Ионный эффект Зеебека и теплота переноса катионов в суперионном проводнике $Cu_{2-\delta}$ Se

© М.Х. Балапанов, И.Б. Зиннуров, Г.Р. Акманова

Башкирский государственный университет, 450074 Уфа, Россия

E-mail: BalapanovMK@ic.bashedu.ru

(Поступила в Редакцию 8 февраля 2006 г.)

Из измерений ионного коэффициента Зеебека определены тепло́ты переноса Q_i ионов меди в $\mathrm{Cu}_{2-\delta}\mathrm{Se}$ в зависимости от нестехиометричности и температуры в интервале $340-380^\circ\mathrm{C}$. Теплота переноса катионов увеличивается от 0.19 до 0.22 eV с ростом степени нестехиометричности δ от 0.015 до 0.05. Отмечена тенденция к повышению Q_i с ростом температуры. На основе анализа наблюдающейся близости значений теплоты переноса и энергии активации ионной проводимости сделаны предположения относительно особенностей процесса диффузии катионов в $\mathrm{Cu}_{2-\delta}\mathrm{Se}$.

PACS: 66.30.Hs, 72.20.Pa

1. Введение

Теплота переноса является важнейшей характеристикой ионного транспорта в неизотермических условиях. Анализ экспериментальных данных показывает, что в суперионных проводниках (СИП) теплота переноса мобильных ионов Q_i часто оказывается близкой по значению к энергии активации проводимости E_a [1–5]. Однако нередки случаи, когда теплота переноса в несколько раз отличается от соответствующих величин энергии активации ионов проводимости или даже имеет отрицательный знак. На отсутствие простой связи между E_a и Q_i указывалось рядом авторов, например в работе К. Вагнера [6]. Несмотря на давность изучения данной проблемы, она остается во многом нерешенной. В работе [3] большие расхождения результатов измерений Q_i , выполненных разными исследователями, объясняются тем, что не всегда обеспечивается обратимость электродов. Нам представляется, что основная причина все же лежит в природе самих процессов, происходящих при диффузии в неизотермических условиях. Проанализируем некоторые работы, проливающие свет на интерпретацию теплоты переноса ионов и ее связь с энергией активации диффузии.

Дж. Смит и др. [7], рассматривая термодиффузию внедренных атомов в матрице атомов переходных металлов, скорость миграции которых ниже на несколько порядков, чем внедренных атомов, показали, что теплота переноса в этом случае выражается как

$$Q^* = H - T \frac{dH}{dT},\tag{1}$$

где H — энергия активации диффузии, которая состоит из двух слагаемых. Первое слагаемое H_a представляет собой обычную энергию активации, практически не зависящую от температуры; второе слагаемое H_b , есть кажущееся искажение потенциального барьера изза наличия градиента температуры. Причиной такого

искажения потенциального барьера может быть взаимодействие внедренных атомов с электронами, тепловыми колебаниями решетки и т. п. Поскольку первая величина намного больше второй по абсолютной величине, Смитом была предложена оценочная формула для теплоты переноса

$$Q^* = H_a - \frac{dH_b}{dT}T. (2)$$

Температурная зависимость H_b , однако, может быть сильной, и это может привести к отрицательному значению теплоты переноса Q^* . Формула (2) объясняет в принципе все наблюдаемые соотношения между теплотой переноса ионов и энергией активации, но ее реальная польза видится лишь в ведении функции $H_b(T)$, конкретный вид которой можно рассчитать из теоретического моделирования конкретной кристаллической решетки с учетом необходимых взаимодействий. Результаты этой работы, очевидно, можно распространить и на случай термодиффузии в суперионных проводниках, где роль матрицы играют жесткий каркас решетки, по междоузлиям которого передвигаются подвижные ионы.

Рассматривая случай вакансионного механизма диффузии в бинарной системе с ОЦК-решеткой с учетом взаимодействия ближайших соседей, Sato и Kikuchi с соавторами [8] методом молекулярной динамики установили, что градиент концентрации, вызванный градиентом температуры при термодиффузии (эффект Соре), пропорционален не теплоте переноса $Q^* = (E^* - \mu)$, а разности энергии E^* и энтальпии H^* переноса

$$\frac{dn}{dT} = -\frac{E^* - H^*}{T(d\mu/dn)_T} = -\frac{Q^* + T(\partial\mu/\partial T)_n}{T(d\mu/dn)_T},$$
 (3)

где n — концентрация, μ — химический потенциал атомов.

Определения величин E^* , H^* , Q^* здесь соответствуют обычно применяемым в неравновесной термодинамике [9]. От известного выражения для концентрационного градиента при термодиффузии [6] равенство (3)

отличается присутствием в числителе члена $T(\partial \mu/\partial T)_n$. Полученные выводы не ограничиваются примененной структурной моделью, а носят общий характер. Допускаемая ранее ошибка в выражении для величины эффекта Соре dn/dT, по предположению авторов, происходила от того, что диффузионный поток, возникающий при концентрационной поляризации, брали пропорциональным не градиенту химического потенциала $d\mu/dx$, а градиенту концентрации dn/dx. Только в отсутствие взаимодействия между подвижными частицами величина $(E^* - H^*)$ стремится к величине энергии активации диффузии. Это объясняет, почему теплота переноса Q^* (равная величине $(E^* - H^*)$), определяемая из термодиффузии, для многих суперионных проводников оказывается близкой по величине к энергии активации проводимости. К выводам о необходимости учета взаимодействия подвижных ионов друг с другом, фононами и другими частицами для объяснения наблюдаемых значений теплоты переноса пришли и другие исследователи [10–12].

Селенид меди обладает гигантским термодиффузионным эффектом [12], в нем впервые для твердых тел был измерен эффект Дюфура [13] (обратный эффекту Соре). Этот факт наряду с другими интересными явлениями позволяет отнести селенид меди к модельным системам для изучения термоэлектрических явлений и термодиффузии в смешанных электронно-ионных проводниках. Предпринятое в данной работе изучение ионного эффекта Зеебека в селениде меди с привлечением известных данных по ионной проводимости дает возможность сделать определенные выводы относительно особенностей ионного транспорта в данных СИП.

2. Методика эксперимента

Коэффициент ионной термоэдс в суперионных проводниках описывается формулой [2,6]

$$\alpha_i = (S_{Me^i} - S_{Me^0}) - \frac{Q_i}{eT} - \alpha_{Pt},$$
 (4)

где Q_i — теплота переноса ионов, S_{Me^i} и S_{Me^0} — энтропии ионов в образце и чистом металле соответственно, α_{Pt} — вклад металлических контактов в термоэдс, которым в большинстве случаев можно пренебречь. Если энтропии S_{Me^i} и S_{Me^0} одинаково зависят от температуры, выражение в скобках будет постоянной величиной. Это предположение часто оказывается справедливым для СИП, и график температурной зависимости коэффициента ионной термоэдс, построенный в координатах $\alpha_i(1/T)$, представляет собой прямую, из угла наклона которой можно определить теплоту переноса подвижных ионов Q_i . Однако применительно к халькогенидам меди этот метод не дает однозначных результатов и приводит к большим расхождениям с данными, полученными другими методами [14,15].

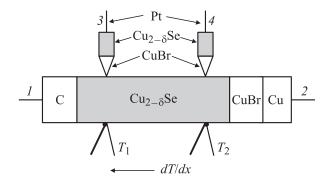


Схема электрохимической ячейки для измерений ионного эффекта Зеебека.

Удобный экспериментальный метод определения теплоты переноса ионов непосредственно из значений коэффициента ионной термоэдс был предложен Хондерсом [16]. Метод основан на замене измерительных зондов типа $Me/T \mathcal{I} \mathcal{I}$ в обычной ячейке для измерения ионной термоэдс (см. подробнее, например, в работах [5,6]) зондами типа образец/ $T \mathcal{I} \mathcal{I}$ (где Me — металл, $T \mathcal{I} \mathcal{I}$ — твердый электролит по ионам Me). Измеренный таким образом коэффициент Зеебека описывается формулой

$$\alpha_i^H = -\frac{Q_i}{eT} - \alpha_{Pt},\tag{5}$$

где α_{Pt} — вклад металлических контактов. Преимущество метода кроме простоты определения Q_i заключается в отсутствии необходимости предполагать температурную независимость разности S_{Me^i} и S_{Me^0} . В данной работе метод Хондерса применяется для определения теплоты переноса катионов меди в суперионном проводнике $\mathrm{Cu}_{2-\delta}\mathrm{Se}~(0 \leq \delta \leq 0.05)$ в интервале температур $330-400^{\circ}\mathrm{C}$.

Ионную термоэдс U_i^H измеряли между двумя составными ионными зондами типа $\mathrm{Cu}_{2-\delta}\mathrm{Se}/\mathrm{CuBr}$ (контакты 3 и 4 на рисунке) в отсутствие тока через образец (CuBr — униполярный катионный проводник в области температур $340-440^{\circ}\mathrm{C}$). Ионный коэффициент Зеебека определяли как $\alpha_i^H = U_i^H/\Delta T$, где $\Delta T = T_2 - T_1$ — разность температур в изотермических сечениях образца в месте расположения ионных зондов. Контроль за постоянством химического состава и за достижением равновесного состояния образцов во время измерений производился по эдс E электрохимической ячейки типа $\mathrm{C/Cu}_{2-\delta}\mathrm{Se/CuBr/Cu}$.

Температура контролировалась в двух поперечных сечениях образца с помощью хромель-алюмелевых термопар. В тех же двух сечениях образца измерялись эдс ячейки E_1 и E_2 , что позволяло контролировать химический состав образца. Состав образца изменяли методом кулонометрического титрования пропусканием постоянного тока (через графитовый контакт и правый электрод Cu/CuBr на рисунке), при этом в зависимости от направления тока в образец вводили или выводили некоторое количество меди, соответствующее пропу-

щенному количеству заряда. Значения термоэдс снимали после достижения равновесного состояния образца. Измерительная ячейка находилась в атмосфере осушенного и очищенного аргона. Погрешность измерений Q_i не превышала 5%.

3. Результаты эксперимента и их обсуждение

Полученные результаты представлены в таблице. В ней также приведены энергии активации E_a ионной проводимости монокристаллических [14] и поликристаллических [17] образцов $\mathrm{Cu}_{2-\delta}\mathrm{Se}$. С учетом погрешности измерений E_a в $0.02-0.03\,\mathrm{eV}$ можно говорить о близости величин E_a и Q_i в суперионной фазе селенида меди. Для твердого раствора $\mathrm{Ag}_{0.24}\mathrm{Cu}_{1.75}\mathrm{Se}$ на основе высокотемпературной кубической фазы $\mathrm{Cu}_2\mathrm{Se}$ измеренная ранее [18] тем же методом величина $Q_i=0.14\,\mathrm{eV}$ также близка к значению энергии активации ионной проводимости $E_a=0.16\,\mathrm{eV}$.

Как видно из Таблицы, теплота переноса ионов в Си₂₋₈Se увеличивается с ростом нестехиометрии. Аналогично с ростом нестехиометрии в Cu₂₋₈Se наблюдалось повышение энергии активации ионной проводимости [14], что является следствием удаления из фазы наиболее подвижных, слабо связанных с решеткой катионов, отвечающих за высокую ионную проводимость и широкую область гомогенности фазы. Концентрация этих высокоподвижных катионов соотвветствует 1/8 от общей концентрации катионов, как показано в работе [17] экстраполяцией линейной зависимости ионной проводимости $\sigma_i(\delta)$ к $\sigma_i = 0$. В селениде меди, имеющем на элементарную ячейку восемь катионов меди, анионы селена образуют "жесткий каркас" решетки (пространственная группа Fm3m) [19], а катионы могут передвигаться с малой энергией активации по тригональным пустотам "каркаса", образующим связную сетку траекторий. При температуре 200° С $32f_{\perp}$ и $32f_2$ позиции занимаются катионами статистически в соотношении 7:1, что коррелирует с долей подвижных катионов (1/8). При уменьшении концентрации высокоподвижных катионов в освободившиеся междоузлия термически активируются катионы из более глубоких по энергии позиций, что и приводит к росту измеряемой энергии активации согласно идее, высказанной в работе [15].

Происходящее постоянно с изменением состава и температуры перераспределение катионов по пустотам анионного каркаса [20] является особенностью кристаллической структуры халькогенидов меди, усложняющей интерпретацию его ионных и электронных свойств.

Наблюдаемый провал в зависимости $Q_i(\delta)$ при $\delta=0.04$ (как и снижение энергии активации диффузии катионов, отмеченное в [15]) может быть объяснен тем, что состав $\mathrm{Cu}_{1.96}\mathrm{Se}$ (так же как и $\mathrm{Cu}_{1.96}\mathrm{S}$) образует

Значения ионного коэффициента Зеебека α_i^H , теплот переноса и энергий активации ионной проводимости для разных составов $\mathrm{Cu}_{2-\delta}\mathrm{Se}$

T,°C	$\alpha_i^H, \text{mV/K}$	Q_i , eV	E_a , eV
$\delta=0.015$			
353	0.295	0.185	0.16
372 380	0.303 0.324	0.195 0.212	0.16 [18]
384	0.319	0.212	[10]
$\delta=0.025$			
335	0.346	0.210	
345	0.350	0.216	0.16
360	0.340	0.215	[18]
364	0.339	0.216	
$\delta=0.04$			
342	0.179	0.110	
345	0.186	0.115	
370	0.189	0.122	0.12
375	0.180	0.117	[14]
377	0.191	0.124	
380	0.211	0.138	
$\delta=0.05$			
350	0.341	0.212	0.20
360	0.350	0.222	[15]
383	0.352	0.231	[13]

самостоятельную фазу со своей кристаллической структурой при низких температурах [21], и, видимо, элементы этого упорядочения сохраняются и при высоких температурах.

Наблюдаемый незначительный рост теплоты переноса с повышением температуры может быть связан с усилением ангармонизма тепловых колебаний остова решетки.

Слабый рост коэффициента ионной термоэдс α_i в $\mathrm{Cu}_{2-\delta}\mathrm{Se}$ с увеличением нестехиометричности δ можно объяснить на основе формулы (4): с увеличением δ растет число вакантных междоузлий для подвижных катионов меди, за счет роста конфигурационного вклада увеличивается энтропия S_{Cu}^+ , что и ведет к росту α_i .

4. Выводы

Наблюдаемая близость величин теплоты переноса ионов Q_i и энергии активации E_a ионной проводимости в селениде меди может быть следствием слабого взаимодействия подвижных ионов меди с фононами и электронными носителями тока, а также слабой корреляции между прыжками ионов.

Список литературы

- А.К. Иванов-Шиц, И.В. Мурин. Ионика твердого тела.
 Изд-во СПбГУ, СПб. (2000). Т. 1. 616 с.
- [2] S.J. Girvin. Solid State Chem. 25, 65 (1978).
- [3] С.А. Шерстнов, Ю.И. Малов, Е.А. Укше. Электрохимия **19**, 1134 (1983).
- [4] Е.А. Гуревич, А.К. Иванов-Шиц. ФТТ 24, 795 (1982).
- [5] Р.А. Якшибаев, М.Х. Балапанов. ФТТ 27, 3484 (1985).
- [6] C. Wagner. Prog. Solid Chem. Phys. 7, 1 (1972).
- [7] J.F. Smith, D.I. Peterson, M.F. Smith. Less. Common Met. 106, 19 (1985).
- [8] C. Wada, A. Suzuki, H. Sato, R. Kikuchi. J. Phys. Chem. Solids 46, 1195 (1985).
- [9] С.Р. Де Гроот. Термодинамика необратимых процессов. Гостехиздат, М. (1956). 280 с.
- [10] В.И. Цидильковский, В.А. Мезрин. ФТТ 28, 2155 (1986).
- [11] В.И. Цидильковский, В.А. Мезрин. ДАН СССР 292, 1436 (1987).
- [12] М.А. Коржуев, А.В. Лаптев. ФТТ 29, 2646 (1987).
- [13] М.А. Коржуев. ФТТ 40, 242 (1998).
- [14] В.Н. Конев, В.Н. Чеботин, С.А. Фоменков. Неорган. материалы **21**, 202 (1985).
- [15] В.А. Горбунов. Автореф. канд. дис., Свердловск (1986) 16 с.
- [16] A. Honders, J.M. Kinderen, A.H. van Heeren, J.H.W. de Wit, G.H.J. Broers. Solid State Ionics 14, 205 (1984).
- [17] Р.А. Якшибаев, В.Н. Конев, М.Х. Балапанов. ФТТ 26, 3641 (1984).
- [18] М.Х. Балапанов, Р.А. Якшибаев, У.Х. Мухамедьянов. ФТТ 45, 600 (2003).
- [19] T. Sakuma, T. Aoyama, H. Takahashi, Y. Shimojo, Y. Morii. Phys. B: Condens. Matter. 213-214, 399 (1995).
- [20] S.A. Danilkin, A.N. Skomorokhov, A. Hoser, H. Fuess, V. Rajevac, N.N. Bickulova. J. Alloys and Comp. 361, 57 (2003).
- [21] Н.Х. Абрикосов, В.Ф. Банкина, Л.В. Порецкая, Е.В. Скуднова, С.Н. Чижевская. Полупроводниковые халькогениды и сплавы на их основе. Наука, М. (1975). 220 с.