О природе эффекта Фарадея в редкоземельном ортоалюминате TbAlO₃

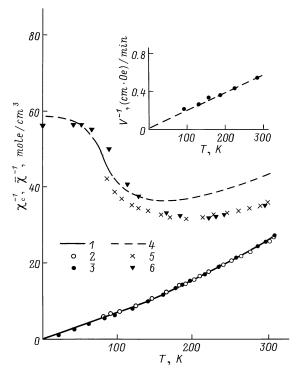
© У.В. Валиев, М.М. Лукина, К.С. Саидов

Ташкентский государственный университет, 700095 Ташкент, Узбекистан

E-mail: valiev@phys.silk.org

(Поступила в окончательном виде 29 апреля 1999 г.)

Экспериментально исследованы магнитная восприимчивость χ , спектры поглощения и люминесценции, спектральная зависимость постоянной Верде V вдоль различных кристаллографических осей ромбического кристалла TbAlO3 в интервале температур 78–300 К. Обнаружено, что в отличие от магнитной восприимчивости χ , измеренной вдоль оси [110] кристалла TbAlO3, постоянная Верде V меняется обратно пропорционально температуре в указанном интервале T. Показано, что подобная температурная зависимость постоянной Верде, измеренной вдоль оси [110], связана с отсутствием вклада ван-флековского механизма "смешивания" (во внешнем поле H) состояний редкоземельного иона Tb³⁺ в фарадеевское вращение. Из сопоставления данных оптических и магнитных измерений определены волновые функции и величины штарковских интервалов между нижайшими штарковскими подуровнями основного мультиплета 7F_6 иона Tb³⁺ в структуре ортоалюмината TbAlO3.


Хорошо известно, что взаимодействие с кристаллическим полем (КП) симметрии C_S приводит к сильной анизотропии магнитного момента редкоземельного (P3) иона Тb³⁺ в структуре ортоалюмината ТbAlO₃ (пространственная группа D_{2h}^{16}), особенно при низких Существенный вклад в эту температурах T [1,2]. анизотропию вносит составляющая магнитного момента РЗ-подрешетки, связанная с ван-флековским вкладом в намагниченность [1]. Этот вклад, обусловленный "примешиванием" возбужденных состояний к основному при наложении внешнего магнитного поля H, становится весьма заметным в области высоких температур ($T \ge 100 \,\mathrm{K}$) и сравнимым по величине со средним магнитным моментом РЗ-иона [2]. Поэтому при исследовании эфффекта Фарадея (ЭФ) в TbAlO₃ наряду с "парамагнитным" механизмом фарадеевского вращения (C-член ЭФ [3,4]), обусловленным различной заселенностью нижайших штарковских подуровней основного мультиплета (и, следовательно, пропорционального среднему магнитному моменту иона), необходимо учитывать вклад механизма "смешивания" основного и возбужденных состояний магнитоактивного иона (B-член $\Theta\Phi$ [3,4]) в результирующий $\Theta\Phi$. Однако для корректного сопоставления вкладов различных механизмов магнитооптической активности (МОА) необходима детальная информация об энергетическом спектре и симметрии волновых функций электронных состояний P3-иона Tb^{3+} в структуре ортоалюмината. Поэтому в данном случае большую актуальность приобретает изучение поляризационно-оптических, магнитных и магнитооптических явлений, чувствительных к особенностям электронной структуры РЗ-ионов в низкосимметричных кристаллах.

В настоящей работе исследованы магнитная восприимчивость χ , ЭФ, спектры поглощения и люминесценции на монокристаллических образцах TbAlO₃, выращенных из раствора в расплаве. Измерение магнитной восприим-

чивости χ проводилось на вибрационном магнитометре в температурном интервале 80-300 К вдоль кристаллографических направлений [110] и [001] (ось c) ромбического кристалла TbAlO₃. Спектры поглощения и люминесценции измерялись в линейно-поляризованном свете в области полосы поглощения $^7F_6 \rightarrow {}^5D_4 \; (20\,000-20\,700\,\mathrm{cm}^{-1})$ при T=77 и $300\,\mathrm{K}$ со спектральным разрешением не хуже $1-2 \, \mathrm{cm}^{-1}$ при исследовании оптического поглощения и $10-15\,\mathrm{cm}^{-1}$ — для спектров вторичного свечения. Поляризационно-оптические эксперименты проводились при распространении света вдоль направлений [010] (ocь b) и [001] (ocь c) кристалла $TbAlO_3$. Фарадеевское вращение вычислялось из температурных и спектральных зависимостей углов поворота большой оси эллипса поляризации светового излучения Θ , измеренных при перемагничивании вдоль оси [110] магнитоактивного кристалла в диапазоне длин волн 440-750 nm и интервале температур 90-300 К. Во всех экспериментах ошибки измерений величин магнитной восприимчивости χ не превышали $\sim 2 - 3\%$, углов фарадеевского вращения $\sim 5-7\%$. Точность установки осей кристалла была не хуже $\sim 2 - 3\%$.

1. Экспериментальные результаты и их обсуждение

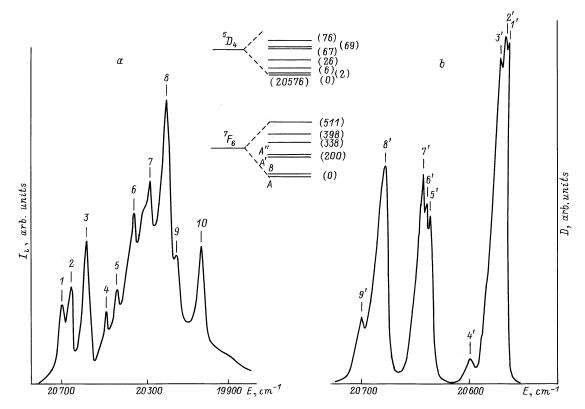
 $1.1.\ B$ о с п р и и м ч и в о с т ь T b A $1O_3$. На рис. 1 приведены температурные зависимости обратной магнитной восприимчивости TbAlO $_3$ для кристаллографических направлений [110] и [001], а также даны для сравнения результаты магнитных измерений из работы [2]. Из рис. 1 хорошо видно, что температурная зависимость величины $\chi_{[110]}$ весьма неплохо (в пределах ошибки измерений) согласуется с данными [2], в то время как для восприимчивости χ_c соответствие с ними имеет более качественный характер в исследованном интервале температур.

Рис. 1. Температурные зависимости обратной магнитной восприимчивости $1/\chi$, измеренной вдоль осей [110] и [001] ромбического кристалла TbAlO3: I — расчет $\chi_{[110]}^{-1}$ по формуле (3); $2-\chi_{[110]}^{-1}$, экспериментальные данные настоящей работы; $3-\bar{\chi}^{-1}$, где $\bar{\chi}=\frac{\chi_a+\chi_b}{2}$ (χ_a и χ_b — значения χ вдоль осей a и b по данным [2]); 4 — расчет χ_c^{-1} по формуле (2); $5,6-\chi_c^{-1}$, экспериментальные данные настоящей работы и [2] соответственно. На вставке — зависимости обратной постоянной Верде 1/V от температуры T. Постоянная Верде V определена на длине волны $\lambda=506$ nm для кристаллографического направления [110].

На рис. 1 при низких температурах ($T \leq 100 \, \text{K}$) максимальная магнитная восприимчивость TbAlO₃ наблюдается в плоскости ab, а восприимчивость вдоль оси c (χ_c) существенно меньше $\chi_{[110]}$ и стремится с понижением температуры к постоянному пределу, свидетельствующему о ее ван-флековском происхождении (согласно данным [2]). С другой стороны, несмотря на резкое уменьшение величины восприимчивости $\chi_{[110]}$ с возрастанием температуры, анизотропный характер магнитной восприимчивости TbAlO₃ сохраняется и в области высоких температур (рис. 1). Как установлено в [1], подобное поведение магнитной восприимчивости $TbAlO_3$ (особенно при низких T [2,5]) свидетельствует о том, что основным состоянием иона Tb^{3+} в КП является квазидублет, образованный двумя близко расположенными штарковскими синглетами (величина "щели" $\leq 10\,{\rm cm}^{-1}$), волновые функции которых принадлежат к различным неприводимым представлениям точечной группы C_S (A и B) [1]. Поэтому ион Tb^{3+} в TbAlO_3 при низких температурах рассматривается как "изинговский" с осью анизотропии — "изинговской" осью, лежащей в плоскости ab под углом $\alpha \approx \pm 36^{\circ}$ к оси a кристалла (знаки (\pm) относятся к двум кристаллографически неэквивалентным позициям, различающимся ориентацией локальных осей). В этой области температур восприимчивость $TbAlO_3$, измеренная вдоль оси [110], может быть представлена, согласно [2], в следующем виде:

$$\chi_{[110]} = \frac{1}{2} \left(\chi_0^{(0)} + \chi_{V-F}^{(0)} \right)$$

$$= \frac{1}{2} \frac{N\mu_B^2}{k} \left[\frac{81}{T + \Theta_p} + \frac{13.5k}{\Delta_1} \right], \tag{1}$$


где N — число РЗ-ионов; μ_B — магнетон Бора; k — постоянная Больцмана; $\Theta_p \approx 5\,\mathrm{K}$ — парамагнитная температура Кюри, обусловленная $R^{3+} - R^{3+}$ -взаимодействием; $\Delta_1 pprox 200\,cm^{-1}$ — энергетический интервал между "смешивающимися" состояниями РЗ-иона Тb³⁺ [2]. В формуле (1) вклад $\chi_0^{(0)}$ — восприимчивость вдоль "изинговской" оси (продольная восприимчивость), соответствующая магнитному моменту, параллельному оси анизотропии: $\mu_0 \approx 9\mu_B$ [2], слагаемое $\chi^{(0)}_{V-F}$ — ван-флековский вклад при низких $T.^1$ Если выбрать "изинговскую" ось в качестве оси z — локальной системы координат РЗ-иона (находящегося в одной из неэквивалентных позиций), а ось y — параллельной оси c кристалла, то волновые функции основного квазидублета, соответствующие максимальному магнитному моменту иона Tb^{3+} ($\mu_0 \approx 9\mu_B$), запишутся в локальных осях

$$|A\rangle = \frac{1}{\sqrt{2}} (|6, +6\rangle + |6, -6\rangle),$$

$$|B\rangle = \frac{1}{\sqrt{2}} (|6, +6\rangle - |6, -6\rangle).$$

В то же время величину ван-флековской поправки к магнитному моменту иона Tb^{3+} при низких T нетрудно объяснить, предполагая, что в разложении волновой функции первого возбужденного состояния ("примешивающегося" к основному) со значительным весом (\sim 1) представлены "чистые" $|J, \pm M_J\rangle$ -состояния типа $|6, \pm 5\rangle$. В выражении (1) множитель (1/2) появляется при суммировании (и последующем усреднении) по неэквивалентным позициям РЗ-ионов в структуре ортоалюмината, а верхний индекс (0) означает принадлежность к основному состоянию. При повышении температуры поведение магнитных свойств $TbAlO_3$ существенно усложняется и помимо отмеченной выше анизотропии χ обратные магнитные восприимчивости начинают нелинейно

 $^{^1}$ Выбор оси [110] в наших измерениях продиктован тем, что при наложении магнитного поля H в этом направлении РЗ-ионы Tb^{3+} , находящиеся в одной из групп неэквивалентных позиций, намагничиваются в линейном по полю приближении, так как их "изинговские" оси почти параллельны оси [110]. Для ионов Tb^{3+} , находящихся в другой группе неэквивалентных мест, этого не происходит, так как их "изинговские" оси почти перпендикулярны полю H (и оси [110]) и их вклад в магнитный момент является ван-флековской поправкой к нему.

Рис. 2. Спектры люминесценции (a) и поглощения (b) ТbAlO₃, измеренные при T=300 (a) и 78 K (b) в поляризованном свете $(E \parallel a - \text{ оси, где } E - \text{ электрический вектор световой волны}). <math>a-\text{ вдоль оси } c$, b- вдоль оси b кристалла. Энергии переходов указаны в таблице. На вставке — штарковская структура основного 7F_6 и возбужденного 5D_4 мультиплетов иона Tb^{3+} в $TbAlO_3$. В скобках указаны энергии штарковских подуровней $(b-c)^7$ 0.

зависеть от T (рис. 1). В этом случае их температурный ход может быть объяснен значительным вкладом первого возбужденного состояния, расположенного при энергии $\sim 200\,\mathrm{cm^{-1}}$ в спектре основного мультиплета 7F_6 иона $\mathrm{Tb^{3+}}$ в $\mathrm{TbAlO_3}$ и термически заселяемого по мере повышения температуры T. Предположим, что это состояние представляет собой квазидублет, образованный возбужденными штарковскими синглетами, волновые функции которых преобразуются по двум однотипным неприводимым представлениям группы C_S (A' и A'') и могут быть записаны (в локальных осях $\mathrm{P3-}$ иона)

$$egin{align} |A'
angle &\simeq rac{1}{\sqrt{2}}ig(e^{-i\Psi_1}|6,\ +5
angle - e^{i\Psi_1}|6,\ -5
angleig), \ |A''
angle &\simeq -rac{i}{\sqrt{2}}ig(e^{-i\Psi_2}|6,\ +4
angle - e^{i\Psi_2}|6,\ -4
angleig), \end{gathered}$$

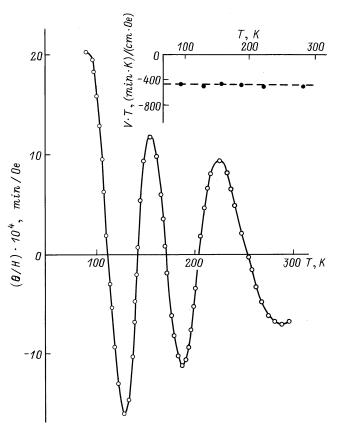
где $e^{i\Psi_1}$, $e^{i\Psi_2}$ — фазовые множители, удовлетворяющие условию $(\Psi_1 + \Psi_2) \approx \pi/2$. Подобное возбужденное состояние приводит к тому, что магнитный момент, связанный с ним, направлен вдоль оси y (оси c) локальной системы координат иона, обнаруживая при этом "изинговское" поведение. Его величина близка к максимально возможной и составляет $\mu_1 \approx 7\mu_B$. Поэтому, если поле H направлено вдоль оси c кристалла, то происходит как "перемешивание" волновых функций состоя-

ний основного (A, B) и первого возбужденного (A', A'') квазидублетов, так и расщепление в поле H заселяемых при повышении температуры подуровней квазидублета (A', A''). Следовательно, выражение для поперечной восприимчивости χ_c , справедливое в области высоких температур, имеет следующий вид:

$$\chi_c = \frac{N\mu_B^2}{k} \left[\frac{13.5k}{\Delta_1} (\rho_0 - \rho_1) + \frac{49.5}{T} \rho_1 \right], \quad (2)$$

где ρ_0 и ρ_1 — больцмановские населенности состояний основного и первого возбужденного квазидублетов. В то же время магнитная восприимчивость $\chi_{[110]}$ TbAlO₃ в широком интервале температур ($T \geqslant 100 \, \mathrm{K}$) определяется соотношением, близким по форме к соотношению (1)

$$\chi_{[110]} = \frac{1}{2} N \mu_B^2 k \left[\frac{81}{T + \Theta_p} \rho_0 + \frac{13.5k}{\Delta_1} (\rho_0 - \rho_1) \right]$$
$$= \frac{1}{2} (\chi_0 + \chi_{V-F}), \tag{3}$$


в котором вкладом первого возбужденного квазидублета (A',A'') можно пренебречь, так как его "изинговский" магнитный момент ориентирован параллельно оси c и состояния квазидублета (A',A'') не расщепляются во внешнем поле H, ориентированном в плоскости

Энергии переходов в TbAlO₃

Люминесценция TbAlO ₃		Поглощение TbAlO ₃	
полоса	энергия перехода, cm^{-1}	полоса	энергия перехода, cm^{-1}
1	20699	1'	20575
2	20658	2'	20578.5
3	20588	3'	20582
4	20500	4′	20601
5	20456	5′	20642
6	20374	6'	20646.4
7	20296	7'	20651
8	20236	8′	20686.4
9	20176	9′	20702.2
10	20063		

симметрии КП — плоскости ав кристалла. Результаты расчетов температурной зависимости величины $\chi_{[110]}$, выполненные по формуле (3), приводятся на рис. 1, из которого видно, что в исследованном интервале температур 80-300 К экспериментальные и теоретические зависимости магнитной восприимчивости $\chi_{[110]}$ хорошо согласуются друг с другом (в пределах погрешности опыта $\sim 2 - 3\%$). Некоторые количественные отличия теоретически рассчитанных (по формуле (2)) и измеренных в настоящей работре (и в [2]) величин ванфлековской — поперечной восприимчивости χ_c — в области температур $T > 100 \, \mathrm{K}$ вполне могут быть связаны с тем обстоятельством, что при выводе соотношения (2) мы пренебрегли взаимодействием состояний первого возбужденного квазидублета ($\sim 200\,\mathrm{cm}^{-1}$) с вышележащими штарковскими подуровнями основного мультиплета иона Tb³⁺. Предполагаемый выше характер штарковского расщепления в КП нижних подуровней основного мультиплета 7F_6 иона ${\rm Tb}^{3+}$ вполне однозначно подтверждается данными поляризационно-оптических исследований. На рис. 2 представлен спектр люминесценции P3-иона Tb^{3+} в $TbAlO_3$, записанный при $T=300\,\mathrm{K}$ в линейно-поляризованном свете на излучательном 4f-4f-переходе $^5D_4 \rightarrow {}^7F_6$ (20000-20700 cm⁻¹). Детальное сопоставление энергий характерных особенностей спектра вторичного свечения (см. таблицу) позволяет, с одной стороны, идентифицировать их с оптическими переходами, происходящими между штарковскими подуровнями основного и возбужденного мультиплетов иона Tb^{3+} в структуре ортоалюмината, а с другой воссоздать (хотя и частично) картину штарковского расщепления основного мультиплета ${}^{7}F_{6}$ в КП симметрии C_S (вставка на рис. 2). Действительно, сравнение энергий полос: -1, -2, -3 и соответственно -4, -5, -6 показывает, что ближайшим к основному состоянию является уровень или группа уровней, расположенных на расстоянии $\approx 200\,{\rm cm}^{-1}$ от него. Сопоставление энергий других полос друг с другом (например, -1 и -10 и т.д.) позволяет однозначно определить энергии вышележащих штарковских подуровней и установить, что общая величина кристаллического расщепления основного мультиплета 7F_6 в TbAlO3 составляет $\sim 500\,\mathrm{cm}^{-1}$ (вставка на рис. 2). Более того, достаточно высокая степень "изолированности" подуровней основного состояния (квазидублета) от вышележащих возбужденных состояний мультиплета 7F_6 ($\Delta_1 \approx 200\,\mathrm{cm}^{-1}$) позволила также установить из спектроскопических данных по энергиям пиков поляризованного оптического поглощения на переходе $^7F_6 \to ^5D_4$ при $T=78\,\mathrm{K}$ (см. таблицу) характер штарковского расщепления возбужденного мультиплета 5D_4 основной $^4f^8$ конфигурации иона $^4f^8$ в структуре ортоалюмината (рис. 2).

 $1.2.\, \Im\, \varphi\, \varphi\, e\, \kappa\, \tau\, \Phi\, a\, p\, a\, g\, e\, g\, B\, T\, b\, A\, l\, O_{\,3}$. Р3-соединения со структурой ортоалюмината в оптическом отношении представляют собой двухосные кристаллы, и при их исследовании возникает проблема изучения линейных магнитооптических эффектов ($\Im \Phi\,$ и т.п.) на "фоне" большого естественного двупреломления ($\Delta_n\sim 10^{-2}$) [5,6]. Поэтому измеряемые зависимости углов поворота большой оси эллипса поляризации Θ в $TbAlO_3$ от длины волны λ , толщины кристалла l (а также и темпера-

Рис. 3. Температурная зависимость угла поворота большой оси эллипса поляризации Θ в TbAlO₃ на длине волны $\lambda=506$ nm. На вставке — зависимость $V\cdot T$ от температуры на длине волны $\lambda=506$ nm для оси [110].

туры T^2 (рис. 3)) имеют осциллирующий характер, причем амплитуда осцилляций пропорциональна углу фарадеевского вращения α_F , а их период — величине естественного двупреломления Δ_n [6,7]. Восстанавливая из температурных (рис. 3) и спектральных зависимостей углов Θ , измеренных вдоль оси [110], аналогичные зависимости для углов фарадеевского вращения (по методике работы [5]), нетрудно найти постоянную Верде Vортоалюмината TbAlO₃. Анализ спектрального хода постоянной Верде V в ТbAlO $_3$ показал, что он с хорошей степенью точности аппроксимируется частотной зависимостью: $V \sim \omega^2/(\omega_0^2 - \omega^2)$, где ω — световая частота, $\omega_0 = 99 \cdot 10^{14} \, \mathrm{s}^{-1}$ — "эффективная" частота разрешенных (по спину и по четности) электродипольных переходов 4f - 5d в ионах Tb^{3+} в структуре ортоалюмината. В то же время исследования температурной зависимости ЭФ в TbAlO₃ вдоль оси [110] в температурном интервале 90–300 К привели к неожиданному результату. Из рис. 1 следует, что в отличие от обратной восприимчивости χ^{-1} зависимость обратной постоянной Верде 1/V от температуры T на длине волны $\lambda = 506\,\mathrm{nm}$ оказывается линейной (в пределах ошибки эксперимента ~ 7%). Наряду с постоянством произведения $V \cdot T$ в исследованном интервале температур отмеченная особенность поведения ЭФ свидетельствует о том, что константа Верде V в первом приближении меняется обратно пропорционально температуре (вставка на рис. 3). ким образом, постоянная Верде $V_{[110]}$ РЗ-ортоалюмината ТbAlO₃ в направлении оси [110] оказывается связанной с обратной температурой ($V \sim 1/T$), что существенно отличается от зависимости ($V \sim \chi$), обнаруженной в [5] при исследовании ЭФ вдоль оси *а* кристалла TbAlO₃. При этом отсутствие наклона температурной зависимости $V \cdot T$ (рис. 3), по-видимому, обусловлено очевидной малостью вклада температурно-независимого (либо слабо зависящего от температуры T) механизма ванфлековского "смешивания" (В-член ЭФ [3]) в фарадеевское вращение TbAlO₃, измеренного вдоль оси [110].³ Это может быть вызвано следующими причинами. Как известно [8,9], зависящий от T вклад в магнитооптическую активность некрамерсовского РЗ-иона (Tb³⁺, ${\rm Ho^{3+}}$ и т.д.), энергетический спектр которого состоит из полностью вырожденных штарковских подуровнейсинглетов, может возникнуть лишь при учете (по теории возмущения) эффекта "смешивания" во внешнем магнитном поле Н близко расположенных синглетов основного состояния — квазидублета. В этом случае выражение для C-члена $\Theta\Phi$ может быть записано [8]

$$\alpha_F^C = \frac{2\pi N}{c\bar{n}\hbar} \left(\frac{\bar{n}^2 + 2}{3}\right)^2 \omega^2 H \frac{1}{2} \times \sum_{a,b,j,r} \frac{\text{Im}\left[\langle a'|\hat{\mu}_z|b'\rangle\left(\langle b'|\hat{P}_x|j\rangle\langle j|\hat{P}_y|a'\rangle - \langle b'|\hat{P}_y|j\rangle\langle j|\hat{P}_x|a'\rangle\right)\right]}{kT(\omega_{0j}^2 - \omega^2)}, \quad (4)$$

где r=1,2 — индекс неэквивалентной позиции; \hat{P}_x и \hat{P}_y — соответствующие компоненты дипольного момента РЗ-иона, находящегося в r-м узле (позиции); $\hat{\mu}_z$ — оператор z-проекции магнитного момента; $|a^r\rangle$, $|b^r\rangle$ — волновые функции подуровней квазидублета, $|j\rangle$ — волновая функция возбужденного синглета, на который происходит оптический переход с частотой ω_{0j} ; \bar{n} — средний показатель преломления среды. В этом же приближении выражение для температурнонезависимого B-члена ЭФ, обусловленного "примешиванием" первого возбужденного состояния основного мультиплета к основному (квазидублету) во внешнем поле H, запишется, согласно [10],

$$\alpha_F^B = \frac{4\pi N}{c\bar{n}\hbar} \left(\frac{\bar{n}^2 + 2}{3}\right)^2 \frac{\omega^2 H}{\Delta_1} \frac{1}{2} \times \sum_{a,b,j,r} \frac{\text{Im}\left[\langle a^r | \hat{\mu}_y | d^r \rangle \left(\langle a^r | \hat{P}_x | j \rangle \langle j | \hat{P}_x | d^r \rangle - \langle a^r | \hat{P}_x | j \rangle \langle j | \hat{P}_z | d^r \rangle\right)\right]}{(\omega_{0_j}^2 - \omega^2)}, \quad (5)$$

где $|a^r\rangle$, $|d^r\rangle$ — волновые функции основного и возбужденного состояний основного мультиплета РЗ-иона; $\hat{\mu}_{v}$ — оператор *у*-проекции магнитного момента. Пренебрегая расщеплением уровней (приближение Джадда-Офельта) при суммировании формул (4) и (5) по возбужденным состояниям $|j\rangle$, принадлежащим смешанной возбужденной $4f^{n-1}5d$ конфигурации РЗ-иона, усредним полученные выражения по кристаллографическинеэквивалентным позициям иона в структуре ортоалюмината. В рамках такой модели нетрудно убедиться, что константы Верде V РЗ-ортоалюмината вдоль осей а, b и с кристалла пропорциональны соответствующим магнитным восприимчивостям. Действительно, расчет постоянной Верде V_a (вдоль оси a) в ТbAlO₃ показал, что в широком интервале температур она может быть описана следующим выражением:

$$V_a = \left(\frac{2 - g_0}{g_0}\right) A \chi_a \frac{\omega^2}{\omega_0^2 - \omega^2},\tag{6}$$

где $\chi_a = (\chi_0 \cos^2 \alpha_0 + \chi_{V-F} \sin^2 \alpha_0)$ — магнитная восприимчивость TbAlO₃ вдоль оси a (см. также формулу (3)); A — постоянная, пропорциональная силе осциллятора f разрешенного оптического перехода со средней частотой ω_0 . Однако при ориентации внешнего поля H вдоль оси [110] для P3-ионов Tb³⁺, находящихся в одной из неэквивалентных позиций в структуре ортоалюмината, локальная ось z (а для другой — ось x) почти совпадает по направлению с направлением распространения поперечной световой волны: $\mathbf{k} \parallel \mathbf{H}$, где \mathbf{k} — волновой вектор.

 $^{^2}$ В случае, если двупреломление в кристалле зависит от температуры. Величина Δ_n на длине волны $\lambda\approx 500\,\mathrm{nm}$ составляет $1.8\cdot 10^{-2}$ при $T=300\,\mathrm{K}.$

³ Отсутствие наклона зависимости $V \cdot T$ также указывает и на пренебрежимо малый вклад в ЭФ "диамагнитного" (*A*-член ЭФ [3]) механизма МОА, обусловленного расщеплением во внешнем поле *H* возбужденных состояний РЗ-ионов Tb³⁺ в TbAlO₃ (см. также [5]).

В этом случае z-компонента дипольного момента иона и связанные с ней матричные элементы: $\langle a|\hat{P}_z|j\rangle$ (и $\langle j|\hat{P}_z|d\rangle$) в формуле (5) будут близки к нулю, вследствие чего температурная зависимость константы Верде $V_{[110]}$ в ТbAlO3 будет определяться только продольной восприимчивостью χ_0 . Как видно из выражения (3), слагаемое χ_0 , вообще говоря, пропорционально обратной температуре 1/T в интервале 90–300 K, что по крайней мере на качественном уровне согласуется с результатами магнитооптических экспериментов, приводимых на рис. 1, 3.

Список литературы

- [1] А.К. Звездин, В.М. Матвеев, А.А. Мухин, А.И. Попов. Редкоземельные ионы в магнитоупорядоченных кристаллах. Наука, М. (1985). 296 с.
- [2] L. Holmes, R. Sherwood, L.G. Van Vitert. J. Appl. Phys. 39, 2, 1373 (1968).
- [3] A.D. Buckingham, P.J. Stephens. Ann. Phys. Chem. **17**, 399 (1966).
- [4] У.В. Валиев, А.И. Попов, Б.Ю. Соколов. Оптика и спектроскопия **61**, *5*, 1156 (1986).
- [5] У.В. Валиев, А.А. Клочков, М.М. Лукина, М.М. Турганов. Оптика и спектроскопия **63**, *3*, 543 (1987).
- [6] Р.В. Писарев. В сб.: Физика магнитных диэлектриков / Под ред. Г.А. Смоленского. Наука, Л. (1974). С. 356.
- [7] М.В. Четкин, Ю.И. Щербаков. ФТТ 11, 6, 1620 (1969).
- [8] P.J. Stephens. Adv. Chem. Phys. 35, 197 (1976).
- [9] У.В. Валиев, Б.Ю. Соколов, Ж.Ш. Сиранов. Оптика и спектроскопия 84, 3, 477 (1998).
- [10] П.Н. Шатц, А.Д. Мак-Каффри. Успехи химии **40**, *9*, 1698 (1971).