not large enough when
compared to that of the fourth dip. In order to examine
this question and the resonance narrowing in more detail,
in Fig. 8 we show an enlarged view of the reflectivity
in the resonance region for θ = 26◦. The experimental
result is compared to three different calculations. In the
first one (curve (a)) the off-resonance excitonic linewidth
γex = 0.5 meV is taken: this is seen to be inadequate
as the third peak is too weak and its linewidth is too
large. In the second calculation (curve (b)) the narrower
halfwidth γex = 0.15 meV is assumed: now the width of
the third peak is close to the experimental one, and its
intensity is increased, but still being a bit weaker than in
the experiment. As a possible explanation for the intensity
of the third peak we introduce a small energy difference
of 1 meV of the two QW excitons (curve (c)), with the
QW of the inner cavity being at higher energy. In this case
the third peak moves closer in energy to the fourth one
and gains part of its oscillator strength, thereby leading to
an intensity ratio which is very similar to the experimental
one. We should also say that other explanations cannot be
ruled out; reproducing the observed intensities at resonance
in all details would probably require a more realistic model

Рис. 8. Reflectivity lineshape in the resonance region at an angle
θ = 26◦ for the two coupled GaAs cavities. Curve (a): theory,
γex = 0.5 meV, identical QWs (~ωex = 1453 meV). Curve (b):
theory, γex = 0.15 meV, identical QWs. Curve (c): theory,
γex = 0.15 meV, ~ωex = 1453 meV for the QWs of the top cavity,
~ωex = 1454 meV for the QWs of the bottom cavity. Curve (d):
experimental results.

of excitonic broadening, including e. g. an inhomogeneous
distribution of excitonic levels [18,29,71] which goes beyond
our simple Lorentzian model.

In Fig. 9 the cavity polariton dispersion measured from
the position of unpolarized reflectivity dips is compared to
the one calculated for both TE and TM polarizations. Here
in order to use the analytic formulas we have assumed the
symmetric structure shown in Fig. 3, b, with a thickness
Lc = 252.3 nm and N = 12 pairs in the external DBRs.
Several features can be seen. At θ = 10◦ the symmetric
and antisymmetric coupled-cavity modes are well separated
from the exciton resonance and have an energy of 1435.5
and 1445 meV, respectively, close to the values at normal
incidence; the optical splitting of cavity modes is thus
2Vopt = 9.3 meV. The same value for the optical splitting
is also obtained at an angle θ = 50◦, when the two cavity
modes are outside the anticrossing region and at much
higher energy than the exciton. At intermediate angles
strong interaction between the four oscillators occurs. The
antisymmetric cavity mode interacts with the antisymmetric
linear combination of exciton states and anticrossing occurs
at θ ' 22◦, with a Rabi splitting of ∼ 5 meV: this is
reproduced well by the calculation using the known exciton
oscillator strength, as in the single cavity case. Anticrossing
between the symmetric cavity- and exciton modes occurs
at θ = 35◦ with the same Rabi splitting ∼ 5 meV. The
two anticrossings are indicated by arrows on the plot.
Thus both the optical matrix element Vopt and the exciton-
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cavity matrix element V can be read directly from the
dispersion curves and are close to the calculated values. The
experimental dispersion at high angles agrees well with the
calculated one and is closer to that for TM polarization,
as discussed in Sec. 4 and in [64]. This corresponds to
the previous considerations, that the position of reflectivity
dips in unpolarized spectra is mostly determined by TM
polarization. Finally, we remark that good agreement at
high angles depends critically on inclusion of the energy
dependence of the index of refraction, as in the single-cavity
case: when this is neglected, the calculated dispersion turns
out to be much steeper than the experimental one.

In Fig. 10 we present an example of polarization-resolved
reflectivity spectra at the largest measured external angle
θ = 51.5◦ . The exciton peak is seen to be unsplit, since the
interaction between exciton and cavity modes is weak. The
peaks labelled ”C” represent optically coupled modes of the
two cavities. We first remark that the lower energy cavity
dips are much more intense for both polarizations: this is
due to a slightly larger thickness of the top cavity combined
with the presence of absorption, as already discussed. Both
the lower (symmetric) and upper (antisymmetric) coupled
cavity modes have a polarization splitting, the TM mode
being higher in energy than the TE one; the splitting
is larger for the upper cavity peak. These features, as
well as the relative intensities, are reproduced well by the
calculation. The energy positions of the structures depend
on polarization through the isolated cavity mode ωαm(θ) as
well as the optical coupling Vα

opt (Eq. (27)); the inset in
Fig. 10 illustrates the evolution of the polarization splitting

Рис. 9. Dispersion of cavity polaritons for the two coupled
GaAs cavities of Figs. 7 and 8 each containing three InGaAs
QWs. Parameters are given in the text. Continuous and dashed
lines: theoretical curves (solid = TM, dashed = TE); squares:
experimental data. The arrows denote the separate anticrossings
of A and S modes.

Рис. 10. Experimental and theoretical reflectivity curves for the
GaAs coupled cavities at θ = 51.5◦, for TE and TM polarizations.
Inset: schematic illustration of polarization splitting of the optical
modes in a single cavity (left) and in coupled cavities.

from the single to the coupled cavity for the present case of
odd Nc. The polarization splittings of the upper and lower
doublet are calculated as

∆ωA = ∆ωm + VTM
opt −VTE

opt = 2.2 meV, (36)

∆ωS = ∆ωm−VTM
opt + VTE

opt = 0.8 meV, (37)

respectively. The predicted order of levels is the same as in
the experimental result, namely S–TE, S–TM, A–TE, A–TM
on increasing energy. Note that this is not a general property,
since it depends on the polarization splitting for the single
cavity (which can have either sign) as well as on the size
of Vα

opt. The splitting of the antisymmetric mode is larger
because the optical matrix element Vopt is larger for TM
polarization (see also the inset). The experimental values of
the polarization splittings are ∆ωA = 2.5 meV for the upper
doublet and ∆ωS = 1.7 meV for the lower doublet, in fair
agreement with the values given in (36)–(37). Thus we can
conclude that a good understanding of polarization splitting
of coupled cavities has been achieved.

6. Conclusions

Angle- and polarization-resolved spectroscopy on
microcavities with QWs yields very detailed information
about exciton-light coupling in the strong-coupling regime.
Interpreting cavity-polariton spectroscopy at meV or
sub-meV level requires the inclusion of several effects:
reflection phase delay in the dielectric mirrors, angle-
and polarization dependence of mode frequency and of
exciton-cavity coupling, energy dependence of the refractive
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index, and optical coupling between the cavities, which are
analyzed in the present paper mainly on the basis of analytic
results. The theoretical formulation based on semiclassical
theory can be easily extended or applied to other related
situations.

The energy of single-cavity modes is determined by the
bare Fabry-Pérot frequency ωc and by the center of the
stop band ωs, weighted with their characteristic lengths: the
penetration depth in the dielectric mirrors carries a nontrivial
angle- and polarization dependence. The polarization
splitting of single-cavity mode depends on the mismatch
between ωc and ωs, and increases with internal angle like
sin2 θeff. When QWs are embedded in the microcavity at an
antinode of the electric field, the exciton and cavity mode
are described at each angle by a two-oscillator model, whose
parameters are expressed in terms of microscopic properties
of the exciton and structural parameters. Weak and strong
coupling regimes and the formation of cavity polaritons
are described. Comparison with experimental results on a
GaAs-based cavity with In0.13Ga0.87As QWs shows that a
good understanding of the exciton-cavity mode interaction,
polariton dispersion and polarization properties has been
achieved. For the polariton dispersion it is important to
include the energy dependence of the index of refraction,
which makes the cavity mode considerably less steep at high
angles.

Coupling of two identical cavities through a central
mirror induces an optical splitting between symmetric and
antisymmetric modes, which also depends on angle and
polarization. A mismatch of cavity lengths combined with
absorption in the structure leads to different intensities of
reflectivity dips. When QW excitons are embedded in both
cavities at antinode positions, the system behaves as four
coupled oscillators, leading to a removal of degeneracy of
exciton states separated by a macroscopic distance. The
energetically split excitonic oscillators are both bright and
observable, unlike the situation for two identical QWs
in free space or in a single cavity. If the two cavities
(and the two QWs) are identical, separate anticrossing of
symmetric and antisymmetric modes occurs. These features
are confirmed by experimental results on a coupled GaAs
cavity with In0.06Ga0.94As QWs. The polariton dispersion
for coupled cavities is well described by theory; a lineshape
analysis allows an effect of line narrowing of cavity polariton
linewidths in the resonance region to be revealed. Finally,
the polarization splitting of coupled-cavity system has been
analyzed in detail and is shown to depend both on single-
cavity factors and on angle- and polarization dependence of
the optical coupling. Inclusion of all these effects provides
a good description of the experimental results.
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Appendix A: Parametrization of DBR
reflection coefficient

Evaluation of the quantities appearing in the
parametrization of the DBR reflectivity, Eq. (10), requires
expanding the elements of the transfer matrix up to linear
order in terms of two small parameters ε1 and ε2 defined
as follows:

ε1 =
n1

c
a(ω cos θ1 − ω1s),

ε2 =
n2

c
b(ω cos θ2 − ω2s), (A1)

where a, b are the thicknesses of DBR layers (see Fig. 1),
and θ1 and θ2 are the angles in the layers with refractive
indexes n1 and n2 respectively. The frequencies ω1s and ω2s

are defined by n1ω1sa/c = n2ω2sb/c = π/2. Note that, as
far as ω1s may differ from ω2s, our expressions can be used
also when the λ/4 condition is not exactly satisfied. For
the case n1 < n2, lengthy but straightforward calculations
lead — for a large number N of periods — to the following
expressions:
TE polarization:

R(θ) = 1− 4
next

nc

cos θ
cos θc

(
n1 cos θ1

n2 cos θ2

)2N

, (A2)

ωs(θ) =
πc

2(a + b)

n1 cos θ1 + n2 cos θ2

n1n2 cos θ1 cos θ2
, (A3)

LDBR(θ) =
2n2

1n2
2(a + b)

n2
c(n

2
2 − n2

1)

cos2 θ1 cos2 θ2

cos2 θc
. (A4)

TM polarization:

R(θ) = 1− 4
next

nc

cos θc

cos θ

(
n1 cos θ2

n2 cos θ1

)2N

, (A5)

ωs(θ) =
πc
2

n1 cos θ2 + n2 cos θ1

n1n2(acos2 θ1 + bcos2 θ2)
, (A6)

LDBR(θ) =
2n2

1n2
2

n2
c

acos2 θ1 + bcos2 θ2

n2
2 cos2 θ1 − n2

1 cos2 θ2
. (A7)

At normal incidence, and if the λ/4 condition is exactly
satisfied, we have

a =
1
4
λs

n1
b =

1
4
λs

n2
, (A8)

where λs is the operating wavelength in vacuum; then the
above formulas reduce to

R(0) = 1− 4
next

nc

(
n1

n2

)2N

, (A9)

ωs(0) =
πc

2(a + b)

n1 + n2

n1n2
=

2πc
λs
, (A10)

LDBR(0) =
2n2

1n2
2(a + b)

n2
c(n

2
2 − n2

1)
=
λs

2
n1n2

n2
c(n2 − n1)

, (A11)

and coincide with those given in [37,38].
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The reflection coefficient for n1 > n2 may be similarly
evaluated. In this case it is parametrized according to the
lower sign in Eq. (10) of the text, and we obtain:
TE polarization:

R(θ) = 1− 4
nc

next

cos θc

cos θ

(
n2 cos θ2

n1 cos θ1

)2N

, (A12)

ωs(θ) =
πc
2

n1 cos θ1 + n2 cos θ2

n2
1acos2 θ1 + n2

2bcos2 θ2
, (A13)

LDBR(θ) =
2

n2
1 − n2

2

(
n2

1acos2 θ1 + n2
2bcos2 θ2

)
. (A14)

TM polarization:

R(θ) = 1− 4
nc

next

cos θ
cos θc

(
n2 cos θ1

n1 cos θ2

)2N

, (A15)

ωs(θ) =
πc

2(n2
1a + n2

2b)

n1 cos θ2 + n2 cos θ1

cos θ1 cos θ2
, (A16)

LDBR(θ) =
2 cos2 θ1 cos2 θ2(n2

1a + n2
2b)

cos2 θc(n2
1 cos2 θ2 − n2

2 cos2 θ1)
. (A17)

Appendix B: Asymmetric cavity, coupled
cavity linewidth

In this Appendix we extend the treatment of Sec. 4.1
by deriving formulas for mode frequency and width of an
asymmetric cavity, and also prove the results reported in
Sec. 5.1 for a coupled cavity.

The dispersion equation for an asymmetric cavity of width
Lc surrounded by mirrors with reflection coefficients r, rc is

rr c e2ikzLc = 1. (B1)

This formula can be derived either by working out the
transfer matrix of the structure using parametrizations (3),
(4) for right and left mirrors, or by taking Eq. (11) for a
cavity of width 2Lc in the limit tc→ 0 for the central object.
Introducing the usual parametrization (10) for the DBR
reflection coefficient, this equation for ω can be solved in
the complex plane yielding ω = ωm(θ) − iγm(θ), with the
mode frequency given by

ωm =
Lcωc + 1

2 (LDBRωs + LDBR,cωs,c)

Lc + 1
2(LDBR + LDBR,c)

(B2)

and the mode halfwidth

γm = −
c ln
√

RRc

2ncLeff cos θc
, (B3)

where Leff = Lc + (1/2)(LDBR + LDBR,c), with obvious
notations for the centers of stop bands and penetration
depths. For R,Rc → 1, formula (B2) reduces to Eq. (14)
for the mode halfwidth of a symmetric cavity.

We now consider a symmetric structure with two cavities
of width Lc coupled by a central mirror; the dispersion

equation is (11) of the main text. Since the central mirror
is assumed to be symmetric, its reflection and transmission
coefficients satisy tc/t∗c = −rc/r∗c (see Sec. 3). This implies
that the phase of tc differs from the phase of rc by ±π/2,
or tc = ±ir c

√
(1 − Rc)/Rc. The ± sign corresponds to an

even or odd number of periods in the central mirror. The
dispersion equation (11) can therefore be written as

rr ce
2ikzLc =

1

1± i
√

1−Rc
Rc

, (B4)

where the l.h.s. equals unity at the eigenfrequency of each
isolated cavity (see Eq. (B1)). By expressing the l.h.s.
in terms of the isolated cavity frequency (B2), (B3), the
complex solutions for the coupled cavity are found as

ω = ωm− iγm +
ic ln(1± i

√
1−Rc

Rc
)

2ncLeff cos θc
. (B5)

The imaginary part of the logarithm yields the optical
splitting between S and A modes, while the real part gives
a correction to the single cavity linewidth. We obtain:

ω = ωm±Vopt − iγ̃m, (B6)

where
Vopt =

c
2ncLeff cos θc

arcsin
√

1− Rc, (B7)

γ̃m = −
c

2ncLeff cos θc
ln
√

R. (B8)

The expression for the optical coupling reduces for Rc→ 1
to Eq. (27) of the main text. The halfwidth is reduced
compared to Eq. (B3) for a single cavity: the effect of
optical coupling between the two cavities is to suppress the
contribution to the linewidth coming from decay through
the mirror of reflectivity Rc, and to leave only the decay rate
through the external mirror of reflectivity R.

This conclusion can also be derived using the concept
of quasi-modes [28], which are formed by the stationary
states of a closed cavity weakly coupled to the external
electromagnetic field. For a single cavity, the linewidth can
be written as γm = γleft + γright in terms of the decay rates
from either side; for a coupled cavity, since the eigenmodes S
and A are linear combinations of single cavity modes, the
matrix elements to left and right outer states are reduced by
a factor 1/

√
2, and the whole width is reduced by a factor

of two.
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[3] R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle,
P. Pellandini, M. Ilegems. Phys. Rev. Lett. 73, 2043 (1994).

Физика твердого тела, 1999, том 41, вып. 8



1352 Giovanna Panzarini, Lucio Claudio Andreani, A. Armitage, D. Baxter, M.S. Skolnick, V.N. Astratov...
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U. Oesterle, R.P. Stanley. Phys. Rev. Lett. 74, 3967 (1995);
J. Tignon, R. Ferreira, J. Wainstain, C. Delalande, P. Voisin,
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