Эффект вспышечной кинетики электролюминесценции в органических полупроводниках, обусловленный ланжевеновской рекомбинацией

© В.И. Архипов, В.Р. Никитенко

Московский государственный инженерно-физический институт (Технический университет), 115409 Москва, Россия

(Получена 21 декабря 1998 г. Принята к печати 31 января 1999 г.)

Кинетика электролюминесценции в органических полупроводниках теоретически исследована с учетом характерной для этих материалов сильной зависимости подвижности носителей заряда от напряженности электрического поля. Рекомбинация электронно-дырочной пары под влиянием как внешнего электрического поля, так и электрического поля кулоновского взаимодействия исследована в рамках теории Ланжевена. Показано, что неоднородность поля и зависимость подвижности от поля приводят к тому, что кинетика рекомбинации после выключения внешнего поля имеет вспышечный характер.

Хорошо известно, что темп рекомбинации электроннодырочных пар в неупорядоченных материалах определяется временем сближения рекомбинирующих носителей, т.е. является процессом, контролируемым диффузией. При этом принято выделять два типа рекомбинации: 1) близнецовую рекомбинацию, т. е. рекомбинацию электрона и дырки, рожденных в одном и том же акте фотоионизации, и 2) бимолекулярную рекомбинацию, в которой отсутствует корреляция между происхождением и аннигиляцией носителей. Модели, описывающие близнецовую рекомбинацию, как правило, основаны на анализе кинетики дрейфа и диффузии индивидуальных носителей в каждой отдельной близнецовой паре [1-4]. Напротив, при рассмотрении бимолекулярной рекомбинации, как правило, оперируют средними плотностями электронов и дырок [5,6].

Однако с физической точки зрения оба упомянутых выше механизма рекомбинации похожи. По крайней мере на заключительном этапе и в том и в другом случае — это процесс, в котором принимает участие один носитель и один центр рекомбинации (чаще всего это носитель противоположного знака, захваченный на глубокую ловушку). С математической точки зрения эти процессы различаются лишь начальными и граничными условиями для функции распределения носителей в паре.

В предыдущих работах было показано, что кинетика близнецовой рекомбинации обладает рядом интересных особенностей, как, например, отрицательная нестационарная фотопроводимость [1,2,7]. Это дает основание ожидать, что и в условиях бимолекулярной рекомбинации кинетика дрейфа и диффузии пары рекомбинирующих носителей в связывающем их кулоновском поле может приводить к возникновению эффектов, остающихся за рамками моделей, оперирующих усредненными по объему плотностями электронов и дырок. В настоящей работе рассматривается один из таких эффектов — вспышечная кинетика рекомбинации носителей в однослойных электролюминесцентных структурах на основе неупорядоченных органических материалов. При этом учитывается то обстоятельство, что подвижность носи-

телей заряда в органических полупроводниках сильно зависит от напряженности электрического поля [8,9].

Движение пары двух зарядов противоположного знака в электрическом поле, представляющем собой суперпозицию внешнего приложенного поля \mathbf{E}_0 и собственного кулоновского поля зарядов, описывается уравнением непрерывности в следующей форме:

$$\frac{\partial f(\mathbf{r},t)}{\partial t} + \operatorname{div}\left[\mu\left(\mathbf{E}_0 + \frac{e\mathbf{r}}{4\pi\varepsilon_0\varepsilon r^3}\right)f(\mathbf{r},t)\right] = 0, \quad (1)$$

где r — радиус-вектор более подвижного носителя, отсчитываемый от положения носителя с меньшей подвижностью; $f(\mathbf{r},t)$ — пространственно-временная функция распределения более подвижного носителя (дырки); μ подвижность носителя, которая, вообще говоря, зависит от поля; ε — диэлектрическая проницаемость материала; ε_0 — электрическая постоянная; e — заряд электрона. После завершения переходных процессов, следующих за включением внешнего поля, в образце устанавливаются стационарные распределения средних плотностей электронов и дырок. В дальнейшем мы будем считать, что характерный масштаб изменения этих плотностей много больше как среднего расстояния между парами рекомбинирующих носителей, так и размера самих пар. Введя цилиндрическую систему координат, (ρ, z) с осью **z**, направленной вдоль внешнего электрического поля, запишем граничное условие для функции распределения подвижного носителя в виде

$$f(\rho, -\infty) = \text{const} = p_0, \tag{2}$$

которое соответствует стационарному потоку дырок, направленному к неподвижному центру рекомбинации (электрону). После выполнения подстановки

$$\varphi(\rho, z) = \frac{f(\rho, z)\mu[E(\rho, z)]}{\mu_0},$$
 (3a)

где

$$\mathbf{E} = \mathbf{E}_0 + \frac{e\mathbf{r}}{4\pi\varepsilon_0\varepsilon r^3} \tag{3b}$$

и μ_0 — значение подвижности в пределе слабого поля, стационарная задача (1), (2) для функции φ

4 945

 $(\partial \varphi/\partial t=0)$ сводится к задаче с постоянной (не зависящей от поля) подвижностью μ_0 и может быть легко решена методом характеристик. Вследствие однородности как уравнения (1), так и условия (2), решением является постоянная величина $\varphi_{\rm st}(\rho,z)=\varphi_0=p_0\mu(E_0)/\mu_0$ и соответственно стационарное распределение электронов определяется полевой зависимостью подвижности

$$f_{\rm st}(\mathbf{r}) = p_0 \mu(E_0) / \mu[E(\mathbf{r})]. \tag{4}$$

Заметим, что в случае подвижности, не зависящей от поля, стационарная функция распределения оказывается однородной: $f_{\rm st}({\bf r})=p_0$.

Стационарная функция распределения должна быть использована в качестве начального условия в задаче о временной эволюции пары после выключения внешнего поля. Уравнение непрерывности, а также начальные условия в сферической системе координат, записываются следующим образом:

$$\partial \varphi(r,\theta,t)/\partial t - E_q(r) \mu \left[E_q(r) \right] \partial \varphi(r,\theta,t)/\partial r = 0, \quad (5)$$

$$\varphi(r,\theta,0) = f_{\rm st}(r,\theta) \,\mu \big[E_q(r) \big] / \mu_0, \tag{6}$$

где $\varphi(r,\theta,t)=f(r,\theta,t)\mu[E_q(r)]/\mu_0$, $E_q(r)=e/4\pi\varepsilon\varepsilon_0r^2$ — кулоновское поле, а полярный угол θ отсчитывается от направления поля \mathbf{E}_0 , причем момент выключения внешнего поля принят за начало отсчета времени.

С практической точки зрения наиболее важной характеристикой светоизлучающей структуры является временная зависимость интенсивности электролюминесценции (ЭЛ). В дальнейшем будем полагать, что интенсивность ЭЛ пропорциональна скорости рекомбинации пар, которая в приближении Онзагера [10], как следует из уравнения (5), определяется следующим образом:

$$R(t) = -(d/dt) \int d\mathbf{r} f(\mathbf{r}, t) = \frac{e\mu_0}{2\varepsilon\varepsilon_0} \int_{-1}^{1} du \,\varphi(0, u, t), \quad (7)$$

где $u=\cos\theta$. Используя систему уравнений (5)–(7), нетрудно показать, что функцию R(t) можно записать в виде

$$R(t) = \frac{e\mu\{E_q[r_0(t)]\}}{2\varepsilon\varepsilon_0} \int_{-1}^1 du \, f_{\rm st}[r_0(t), u], \quad t > 0.$$
 (8)

Здесь r_0 — расстояние между частицами, которые сближаются вплотную спустя время t после выключения поля, т.е. $r_0(t)$ есть функция, обратная времени сближения $t(r_0)$, которое определяется как

$$t(r_0) = \int_0^{r_0} dr \, \mu^{-1} \big[E_q(r) \big] E_q^{-1}(r). \tag{9}$$

Уравнение (9) неявно определяет зависимость $r_0(t)$. Заметим, что в предельном случае $t \to 0$, когда $r_0(t) \to 0$

и $\mu(E_q)/\mu(E) \to 1$, из уравнений (4), (6), (8) получаем предельный переход к стационарной скорости рекомбинации

$$R(t) = R_0 = e\mu(E_0)p_0/\varepsilon\varepsilon_0 = K_L(E_0)p_0, \quad t \leq 0, \quad (10)$$

где K_L — ланжевеновская константа рекомбинации.

Система уравнений (2), (4), (8)–(10) является аналитическим решением задачи о кинетике ЭЛ для произвольной зависимости подвижности от поля. Рассмотрим теперь важный для практики случай, когда подвижность зависит от поля следующим образом:

$$\mu(E_0) = \mu_0 \exp\left(\sqrt{E_0/F_0}\right),\tag{11}$$

что характерно для широкого класса органических полупроводников [8,9]. Подстановка функции (11) в уравнения (4), (8), (9) приводит к следующему выражению для отношения нестационарной и стационарной интенсивностей ЭЛ $I(t)/I_0$:

$$I(t)/I_0 = R(t)/R_0 = e^s [g(a) - g(b)]/Fs^2.$$
 (12)

Здесь введены обозначения

$$g(x) = e^{-x}(x^3 + 3x^2 + 6x + 6),$$
 (13a)

$$a(s) = \sqrt{F + s^2}, \qquad b(s) = \sqrt{|F - s^2|},$$
 (13b)

 $F = E_0/F_0$, а безразмерная функция времени s определяется уравнением

$$t/t_0 = s^{-3} \int_{1}^{\infty} d\tau \, \exp(-s\tau)/\tau^4 = E_4(s)/s^3;$$
 (14)

 $t_0=\mu_0^{-1}(e/4\pi\varepsilon\varepsilon_0F_0^3)^{1/2},\ E_4(s)$ — интегральная показательная функция.

На рисунке показаны временные зависимости I/I_0 , вычисленные согласно формулам (12)–(14) для нескольких значений напряженности приложенного поля E_0 .

Временны́е зависимости интенсивности ЭЛ, отнесенной к стационарному уровню I_0 , для нескольких значений параметра $F=F_0/E_0$: I=40, 2=30, 3=15, 4=5; $t_0=\mu_0^{-1}(e/\varepsilon F_0^3)^{1/2}$.

Кривые имеют максимум, причем его превышение над стационарным уровнем сильно возрастает с увеличением поля. Физическую причину возникновения такой "вспышечной" кинетики ЭЛ нетрудно понять. В стационарных условиях (до выключения внешнего поля) дырки накапливаются в области наиболее слабого поля E(там, где $E < E_0$ вследствие влияния кулоновского поля пары) благодаря малым значениям подвижности в этих областях — см. (4), (11). После выключения поля E_0 эти носители быстро рекомбинируют, создавая пик интенсивности ЭЛ. Очевидно, что стационарная концентрация дырок $p_{\rm st}$ максимальна вблизи точки A, в которой E=0 (позади электрона, если смотреть с отрицательной стороны оси z), и время сближения носителей из точки A с электронами $t(r_A)$, $r_A = \sqrt{e/4\pi\varepsilon\varepsilon_0 E_0}$ (см. (9)), определяет время достижения максимума. Вследствие убывания r_A это время убывает с ростом поля E_0 и, следовательно, высота пика с ростом E_0 возрастает. Относительная высота пика ограничена, однако, тем обстоятельством, что перенос носителей заряда в рассматриваемых полупроводниках имеет прыжковый характер, и характерная длина прыжка r_h должна быть меньше, чем расстояние r_A . Это условие ограничивает сверху область рассматриваемых полей:

$$E_0 < e/4\pi\varepsilon\varepsilon_0 r_h^2. \tag{15}$$

Численно при $r_h \simeq 1$ нм и $\varepsilon = 2$ условие (15) приводит к ограничению $E_0 < 5 \cdot 10^6$ В/см. В случае типичной (при комнатных температурах) величины $E_0 \simeq 10^5$ В/см [9] последнее условие ограничивает относительную величину пика $I_{\rm max}/I_0$ величиной ~ 5 .

Вспышечная кинетика ЭЛ после выключения приложенного поля наблюдалась экспериментально в двухслойных светоизлучающих структурах [11,12]. Однако объяснить данные результаты в рамках ланжевеновской модели рекомбинации не представляется возможным, поскольку: 1) величина I_{max}/I_0 убывает, а не возрастает с ростом напряженности внешнего поля E_0 и 2) $I_{\rm max}/I_0$ может достигать величин порядка 100. Указанные закономерности вспышечной кинетики ЭЛ в двухслойных структурах можно объяснить на основе представлений о рекомбинации электронов и дырок, накопившихся вблизи границы раздела материалов, образующих двухслойную структуру [12]. Экспериментальным подтверждением предложенной в настоящей работе теоретической модели могло бы явиться наблюдение вспышечной кинетики ЭЛ в однослойных светоизлучающих структурах в условиях, исключающих возможность макроскопического пространственного расслоения электронов и дырок.

Список литературы

- [1] Б.С. Яковлев, Г.Ф. Новиков. ФТТ, 17, 3070 (1985).
- [2] В.И. Архипов, В.Р. Никитенко, А.И. Руденко. ФТП, 21, 1125 (1987).
- [3] А.П. Тютнев, В.И. Архипов, В.Р. Никитенко, Д.Н. Садовничий. Химия высоких энергий, 29, 351 (1995).

- [4] K.M. Hong, J. Noolandi. Chem. Phys., 69, 5026 (1978).
- [5] А.П. Тютнев, А.В. Ванников, Г.С. Мингалеев. Радиационная электрофизика органических диэлектриков (М., 1989) с. 190.
- [6] В.И. Архипов, Ю.А. Попова, А.И. Руденко. ФТП, 17, 1817 (1983).
- [7] В.И. Архипов, В.Р. Никитенко, А.И. Руденко. ФТП, 21, 1625 (1987).
- [8] A. Peled, L.B. Schein. Chem. Phys., Lett., 153, 422 (1988).
- [9] P.M. Borsenberger, L. Pautmeier, H. Baessler. J. Chem. Phys., 94, 447 (1991).
- [10] L. Onsager. Phys. Rev., 54, 554 (1938).
- [11] Y.H. Tak, J. Pommerehne, H. Vestweber, R. Sander, H.-H. Horhold, H. Baessler. Appl. Phys. Lett., 69, 1291 (1996).
- [12] V.R. Nikitenko, V.I. Arkhipov, Y.H. Tak, J. Pommerehne, H. Baessler, H.-H. Horhold. J. Appl. Phys., 81, 7514 (1997).

Редактор Л.В. Шаронова

The effect of flash-like kinetics of electroluminescence intensity in organic semiconductors controlled by the Langevin recombination

V.I. Arkhipov, V.R. Nikitenko

Moscow Engineering Physics Institute, 115409 Moscow, Russia

Abstract The kinetics of electroluminescence intensity in organic semiconductors with field-dependent mobility of charge carriers has been analyzed theoretically. Recombination of electron-hole pairs in external and mutual Coulomb fields is considered in the framework of Langevin's theory. The spatial non-uniformity of electric field and strong field dependence of the mobility leads to the flash-like intensity kinetics after switching off the external field.

Fax: (095) 324 21 11 (Nikitenko)