# Примесные центры в керамике титаната бария, легированной редкоземельными ионами

© С.М. Корниенко, И.П. Быков, М.Д. Глинчук, В.В. Лагута, А.Г. Белоус\*, Л. Ястрабик\*\*

Институт проблем материаловедения Академии наук Украины, 252180 Киев, Украина

\*Институт общей и неорганической химии Академии наук Украины, 252680 Киев, Украина

\*\*Институт физики Академии наук Чехии,

Прага, Чехия

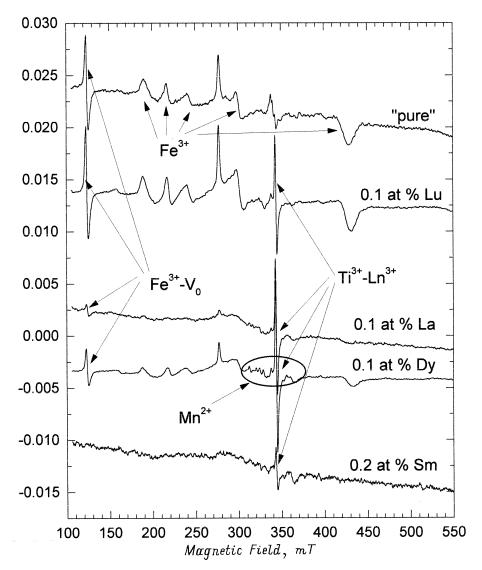
E-mail: glin@ipms.kiev.ua

(Поступила в Редакцию 3 февраля 1999 г. В окончательной редакции 1 апреля 1999 г.)

Методом ЭПР исследована керамика ВаТіO<sub>3</sub> с примесью редкоземельных ионов Y, La, Nd, Sm, Lu и Dy с концентрацией 0.1–0.5 at.% в интервале 160 < T < 480 К. Однаружено несколько спектров ЭПР, наиболее интенсивные из которых имеют g-факторы вблизи 5.5 и 1.96. Изучены зависимости их интенсивности, g-фактора и ширины от концентрации редкоземельных ионов и температуры. Анализ полученных данных позволил определить критическую концентрацию редкоземельных ионов  $x_c = 0.2$ –0.3 at.%. Она характеризуется тем, что при  $x < x_c$  либо  $x > x_c$  все редкоземельные ионы, кроме Lu, замещают преимущественно Ва<sup>4+</sup> либо Ті<sup>4+</sup> соответственно. Установлены модели парамагнитных центров: Fe<sup>3+</sup>– $V_O$  ( $g \approx 5.5$ ), Ti<sup>3+</sup>–Ln<sup>3+</sup> ( $g \approx 1.96$ ), где  $V_O$  — вакансия кислорода, Ln — редкоземельный ион. Впервые обнаружено скачнообразное изменение аксиальной симметрии до кубической для центра Fe<sup>3+</sup>– $V_O$  при фазовом переходе из тетрагональной в кубическую фазу. Обсуждается роль новых центров в возникновении позисторного эффекта.

Исследование примесных центров в моно- и поликристаллах  $BaTiO_3$  привлекает пристальное внимание исследователей в течение многих лет [1,2]. Это связано с тем, что примеси и дефекты структуры существенно влияют на свойства этого материала, приводя к появлению полупроводниковых свойств  $BaTiO_3$ . Наиболее ярким эффектом является аномальное возрастание сопротивления выше температуры Кюри  $T_c$  в керамических образцах титаната бария с примесями. Это последнее явление широко используется в термисторах с положительным коэффициентом сопротивления (позисторах) для ограничесния неконтролируемого возрастания токов.

Позисторный эффект обычно наблюдается только в керамических образцах  $BaTiO_3$ , легированных донорными примесями (например, редкоземельными ионами, ионами ниобия и др.). Было установлено также, что добавление долей процента акцепторных примесей (например, ионов Mn) существенно увеличивает скачок сопротивления вблизи  $T_c$  [2]. Укажем, что примеси ионов переходных элементов типа Mn, Fe, Cr обычно присутствуют и в недопированных образцах  $BaTiO_3$  [3], так что позисторный эффект наблюдается и в образцах, легированных донорными примесями.


Таким образом, донорные и акцепторные центры необходимы для позисторных свойств керамики. Необходимость компенсации избыточных зарядов примесей может приводить к изменению их зарядового состояния, сопровождаемого ростом зерен и переходом примесей из межзеренного пространства в зерно [4], а также к появлению дефектов решетки типа ионов Ti<sup>3+</sup>, как было показано на примере легированной керамики цирконататитаната свинца [5]. С другой стороны, величина и знак

избыточного заряда примесей существенно зависит от типа замещаемого ими узла решетки. В связи с этим можно ожидать, что как местоположение ионов примеси в решетке, так и количество собственных дефектов структуры будут зависеть от концентрации вводимых примесей. Поскольку все вышеперечисленные факторы должны существенно влиять на электрофизические свойства материала, изучение типа примесей, их зарядового состояния и местоположения, а также собственных дефектов решетки необходимо для установления природы наблюдаемых аномалий.

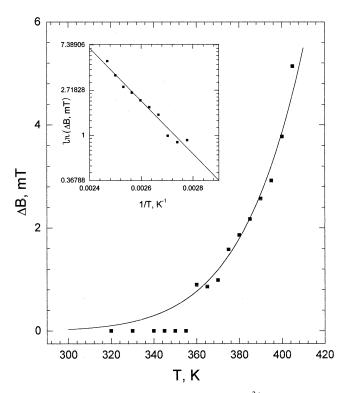
В настоящей работе методом ЭПР исследованы примесные центры в керамике  $BaTiO_3$ , легированной лишь редкоземельными ионами. Показано, что наблюдаемые спектры ЭПР принадлежат ионам  $Fe^{3+}$ ,  $Mn^{2+}$ ,  $Ti^{3+}$ , а наиболее интенсивные спектры обусловлены центрами, идентифицированными как  $Fe^{3+}$ – $V_O$  и  $Ti^{3+}$ – $Ln^{3+}$  (Ln — редкоземельный ион,  $V_O$  — вакансия кислорода).

## 1. Образцы и детали эксперимента

Исследовалась серия керамических образцов  $Ba_{1-x}Ln_xTiO_3$ , где Ln — редкоземельный элемент Y, La, Nd, Sm, Lu, Dy. Концентрация редкоземельных элементов составляла 0.1, 0.2, 0.3, 0.4, 0.5 at.%. В качестве исходных реагентов использовали  $BaCO_3$ ,  $TiO_2$ ,  $Y_2O_3$ ,  $Nd_2O_3$ ,  $Sm_2O_3$ ,  $Dy_2O_3$ ,  $Lu_2O_3$  марки "осч". Фазовые превращения изучали методом термогравиметрии на приборе типа Q-1000 ОД–102, скорость нагревания 10 K/min. Полученные продукты идентифицировали рентгенографическим методом по дифрактограммам порошков,



**Рис. 1.** Спектры ЭПР чистого BaTiO<sub>3</sub> и Ba<sub>1-x</sub>Ln<sub>x</sub>TiO<sub>3</sub> при  $T=300\,\mathrm{K},\,f=9455.73\,\mathrm{MHz}.$ 


снятым на установке ДРОН–3М (Си  $K\alpha$ -излучение). Для исследования использовали образцы, синтезированные при температурах 1340–1360° С в воздушной атмосфере.

Спектры ЭПР регистрировались в X-диапазоне СВЧ излучения. Измерения проводились в интервале температур 160–480 К.

# 2. Результаты

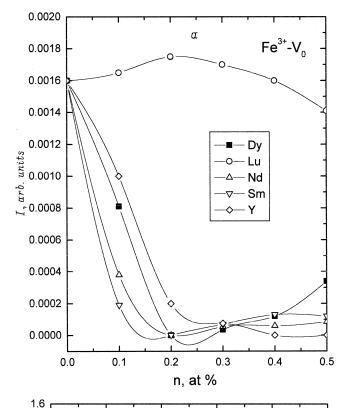
На рис. 1 представлены ЭПР спектры ряда образцов при  $T=300\,\mathrm{K}$ . Наряду с линиями хорошо изученных центров  $\mathrm{Fe^{3+}}$ ,  $\mathrm{Mn^{2+}}$  ([6–9]) нами были обнаружены интенсивные линии, имеющие g-факторы вблизи 5.5 и 1.96. 2.1. Линия ЭПР вблизи  $g\approx5.5$ . В чистом не легированном редкоземельными ионами  $\mathrm{BaTiO_3}$  линия, имеющая g=5.549 (рис. 1), наиболее вероятно принадлежит тетрагональному центру  $\mathrm{Fe^{3+}}{-V_0}$ . Спектр такого центра обычно описывается эффективным спин-

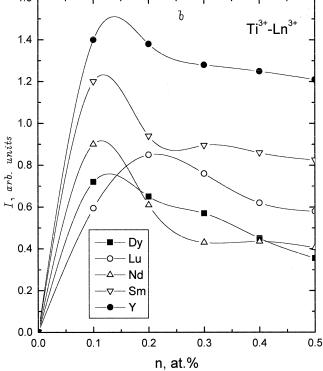
гамильтонианом  $H_{\rm eff} = g_{\rm eff} \beta H S_{\rm eff}$  с эффективным спином  $S_{\rm eff} = 1/2$ , поскольку из-за большого тетрагонального расщепления спиновых уровней в Х-диапазоне видна только одна линия при  $H \approx 100\,\mathrm{mT}$ . Подобное явление наблюдается для всех центров, содержащих вакансию кислорода, и его очень хорошо исследовали в SrTiO3 для  $Fe^{3+}-V_O$  и  $Mn^{2+}-V_O$  [10]. Центр  $Fe^{3+}-V_O$  ранее исследовался в монокристаллическом ВаТіО<sub>3</sub> [11], но спектр этого центра был виден только в ромбоэдрической фазе при  $T = 20 \, \mathrm{K}$  и в образцах, допированных железом. В тетрагональной фазе эта линия (g = 5.542) наблюдалась в керамических образцах, допированных ниодимом и железом, тогда как в образцах, дополнительно легированных оловом, спектр  $Fe^{3+}-V_{O}$  отсутствовал (см. [12,13]). В данной работе спектр этого центра наблюдался в тетрагональной фазе керамических образцов, которые не были легированы железом. Исследовалось поведение линии ЭПР этого



**Рис. 2.** Зависимость уширения  $\Delta B$  линии  $\mathrm{Fe}^{3+} - V_{\mathrm{O}}$  от температуры. На вставке — зависимость  $\ln(\Delta B)$  от 1/T. Точки — эксперимент, сплошная линия — сшивание по формуле (1).

центра в зависимости от температуры. Линия ЭПР центра  ${\rm Fe^{3+}}{-}V_{\rm O}$  появлялась в тетрагональной фазе, при этом, начиная с  $T\approx 350\,{\rm K}$ , линия начинала уширяться (рис. 2). Это уширение подчиняется закону Аррениуса


$$\Delta B \sim 1/\tau = 1/\tau_0 \exp(-E_a/kT). \tag{1}$$


По наклону зависимости  $\ln(\Delta B) = f(1/T)$  (вставка к рис. 2) определены параметры реориентационного движения вакансии кислорода  $E_a = 0.5\,\mathrm{eV},$   $1/\tau_0 = 2.54\cdot 10^{13}\,\mathrm{Hz}.$ 

При переходе в кубическую фазу линия, соответствующая аксиальному центру  $\mathrm{Fe^{3+}}\!-\!V_{\mathrm{O}}$ , пропадала, но появлялась линия ЭПР кубического центра  $\mathrm{Fe^{3+}}$ , не содержащего вакансии кислорода. Такое скачкообразное изменение симметрии подобных центров при фазовом переходе обнаружено впервые.

Помимо зависимости ширины линии от температуры, g-фактор линии ЭПР парамагнитного центра  $Fe^{3+}$ – $V_{\rm O}$  зависит от концентрации и типа примеси (табл. 1). Зависимость интенсивности линии ЭПР парамагнитного центра  $Fe^{3+}$ – $V_{\rm O}$  от концентрации примеси представлена на рис. 3, a. Видно, что в ряде образцов эта линия пропадает при возрастании концентрации примерно до 0.2 at.% и появляется вновь уже при большей концентрации примеси. Исчезновение спектра обозначено стрелкой в табл. 1.

2.2. Линия ЭПР вблизи  $g\approx 1.963$ . Линия ЭПР, имеющая  $g\approx 1.963$  при малой концентрации редкоземельных примесей в ВаТіО $_3$  (рис. 1), приписана нами центру  $\mathrm{Ti}^{3+}$ – $\mathrm{Ln}^{3+}$  (редкоземельный ион замещает





**Рис. 3.** Зависимость интенсивности линий ЭПР  ${\rm Fe^{3+}}-V_{\rm O}~(a)$  и  ${\rm Ti^{3+}Ln^{3+}}~(b)$  от концентрации и примеси редкоземельных ионов.

**Таблица 1.** Значение g-фактора центра  $\mathrm{Fe}^{3+} - V_{\mathrm{O}}$  в образцах ВаТі $\mathrm{O}_3$  с различными примесями при  $T=300\,\mathrm{K}$ . Для чистого ВаТі $\mathrm{O}_3$  g=5.549.

| Ln | <i>x</i> , at.% |              |              |          |          |  |
|----|-----------------|--------------|--------------|----------|----------|--|
|    | 0.1             | 0.2          | 0.3          | 0.4      | 0.5      |  |
| Y  | 5.578           | 5.573        | 5.568        | <b>↓</b> | <b>↓</b> |  |
| Lu | 5.588           | 5.533        | 5.542        | _        | 5.518    |  |
| Sm | 5.551           | $\downarrow$ | _            | 5.493    | 5.479    |  |
| Dy | 5.584           | $\downarrow$ | $\downarrow$ | 5.512    | 5.525    |  |
| Nd | 5.55            | $\downarrow$ | $\downarrow$ | 5.424    | 5.437    |  |
| La | 5.532           | _            | 5.481        | 5.516    | 5.423    |  |

**Таблица 2.** Значение *g*-фактора центра  ${
m Ti}^{3+} - {
m Ln}^{3+}$  в образцах  ${
m BaTiO}_3$  с различными примесями при  $T=300~{
m K}.$ 

| Ln | <i>x</i> , at.% |       |       |       |       |  |
|----|-----------------|-------|-------|-------|-------|--|
|    | 0.1             | 0.2   | 0.3   | 0.4   | 0.5   |  |
| Y  | 1.962           | 1.97  | 1.972 | 1.971 | 1.972 |  |
| Lu | 1.969           | 1.97  | 1.971 | _     | 1.971 |  |
| Sm | 1.965           | 1.971 | _     | 1.971 | 1.971 |  |
| Dy | 1.964           | 1.972 | 1.973 | 1.965 | 1.971 |  |
| Nd | 1.97            | 1.971 | 1.971 | 1.971 | 1.975 |  |
| La | 1.963           | _     | 1.972 | 1.965 | 1.971 |  |

 ${\rm Ba^{2+}}$ ), так как в чистом  ${\rm BaTiO_3}$  эта линия практически отсутствует. При допировании редкоземельными элементами интенсивность этой линии возрастает, при этом g-фактор близок к g-факторам центров, содержащих  ${\rm Ti^{3+}}$ , но отличается от всех ранее известных [14]. С ростом концентрации примеси до 0.2 at.% g-фактор незначительно изменяется и с дальнейшим увеличением концентрации остается постоянным. В табл. 2 представлены g-факторы линии ЭПР парамагнитного центра  ${\rm Ti^{3+}-Ln^{3+}}$  при разных концентрациях примеси.

#### 3. Обсуждение

3.1. Примесный центр  $Fe^{3+} - V_O$ . Исследованные температурные зависимости ширины линии спектра ЭПР центра  $Fe^{3+}-V_O$  в  $BaTiO_3$  выглядят необычными. Как уже отмечалось, в тетрагональной фазе, начиная с  $T \approx 350 \, \text{K}$ , линия ЭПР начинает уширяться, при этом уширение подчиняется закону Аррениуса (1). Полученные параметры  $E_a$  и  $1/\tau_0$  являются типичными для активационных надбарьерных прыжков примеси между некоторыми эквивалентными или близкими к эквивалентным положениям. Очевидно, в центре  $Fe^{3+}-V_{O}$  перемещается вакансия  $V_{\rm O}$ , которую ион железа удерживает вблизи себя кулоновским полем притяжения. Вакансия кислорода удерживается вблизи  $\mathrm{Fe}^{3+}$  по крайней мере до температуры  $T \approx 400\,\mathrm{K}$ , т.е. до  $T \approx T_c$ , поскольку до этих температур сохраняется тетрагональность центра. Необычным в поведении данного центра явлется скачкообразное повышение его симметрии до кубической непосредственно за температурой фазового перехода. Очевидно, что в полярной тетрагональной фазе дипольный момент, связанный с парным дефектом  $Fe^{3+}-V_O$ , имел преимущественную ориентацию вдоль направления электрической поляризации. Как показали недавние теоретические расчеты для  $PbTiO_3$  [15], понижение энергии  $V_O$ вдоль направления поляризации может составить 0.3 eV по сравнению с понижением энергии вдоль направления, перпендикулярного поляризации. Повышение температуры убыстряет надбарьерные переориентации диполя  $Fe^{3+}-V_{O}$ , приводя к укорочению времени жизни парамагнитного центра с данной выделенной ориентацией в соответствии с выражением (1). Как следует из теории "двигательного" усреднения спектров ЭПР, описывающей изменения спектра из-за движения парамагнитного центра, усреднение созданного  $V_{\rm O}$  тетрагонального поля, сопровождаемого первоначально "двигательным" уширением, а затем сужением линии, можно ожидать при выполнении неравенства  $\Delta\omega\tau < 1$  (сужение),  $\Delta\omega\tau > 1$ (уширение), где  $1/\tau$  — частота реориентаций парамагнитного центра,  $\Delta\omega=(B_{\parallel}-B_{\perp})g\beta/h$  — обусловленная тетрагональностью полная протяженность спектра. Оценки критерия сужения показывают, что он может выполняться при  $T > 500 \, \mathrm{K}$ , и поэтому исчезновение аксиального спектра и появление спектра кубической симметрии следовало бы ожидать только при  $T > 500 \, \mathrm{K}$ , что значительно выше  $T_c$ . Это и объясняет наблюдаемое до  $T = T_c$  уширение линии ЭПР. Можно предположить, что исчезновение электрической поляризации и большая диэлектрическая проницаемость в  $BaTiO_3$  при  $T \geq T_c$ катастрофически повлияли на энергетическое положение вакансии вблизи  $Fe^{3+}$ . В частности, можно ожидать, что, аналогично результатам работы [15], энергия вакансии в полярной фазе ниже, чем в параэлектрической, так что при  $T > T_c$  вакансия менее стабильна. Поэтому превращение центра  $Fe^{3+}-V_0$  в центр  $Fe^{3+}$  можно объяснить активизацией в неполярной фазе процессов термического освобождения вакансий и их последующую диффузию по кристаллу.

Зависимость интенсивности линии ЭПР центра  ${\rm Fe}^{3+} - V_{\rm O}$  от концентрации редкоземельных ионов (рис. 3, a) можно объяснить, предположив, что при малых концентрациях  $Ln^{3+}$  ( $Ln^{3+}$ ,  $Nd^{3+}$ ,  $Dy^{3+}$ ) эта примесь занимает узел типа  $A^{2+}$  ( $Ba^{2+}$ ), при этом вносится избыточный положительный заряд и для его компенсации число центров  $Fe^{3+} - V_O$ , также несущих избыточный положительный заряд, начинает уменьшаться. Вероятнее всего происходит перезарядка  ${\rm Fe^{3+}}{-V_{\rm O}} \rightarrow {\rm Fe^{2+}}{-V_{\rm O}}$ , так как не наблюдается рост концентрации центров Fe<sup>3+</sup> (т.е. уменьшение числа вакансий), а  $Fe^{2+}-V_O$  в X-диапазоне не наблюдается. Таким образом,  $Fe^{3+}-V_{O}$  является акцепторным центром (ловушкой для электронов), что может быть существенным для полупроводниковых свойств керамики. При определенной концентрации ( $\sim 0.2$  at.%) центры  $Fe^{3+}$  –  $V_{\rm O}$  пропадают — происходит почти полная

перезарядка. При дальнейшем росте концентрации примесные редкоземельные ионы начинают размещаться не только в узлах типа  $A^{2+}$ , но и в узлах типа  $B^{4+}$ , создавая при этом избыточный отрицательный заряд. Примеси в узлах А и В могут частично себя компенсировать, что, вероятно, имеет место при  $x_c = 0.2-0.3$  at.%. Центры  $Fe^{3+} - V_O$  вновь появляются при концентрации  $x > x_c$  для компенсации избыточного отрицательного заряда, связанного с резкоземельным ионом в узле типа В. Введенная здесь критическая концентрация  $x_c$ определяет граничную концентрацию растворимости ионов в узлах типа A ( $x < x_c$ ) либо типа B ( $x > x_c$ ). Укажем, что преимущественно замещение узлов типа А при малых концентрациях и узлов типа В при концентрациях La больше 4 at.% наблюдалось ранее в керамике  $PbZr_{1-x}Ti_{x}O_{3}$  [16]. Помимо изменения интенсивности изменяется д-фактор этого центра с изменением концентрации примеси (см. табл. 1). Это, по-видимому, обусловлено тем, что с ростом концентрации искажается структура ВаТіО3. При допировании Lu интенсивность линии ЭПР центра  $Fe^{3+}-V_{O}$  существенно не изменяется. Это можно объяснить тем, что Lu одновременно начинает занимать узел А и узел В, компенсируя себя при всех рассмотренных концентрациях Lu. Отметим, что у Lu наименьший ионный радиус из данного ряда редкоземельных ионов, что, возможно, и позволяет ему замещать одновременно оба узла.

3.2. Примесный центр  $Ti^{3+} - Ln^{3+}$ . Линия ЭПР с g=1.963 при малом содержании примеси (до 0.1 at.%) ранее наблюдалась в [17]. Авторы [17] приписывают линию ЭПР с g = 1.963 центру  $\text{Ti}^{4+} - V_{\text{O}} - \text{Ti}^{4+}$ с электроном, перемещающимся между Ті<sup>4+</sup> и превращающим Ti<sup>4+</sup> в Ti<sup>3+</sup>. Однако имеются некоторые противоречия в этой модели. В комплексе  $Ti^{4+}-V_O-Ti^{4+}$  с перемещающимся электроном может быть две ситуации. Электрон большую часть времени локализован на вакансии, и его волновая функция растянута в стороны Ті<sup>4+</sup>. В этом случае это типичный F-центр и его g-фактор должен быть около 2.0023. Электрон большую часть времени проводит локализованным на одном из Ti<sup>4+</sup>, так что будет центр  $Ti^{3+}-V_0$ . Как уже упоминалось, в [14] представлены результаты исследований всех центров, содержащих Ti<sup>3+</sup>. Ни один из этих центров не имеет д-фактор, равный 1.963. Таким образом, эта модель не соответствует действительности. Предлагаемая нами модель Ti<sup>3+</sup>-Ln<sup>3+</sup> более правдоподобна. Как видно из рис. 1 и 3, b, линия ЭПР с g = 1.963 в чистом  $BaTiO_3$  практически отсутствует. Из рис. 3, b видно, что с ростом концентрации примеси до  $\sim 0.2$  at.% (т.е. до  $x \approx x_c$ ) интенсивность этой линии ЭПР растет. С дальнейшим ростом концентрации примеси интенсивность линии ЭПР незначительно снижается. Это можно объяснить тем, что при  $x > x_c$  примесь занимает как узел А, так и узел В (о чем указывалось выше). При этом количество центров  $Ti^{3+}$  –  $Ln^{3+}$  уменьшается или не изменяется, так как для зарядовой компенсации ионов Ln в узлах типа В центры Ti<sup>3+</sup> не нужны. Изменение

g-фактора с изменением концентрации примеси редкоземельных ионов можно объяснить искажением структуры, как и в случае центра  $\mathrm{Fe^{3+}}{-}V_{\mathrm{O}}$ , а при концентрации больше 0.2 at.%, когда примесь занимает узлы A и B, сильного искажения структуры не происходит и g-фактор существенно не изменяется (в пределах ошибки эксперимента) (см. табл. 2).

Температурные измерения показали, что этот центр появляется в ромбической фазе и существует вплоть до кубической. Отсутствие его в кубической фазе может быть связано с тем, что при таких температурах  $\mathrm{Ti}^{3+}$  имеет малое время релаксации и его не удается зафиксировать методом ЭПР.

Центр  $Ti^{3+}$ — $Ln^{3+}$ , являясь донорным центром, важен для возникновения полупроводниковых свойств керамики, а вклад ионов  $Ti^{3+}$  в проводимость обсуждался в ряде работ (см., например, [14]). Оба исследованных центра представляют интерес для понимания позисторного эффекта в  $BaTiO_3$ . Следует подчеркнуть, что линия  $Э\PiP$  центра  $Ti^{3+}$ — $Ln^{3+}$  существует при всех концентрациях редкоземельных примесей, даже при тех, где линия центра  $Fe^{3+}$ — $V_O$  отсутствует.

Более подробный сравнительный анализ особенностей спектров ЭПР и проводимости, измеренных в широком температуром интервале в образцах  $BaTiO_3$  с различной концентрацией радкоземельных ионов, проводящийся в настоящее время, позволит детальнее исследовать механизм позисторного эффекта в керамике  $BaTiO_3$ .

## Список литературы

- [1] H. Jkushima. J. Phys. Soc. Jap. 21, 1866 (1966).
- [2] T. Miki, A. Fujimoto, J. Appl. Phys. **83**, *3*, 1592 (1998).
- [3] S. Jida, T. Miki, J. Appl. Phys. **80**, 9, 5234 (1996).
- [4] M.D. Glinchuk, I.P. Bykov, V.M. Kurliand, M. Boudys, T. Kala, K. Nejezchleb. Phys. Stat. Sol. (a) 122, 341 (1990).
- [5] И.П. Быков, М.Д. Глинчук, В.Г. Грачев, Ю.В. Мартынов, В.В. Скороход. ФТТ 33, 12, 3459 (1991).
- [6] T. Sakudo. J. Phys. Soc. Jap. 18, 1626 (1963).
- [7] W.R. Eliot, J.L. Bjorkstam. J. Phys. Chem. Solids. **25**, 1273 (1964).
- [8] A.W. Hornig, R.C. Rempel, H.E. Weaver. J. Phys. Chem. Solids. 10, 1 (1959).
- [9] E. Possenriede, P. Jacobs, O.F. Shirmer. J. Phys.: Condensed Mater. 4, 4719 (1992).
- [10] E. Siegal, K.A. Muller. Phys. Rev. B19, 109 (1977).
- [11] E. Possenriede, O.F. Shirmer, H.J. Donnerberg, G. Godefroy, A. Mailard. Ferroel. 92, 245 (1989).
- [12] R. Vivekanadan, T.R.N. Kutty. Material Science and Engineering **B6**, 221 (1990).
- [13] P. Murugaraj, T.R.N. Kutty, J. Mater. Sci. Lett. 5, 171 (1986).
- [14] B. Scharfschwerdt, A. Mazur, O.F. Shirmer, H. Hesse, S. Mandricks. Phys. Rev. **B54**, 15284 (1996).
- [15] C.H. Park, D.J. Chadi. Phys. Rev. B57, R13961 (1998).
- [16] А.Е. Круминь. Фазовые переходы и их особенности в сегнетоэлектриках. Рига. С. 3–63 (1984).
- [17] T.R.N. Kutty, P. Murugaraj, N.S. Gajbhaye. Materials letters 2, 396 (1984).