Особенности поведения эффективной массы и подвижности в твердых растворах n-(Bi, Sb) $_2$ (Te, Se, S) $_3$

© Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов, В.В. Попов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия E-mail: lidia.lukyanova@mail.ioffe.ru

(Поступила в Редакцию 26 января 2006 г.)

Исследованы термоэлектрические свойства многокомпонентных твердых растворов $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ с замещениями атомов в обеих подрешетках Bi_2Te_3 . Учтено изменение механизмов рассеяния носителей заряда при замещениях атомов $\text{Sb} \to \text{Bi}$, Se, $\text{S} \to \text{Te}$ в твердых растворах на основании данных, полученных при исследовании гальваномагнитных эффектов в слабых магнитных полях. Рассчитаны подвижность с учетом вырождения μ_0 , эффективная масса плотности состояний m/m_0 и теплопроводность кристаллической решетки κ_L . Проведен анализ величин μ_0 , m/m_0 и κ_L в зависимости от состава, концентрации носителей заряда и температуры в исследуемых твердых растворах.

Работа поддержана проектом РФФИ № 04-02-17612а.

PACS: 72.20.Pa, 72.20.My, 72.80.Yc

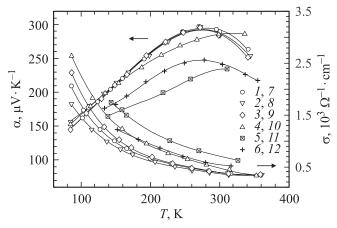
Твердые растворы $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ *п*-типа являются многокомпонентными неизоморфными термоэлектрическими материалами с замещениями атомов в обеих подрешетках $\mathrm{Bi}_2\mathrm{Te}_3$. Замещения атомов в подрешетках основного соединения оказывают влияние на процессы рассеяния электронов и фононов, что приводит к изменению свойств, определяющих термоэлектрическую эффективность Z. Влияние механизмов рассеяния на величину Z с учетом данных, полученных при исследовании гальваномагнитных эффектов, может быть выявлено при анализе величин подвижности μ_0 , эффективной массы плотности состояний m/m_0 и теплопроводности кристаллической решетки κ_L в зависимости от температуры, состава и концентрации носителей заряда [1-4].

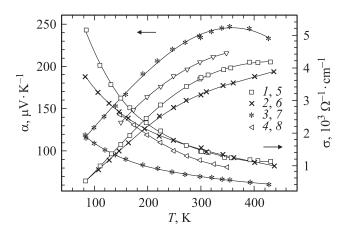
Использование в качестве примесного соединения ${\rm Bi_2S_3}$, которое имеет орторомбическую решетку (в отличие от ${\rm Bi_2Se_3}$ и ${\rm Sb_2Te_3}$, кристаллизующихся, как и ${\rm Bi_2Te_3}$, в решетке тетрадимита), создает бо́льшие искажения вокруг замещаемых атомов по сравнению с замещениями ${\rm Sb} \to {\rm Bi}$ и ${\rm Se} \to {\rm Te}$. Искажения кристаллической решетки способствуют увеличению рассеяния фононов и, следовательно, ведут к уменьшению κ_L [5,6], что является одной из причин, обеспечивающих повышение эффективности Z.

Таким образом, особенности поведения температурных и концентрационных зависимостей подвижности μ_0 , эффективной массы m/m_0 и решеточной теплопроводности κ_L при различных замещениях атомов в твердых растворах $n\text{-Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ могут быть использованы при разработке составов, обладающих оптимальной термоэлектрической эффективностью в различных интервалах рабочих температур — как ниже, так и выше комнатной.

1. Термоэдс и электропроводность

Исследование термоэлектрических свойств твердых растворов $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ было проведено на составах с $0 \le x \le 0.2$, $0.06 \le y \le 0.15$, $0 \le z \le 0.15$, полученных методом направленной кристаллизации с прецизионной регулировкой температуры в процессе роста. Введение избыточного количества Те по сравнению со стехиометрическим составом обеспечивало получение образцов с низкими концентрациями электронов, которые являются оптимальными для области низких температур (< 240 K). Для получения образцов с высокими концентрациями электронов применялось легирование галогенидом CdCl_2 .


Температурные зависимости коэффициента термоэдс α и электропроводности σ в образцах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ и $\mathrm{Bi}_2\mathrm{Te}_{3-y}\mathrm{Se}_y$ с низкими и высокими концентрациями электронов приведены на рис. 1, 2. На рис. 1 также представлены данные по α и σ в твердых растворах 90 mol.% $\mathrm{Bi}_2\mathrm{Te}_3+5$ mol.% $\mathrm{Sb}_2\mathrm{Te}_3+5$ mol.% $\mathrm{Sb}_2\mathrm{Te}_3+5$ mol.% $\mathrm{Sb}_2\mathrm{Te}_3$ [8] (кривые 5,11) и ($\mathrm{Bi}_{0.8}\mathrm{Sb}_{0.2}$) $_2\mathrm{Te}_3$ [8] (кривые 6,12). Эти составы также рассматриваются как перспективные для использования при температурах ниже комнатной.

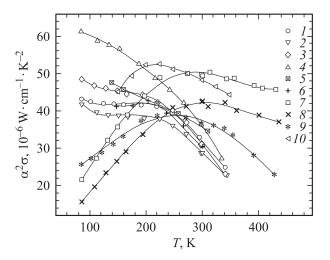

В образцах с низкими концентрациями электронов максимум зависимости α от T смещается в область низких температур до 270 К в составах с замещениями атомов Sb \rightarrow Bi, Se, S \rightarrow Te (кривые I,2 на рис. 1) и Sb \rightarrow Bi, Se \rightarrow Te (кривая J на рис. 1). В образце $Bi_2Te_{3-y}Se_y$ (кривая J на рис. 1) практически при том же суммарном замещении атомов, что и в составах $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$, величине α_{max} соответствует температура около 300 К. Ранее при исследовании твердых растворов $Bi_2Te_{3-y}Se_y$ [1] с низкими концентрациями электронов при y=0.3 и 0.36 смещения максимума

температурной зависимости термоэдс в область низких температур не наблюдалось.

В табл. 1 представлены угловые коэффициенты $s_{\alpha} = d \ln \alpha / d \ln T$, рассчитанные для линейных участков зависимостей α от T в интервалах температур 80–150 K (рис. 1) и 150–240 K (рис. 2).

Величины угловых коэффициентов s_{α} в образцах, оптимизированных для низких температур, составляют 0.65–0.5, а в образцах с оптимальными составами и концентрациями электронов для температур $300-450\,\mathrm{K}$ изменяются в интервале 1.5–1.25. Величины s_{α} также уменьшаются с ростом содержания замещенных атомов в твердых растворах как с низкими, так и с высокими

Рис. 2. Температурные зависимости коэффициента термоэдс α (1–4) и электропроводности σ (5–8) в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$, оптимизированных для температур 300–450 К. 1, 5 — x = 0, y = z = 0.09; z, z — z = 0, z = 0.15; z = 0.16, z = 0.12; z = 0.12; z = 0.15, z = 0.


Таблица 1. Угловые коэффициенты температурных зависимостей термоэдс $s_{\alpha} = d \ln \alpha / d \ln T$ в твердых растворах $\text{Bi}_{2-x} \text{Sb}_x \text{Te}_{3-y-z} \text{Se}_y \text{S}_z$

	Номер рисунка	Номер кривой	х	у	z	s_{α}
_	1 1 1 1 1 1 2	1 2 3 4 5 [7] 6 [8] 1	0.08 0.16 0.2 0 0.1 0.4 0	0.06 0.06 0.06 0.3 0.15 0	0.06 0.06 0 0 0 0 0	0.66 0.55 0.66 0.52 0.43 0.51 1.55
	2 2	2 3	0 0.16	0.15 0.12	0.15 0.12	1.26 1.47
	2	4	0	0.3	0	1.45

концентрациями электронов (табл. 1). Как следует из табл. 1, в составах $\mathrm{Bi_2Te_{3-y}Se_y}$ наблюдается большее по сравнению с многокомпонентными твердыми растворами ослабление температурных зависимостей термоэдс, что можно объяснить изменением процессов рассеяния носителей заряда при различных замещениях атомов. Уменьшение s_α в твердом растворе ($\mathrm{Bi_{0.8}Sb_{0.2}}$)₂ $\mathrm{Te_3}$ [8] может быть связано с большим содержанием замещенных атомов по сравнению с другими образцами. Температурные зависимости электропроводности σ (рис. 1,2) ослабевают с ростом концентрации электронов и содержания замещенных атомов в твердых растворах вследствие снижения подвижности при увеличении числа рассеивающих центров и дополнительного рассеяния на атомах легирующей примеси.

Характер измнения коэффициента термоэдс и электропроводности определяет поведение параметра мощности $\alpha^2 \sigma$ в твердых растворах в различных температурных интервалах (рис. 3). В образцах с низкими концентрациями электронов на температурной зависимости параметра $\alpha^2 \sigma$ не наблюдается максимума, наличие которого характерно для твердых растворов с более высокими концентрациями электронов (рис. 3). По-видимому, при низких концентрациях электронов положение максимума на зависимости $\alpha^2 \sigma$ от T смещается к более низким температурам. Аналогичные изменения $\alpha^2 \sigma$ в зависимости от T наблюдались в твердых растворах системы $Bi_2Te_{3-\nu}Se_{\nu}$ (y=0.12-0.36), при этом величина $\alpha^2 \sigma$ в составах с замещениями атомов $Se \rightarrow Te$ выше, чем при замещениях $Sb \rightarrow Bi$ и Se, $S \to Te$ вследствие более высокой подвижности μ_0 [1].

Увеличение $\alpha^2\sigma$ в низкотемпературной области в образцах с низкими концентрациями электронов связано с высокой подвижностью, поскольку в этой области концентраций электронов при значениях коэффициента термоэдс около $\alpha=285-295\,\mu\mathrm{V}\cdot\mathrm{K}^{-1}$ начинается заполнение второй дополнительной зоны в зоне проводимости твердых растворов на основе $\mathrm{Bi}_2\mathrm{Te}_3$. Кроме

Рис. 3. Температурные зависимости параметра мощности $\alpha^2\sigma$ в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$. 1-x=0.08, y=z=0.06; 2-x=0.16, y=z=0.06; 3-x=0.2, y=0.06, z=0; 4-x=0, y=0.3, z=0; $5-90\,\mathrm{mol.\%Bi}_2\mathrm{Te}_3+5\,\mathrm{mol.\%}\,\mathrm{Sb}_2\mathrm{Te}_3+5\,\mathrm{mol.\%}\,\mathrm{Sb}_2\mathrm{Se}_3$ [7]; $6-(\mathrm{Bi}_{0.8}\mathrm{Sb}_{0.2})_2\mathrm{Te}_3$ [8]; 7-x=0, y=z=0.09; 8-x=0, y=z=0.15; 9-x=0.16, y=z=0.12; 10-x=0, y=0.3, z=0.

того, росту параметра $\alpha^2\sigma$ способствует ослабление температурной зависимости термоэдс (табл. 1). Увеличение числа замещенных атомов Sb \to Bi и Se, S \to Te в твердых растворах приводит к уменьшению параметра $\alpha^2\sigma$ для всех исследованных концентраций электронов.

Температурные зависимости термоэдс α и электропроводности σ были использованы для определения усредненной эффективной массы m/m_0 и подвижности μ_0 , рассчитанной с учетом вырождения носителей заряда. Расчеты m/m_0 и μ_0 были выполнены с учетом изменений механизмов рассеяния в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$, связанных с замещениями атомов в подрешетках $\mathrm{Bi}_2\mathrm{Te}_3$.

2. Механизмы рассеяния

Основными механизмами рассеяния в твердых растворах на основе $\mathrm{Bi}_2\mathrm{Te}_3$ являются рассеяние на акустических фононах, на ионизированных примесях и на атомах вторых компонентов твердых растворов, которым соответствует параметр рассеяния r, близкий к -0.5, в случае однозонной модели энергетического спектра с изотропным рассеянием носителей заряда. Изменения параметра r вследствие влияния рассеяния на атомах Sb, Se и S, дополнительного рассеяния на атомах легирующей примеси и влияния второй дополнительной зоны в зоне проводимости твердых растворов были учтены с привлечением данных, полученных из исследований гальваномагнитных коэффициентов (ГМК), и данных о коэффициенте термоэдс [4]. Методика, предложенная в [4], применялась для исследования механизмов рассе-

яния широкого круга твердых растворов n- и p-типа на основе халькогенидов висмута и сурьмы [1,9,10].

Расчетные значения параметра рассеяния $r_{\rm eff}$ и приведенный уровень Φ ерми η были получены на основании данных о параметре вырождения $\beta_d(r, \eta)$ [4] совместно с данными о коэффициенте термоэдс $\alpha(r, \eta)$. Параметр вырождения $\beta_d(r,\eta)$ в твердых растворах $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ был определен в рамках многодолинной модели энергетического спектра с изотропным рассеянием носителей заряда на основе экспериментальных данных по ГМК (компонентам тензоров удельного сопротивления ρ_{ii} , магнетосопротивления ρ_{ijkl} и эффекта Холла ρ_{iik}), измеренным в слабых и промежуточных магнитных полях. В результате расчетов $r_{\rm eff}$, приведенных по данным измерений ГМК в магнитных полях 25 и 28 kOe, было показано, что значения эффективного параметра рассеяния слабо зависят от состава и концентрации носителей заряда в $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ и составляют (-0.7)–(-0.8) для исследованных составов (табл. 2).

В отличие от $n\text{-Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ в составах $n\text{-Bi}_2\mathrm{Te}_{3-y}\mathrm{Se}_y$ [11,12] и $p\text{-Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y}\mathrm{Se}_y$ [13] величина r_{eff} изменялась от -0.35 до -0.8 в зависимости от концентрации, состава и температуры. Полученные особенности поведения величины эффективного параметра рассеяния в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ при различных замещениях атомов в подрешетках теллурида висмута (Se \to Te; Sb \to Bi, Se \to Te и Sb \to Bi, Se, S \to Te) указывают на изменения механизмов рассеяния носителей заряда.

3. Эффективная масса и подвижность

Величины концентрации носителей заряда в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$, необходимые для определения усредненной эффективной массы m/m_0 и подвижности носителей заряда с учетом вырождения μ_0 , были определены по данным, полученным при исследовани ГМК, в соответствии с выражением, применимым

Таблица 2. Параметры вырождения β_d , рассеяния $r_{\rm eff}$ и приведенный уровень Ферми η в образцах твердых растворов ${\rm Bi}_{2-x}{\rm Sb}_x{\rm Te}_{3-y-z}{\rm Se}_y{\rm S}_z$ с различными концентрациями электронов

№ п/п	T, K	х	у	z	eta_d	$r_{ m eff}$	η	<i>n</i> , 10 ¹⁸ cm ⁻³
1	300	0.08	0.06	0.06	0.36	-0.74	-1.38	2.3
	80				0.46	-0.74	0.72	1.8
2	300	0.4	0.06	0.06	0.3 0.6	-0.76	-1.36	2.5
	80					-0.68	0.96	1.8
3	300	0.2	0.15	0.15	0.4	$-0.72 \\ -0.74$	-0.84	5
	80				0.49	-0.74	1.54	3
4	300	0.08	0.06	0.06	0.19	-0.72 -0.82		11.5
	80				0.46	-0.82	2.58	10

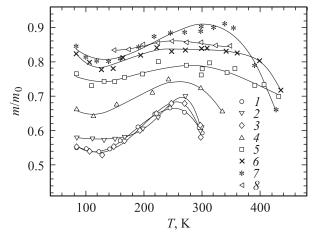
для анизотропных материалов [4] (табл. 2),

$$n = \frac{A(r_{\text{eff}}, \eta) \left[(\rho_{11}\rho_{1133}/\rho_{123}^2)\beta_d(r_{\text{eff}}, \eta) \right]^{-1}}{\rho_{123}e}$$

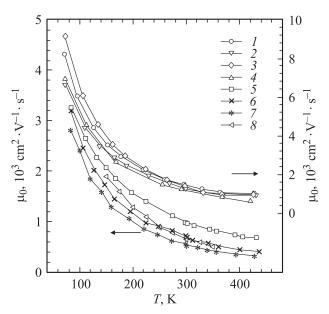
$$= \frac{A(r_{\text{eff}}, \eta)}{\rho_{123}e} \frac{4u}{(1+u)^2}, \tag{1}$$

где $A(r_{\rm eff}, \eta)$ — Холл-фактор, ρ_{11} , ρ_{1133} , ρ_{123} — компоненты тензоров сопротивления, магнетосопротивления и эффекта Холла соответственно, и — один из параметров многодолинной модели энергетического спектра, определяющих форму поверхности постоянной энергии. Одинаковые величины концентрации, полученные для экспериментальных ГМК и с помощью параметра u (1), подтверждают высокую точность определения параметров эллипсоидов постоянной энергии [4] и свидетельствуют о применимости многодолинной модели для исследования многокомпонентных твердых растворов $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$. Измерения ГМК в твердых растворах $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ показали, что концентрация электронов в рассматриваемом интервале температур возрастает с ростом T приблизительно на 20%, как и в твердых растворах p-Bi_{2-x}Sb_xTe_{3-y}Se_y [10].

Температурные зависимости m/m_0 и μ_0 были определены в соответствии с методикой, применявшейся в [9,10], с учетом изменений механизмов рассеяния в твердых растворах $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$.


Как и при исследовании твердых растворов $n-Bi_2Te_{3-y}Se_y$ [1,9] и $p-Bi_{2-x}Sb_xTe_{3-y}Se_y$ [10], в составах $n-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ наблюдается увеличение эффективной массы m/m_0 с ростом концентрации носителей и увеличением содержания замещенных атомов в подрешетках Bi_2Te_2 . Величина m/m_0 возрастает при переходе от образцов с низкими концентрациями электронов (около $2 \cdot 10^{18} \, \mathrm{cm}^{-3}$) различного состава (кривые 1-3 на рис. 4) к образцам с высокими концентрациями электронов (кривые 5-8 на рис. 4). В составе $Bi_2Te_{3-y}Se_y$ (y = 0.3, $n \approx 3 \cdot 10^{18} \text{ cm}^{-3}$) эффективная масса выше, чем в n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z, за счет небольшого роста концентрации электронов и изменения состава твердого раствора (соответственно кривые 4 и 1-3 на рис. 4).

Увеличение эффективной массы m/m_0 при переходе от образцов с низкими (кривые I-4 на рис. 4) к образцам с высокими концентрациями электронов (кривые 5-8 на рис. 4) можно объяснить заполнением дополнительной зоны в зоне проводимости твердых растворов. Эффективная масса возрастает при увеличении содержания замещенных атомов $Sb \to Bi$ (кривые 1,2 на рис. 4) и при замещениях $S \to Te$ (кривые 6,5 на рис. 4) в образцах с близкими концентрациями электронов.


Немонотонный характер изменения температурных зависимостей эффективной массы в $n\text{-Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ приводит к тому, что в степенной зависимости $m/m_0\sim T^s$ показатель степени s является функцией температуры, как и в

исследованных ранее системах n-Bi₂Te_{3-y}Se_y [9] и p-Bi_{2-x}Sb_xTe_{3-y}Se_y [10].

Характер концентрационных и температурных зависимостей m/m_0 определяется аналогичными зависимостями отношений компонент тензора эффективных масс m_i/m_j и связан с различной анизотропией поверхности постоянной энергии твердых растворов. На величину m/m_0 также оказывают влияние изменение процессов рассеяния носителей заряда вследствие заполнения дополнительной зоны в зоне проводимости твердых растворов и анизотропия рассеяния носителей заряда [1,9].

Рис. 4. Температурные зависимости эффективной массы m/m_0 в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$. n, 10^{19} cm⁻³: 1-0.2 (x=0.08, y=z=0.06); 2-0.2 (x=0.16, y=z=0.06); 3-0.2 (x=0.2, y=0.06, z=0); 4-0.3 (x=z=0, y=0.3); 5-1.2 (x=0, y=z=0.09); 6-1.45 (x=0, y=z=0.15); 7-1 (x=0.16, y=z=0.12); 8-1.1 (x=z=0, y=0.3).

Рис. 5. Температурные зависимости подвижности μ_0 в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$. Номера кривых соответствуют рис. 4.

Таблица 3. Угловые коэффициенты температурных зависимостей подвижности, рассчитанной с учетом вырождения $s_{\mu 0} = d \ln \mu_0 / d \ln T$ в твердых растворах $\text{Bi}_{2-x} \text{Sb}_x \text{Te}_{3-y-z} \text{Se}_y \text{S}_z$

Номер кривой	х	у	Z	$s_{\mu 0}$		
на рис. 5				80–150 K	150-240 K	
1	0.08	0.06	0.06	1.25		
2	0.16	0.06	0.06	1.17	0.54	
3	0.2	0.06	0	1.6	0.72	
4	0	0.3	0	1.57	1.3	
5	0	0.09	0.09	1.4	1.47	
6	0	0.15	0.15	1.26	0.76	
7	0.16	0.12	0.12	1.68	1.03	
8	0	0.3	0	1.62	0.76	

На рис. 5 приведены температурные зависимости подвижности μ_0 , рассчитанные с учетом вырождения носителей заряда. В образцах с низкими концентрациями электронов (кривые 1–4 на рис. 5), при которых влияния второй дополнительной зоны практически не наблюдается, наиболее высокая подвижность имеет место в составе с замещениями атомов Sb \rightarrow Bi и Se \rightarrow Te (кривая 3 на рис. 5). Высокая подвижность в этом образце при x=0.2 y=0.06 связана с отсутствием атомов серы в твердом растворе, поскольку дополнительное рассеяние на атомах S приводит к уменьшению подвижности.

При исследовании концентрационных зависимостей подвижности следует обратить особое внимание на определение концентрации носителей заряда в образцах твердых растворов n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z. Pacчет концентрации носителей заряда без учета анизотропии исследуемых материалов и отсутствие учета изменений механизмов рассеяния по сравнению с акустическим механизмом (r = -0.5) могут приводить к увеличению подвижности с ростом концентрации носителей заряда [14]. Расчет подвижности в n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z (x = 0, y = z = 0.15) для параметра рассеяния r=-0.5 показал, что величины μ_0 возрастают от 600 до $690\,\mathrm{cm^2\cdot V^{-1}\cdot s^{-1}}$ при $295\,\mathrm{K}$ и от 2570 до $2690\,\mathrm{cm}^2\cdot\mathrm{V}^{-1}\cdot\mathrm{s}^{-1}$ при $80\,\mathrm{K}$ с ростом концентрации электронов в образцах от 1.2 до $1.45 \cdot 10^{18}$ cm⁻³. При учете изменений механизмов рассеяния с помощью $r_{\rm eff}$ подвижность μ_0 и угловые коэффициенты температурных зависимостей $|s_{\mu 0}| = d \ln \mu_0 / d \ln T$ уменьшаются с ростом концентрации носителей и увеличением содержания замещенных атомов в твердых растворах вследствие увеличения числа рассеивающих центров (табл. 3).

Как и температурная зависимость эффективной массы, зависимость $\ln \mu_0$ от $\ln T$ не является линейной для всего температурного интервала, где наблюдается примесная проводимость, и может быть представлена в виде $T^{s(T)}$. Аналогичный характер температурной зависимости подвижности наблюдался в твердых растворах на основе Bi_2Te_3 n- и p-типа [9,10].

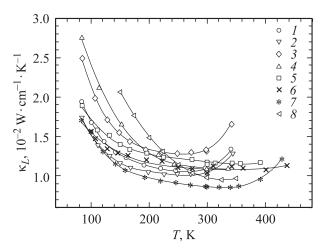
При низких концентрациях электронов подвижность μ_0 уменьшается с увеличением количества атомов Sb при одинаковом содержании атомов Se и S (кривые 1,2 на рис. 5). Более высокая подвижность μ_0 в образце с замещениями Sb \rightarrow Bi и Se \rightarrow Te указывает на более слабое рассеяние электронов атомами Sb и Se, чем атомами S (кривые 1–3 на рис. 5). В образцах с высокой концентрацией электронов подвижность уменьшается при увеличении содержания атомов S в твердом растворе (кривые 5,6 на рис. 5). Замещения атомов в обеих подрешетках Bi_2Te_3 приводят к дальнейшему уменьшению подвижности (кривая 7 на рис. 5).

При высоких концентрациях электронов в твердом растворе $Bi_2Te_{3-y}Se_y$ (y=0.3) (кривая 8 на рис. 5) подвижность и угловые коэффициенты температурных зависимостей подвижности $s_{\mu0}$ (табл. 3) выше, чем в многокомпонентных твердых растворах с замещениями атомов в обеих подрешетках Bi_2Te_3 с близким общим содержанием замещенных атомов.

4. Теплопроводность кристаллической решетки

Для твердых растворов $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ при замещениях атомов в обеих подрешетках ($Sb \to Bi$ и $Se, S \to Te$) характерно уменьшение полной теплопроводности κ и ослабление зависимости κ от T, связанное с бо́льшими искажениями кристаллической решетки по сравнению с замещениями атомов только в катионной подрешетке Bi_2Te_3 [5–7].

Расчет теплопроводности кристаллической решетки κ_L проводился по формуле


$$\kappa_L = \kappa - \kappa_e, \tag{2}$$

где $\kappa_e=L(r_{\rm eff},\eta)\sigma T$ — электронная теплопроводность. При определении числа Лоренца в твердых растворах ${\rm Bi}_{2-x}{\rm Sb}_x{\rm Te}_{3-y-z}{\rm Se}_y{\rm S}_z$ учитывались изменения механизма рассеяния в выражении

$$L = \left(\frac{k}{e}\right)^2 \left[\frac{(r+7/2)F_{r+5/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \frac{(r+5/2)^2 F_{r+3/2}^2(\eta)}{(r+3/2)^2 F_{r+1/2}^2(\eta)} \right]. \tag{3}$$

Замена r на $r_{\rm eff}$ в (3) дает возможность более корректно учесть величину электронной теплопроводности κ_e , чем в случае r=-0.5, что особенно важно для исследуемых материалов, в которых электронная составляющая теплопроводности составляет около 10-15% от полной теплопроводности.

Расчеты числа Лоренца для r=-0.5 в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ для образцов с высокими концентрациями носителей заряда показывают, что значения $L\big|_{r=-0.5}$ могут быть отрицательными, что не позволяет оценить решеточную теплопроводность в соответствии с выражением (2).

Рис. 6. Температурные зависимости решеточной теплопроводности κ_L в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$. Номера кривых соответствуют рис. 4.

Решеточная теплопроводность κ_L (рис. 6) в твердых растворах $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ снижается, и зависимость $\kappa_L(T)$ ослабевает по сравнению с составами $Bi_{2-x}Sb_xTe_{3-y}Se_y$ (кривая 3) и особенно по сравнению с твердым раствором $Bi_2Te_{3-y}Se_y$ (кривая 4), в котором нет замещений в катионной подрешетке. С увеличением количества замещенных атомов Sb при равном содержании атомов Se и S в твердых растворах (кривые 1, 2 на рис. 6) величина κ_L уменьшается. Такое изменение κ_L при замещениях атомов в обеих подрешетках Bi_2Te_3 можно объяснить увеличением вклада добавочного теплового сопротивления при введении нейтральных атомов, которые участвуют в образовании твердого раствора замещения. Дополнительные искажения кристаллической решетки Bi_2Te_3 при замещениях атомов $Se, S \rightarrow Te$ по сравнению с замещениями Se — Te приводят к уменьшению величины κ_L в связи с различием ковалентных радиусов атомов S и Se [6].

В твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ с повышением температуры величина $\kappa-\kappa_e$ возрастает вследствие влияния собственной проводимости, и выражение (2) имеет вид

$$\kappa_L = \kappa - \kappa_e - \kappa_{np}, \tag{44}$$

где κ_{np} — теплопроводность за счет влияния собственной проводимости, обусловленная биполярной диффузией.

При низких концентрациях электронов, оптимальных для $T < 240 \,\mathrm{K}$, влияние собственной проводимости проявляется при температурах вблизи комнатной (кривые I-4 на рис. 6). Рост концентрации носителей и содержания замещенных атомов кроме снижения величины κ_L приводит к увеличению температуры, при которой наблюдается собственная проводимость (кривые 5-8 на рис. 6). В составе с y=z=0.15 (кривая 6 на рис. 6) влияние собственной проводимости

отсутствует в области исследованных температур, что связано с возрастанием ширины запрещенной зоны E_g в твердом растворе ${\rm Bi}_2{\rm Te}_{3-y-z}{\rm Se}_y{\rm S}_z$ при замещениях Se, S \to Te [15].

Рассмотренные особенности поведения эффективной массы m/m_0 и подвижности μ_0 совместно с данными по теплопроводности кристаллической решетки κ_L могут быть использованы для анализа термоэлектрической эффективности в твердых растворах $\mathrm{Bi}_{2-x}\mathrm{Sb}_x\mathrm{Te}_{3-y-z}\mathrm{Se}_y\mathrm{S}_z$ в зависимости от состава, концентрации носителей заряда и температуры [2–4,13].

Список литературы

- В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов. ФТТ 42, 1985 (2000).
- [2] L.N. Luk'yanova, V.A. Kutasov, P.P. Konstantinov. In: Proc. of the XIX Int. Conf. on Thermoelectrics. Cardiff, U. K. (2000). P. 391.
- [3] Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов. В сб.: Докл. IX Межгосударственного семинара "Термоэлектрики и их применения". СПб (2004). С. 68.
- [4] Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов, В.В. Попов. ФТТ 48, 607 (2006).
- [5] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 38, 2366 (1996).
- [6] Г.Т. Алексеева, М.В. Ведерников, П.П. Константинов, В.А. Кутасов. ФТП 30, 918 (1996).
- [7] Н.Х. Абрикосов, Л.Д. Иванова, Т.Е. Свечникова, С.Н. Чижевская, Г.А. Иванов, Г.А. Парахин, В.К. Воронин, Т.Е. Свечникова, С.Н. Чижевская, Г.А. Иванов, Г.А. Парахин, В.К. Воронин. Неорган. материалы 25, 745 (1989).
- [8] A.I. Anykhin, S.Ya. Skipidarov, O.B. Sokolov. Proc. of the XII Int. Conf. on Thermoelectrics. Yokogama, Japan (1993). P. 97.
- [9] В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов. ФТТ 41, 187 (1999).
- [10] Л.Н. Лукьянова, В.А. Кутасов, В.В. Попов, П.П. Константинов. ФТТ **46**, 1366 (2004).
- [11] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 26, 2501 (1984).
- [12] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 28, 899 (1986).
- [13] Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов. ФТТ **47**, 224 (2005).
- [14] V.A. Kutasov, L.N. Luk'yanova. Phys. Stat. Sol. (b) 154, 669 (1989).
- [15] Ч.Д. Бекдурдыев, Б.М. Гольцман, В.А. Кутасов, А.В. Петров. ФТТ 16, 2121 (1974).