01;07;09;10

Усиление электромагнитного импульса в черенковском лазере

© С. Оганесян

Научно-производственное объединение "Лазерная техника" 375090 Ереван, Армения

(Поступило в Редакцию 30 июля 1997 г.)

Исследован процесс усиления электромагнитного импульса гауссовой формы в черенковском волноводном лазере. Рассмотрены случаи длинного и короткого волноводов. Показано, что в первом случае можно ввести понятие характерной длительности импульса τ_0 . Установлено, что в случае, когда длительность импульса мала ($\tau < \tau_0$), то коэффициент усиления определяется только его спектральной шириной и процесс усиления приводит к изменению огибающей импульса. Установлено, что в случае короткого волновода можно осуществить усиление импульса без изменения его формы.

Введение

Процесс усиления в черенковском волноводном лазере (ЧВЛ) исследован в целом ряде работ [1–7] в случае, когда в систему извне подается пробная монохроматическая волна (отметим, что в работе [8] рассмотрен случай, когда усиливаемое излучение формируется из спонтанного шума). Чтобы увеличить эффективность взаимодействия пучка электронов с поверхностной волной, в литературе проанализированы различные формы волновода: от простейших (плоский волновод, цилиндрический волновод) до более сложных конфигураций [4-6]. Что касается механизма усиления в ЧВЛ, то он зависит от качества пучка электронов и размеров волновода [1]. Если плотность электронов ρ_0 велика (случай болших коэффициентов усиления), разброс пучка электронов мал, а длина волновода достаточно велика, то, как показано в работе [2], в системе мода волновода-пучок электронов появляется неустойчивость с инкрементом $G \sim \sqrt[3]{\rho_0}$. Если плотность электронов невелика (случай малых коэффициентов усиления), то коэффициент усиления ЧВЛ $G \sim \rho_0$ [1]. В этом пределе усиление определяется соотношением между шириной разброса электронов по zпроекции скорости Δv_z и шириной разброса фотонов по z-проекции волнового вектора $\Delta k_z = 2\pi/L$, связанного с конечностью длины волновода L. В случае длинного волновода $(\Delta v_z/v_z > \Delta k_z/2\pi k_z)$ наиболее простой механизм усиления основывается на включении постоянного магнитного поля вдоль пучка электронов [1]. В случае короткого волновода ($\Delta v_z/v_z < \Delta k_z/2\pi k_z$) [3] магнитное поле играет фокусирующую роль, а механизм усиления основывается на том, что закон сохранения импульса вдоль волновода не выполняется [1]. Как уже отмечалось выше, все эти результаты получены в предположении, что усиливаемый сигнал монохроматичен. Реально, однако, пробная волна всегда имеет конечную длительность au. В настоящей работе детально исследована зависимость коэффициента усиления электромагнитного импульса от его ширины $\Delta \omega = 1/\tau$ в длинном и коротком волноводах. Показано, что в первом случае коэффициент усиления сильно зависит от длительности импульса au

и сопровождается изменением его формы. Во втором найдено условие, при котором усиление происходит без изменения его формы.

Распространение электромагнитного импульса в плоском волноводе

Пусть в плоском волноводе вдоль оси z распространяется монохроматическая волна TM-типа. Предположим, что плоскость симметрии волновода совмещена с плоскостью yz, а его толщина равна 2a. Тогда проекции электрического и магнитного полей волны определяются выражениями

$$|x| > a,$$

$$E_{z} = E_{1z} \exp\left[i(k_{z}z - \omega t) \mp q_{x}x\right], \ E_{y} = 0, \ E_{x} = \frac{ik_{z}}{q_{x}}E_{z},$$

$$H_{z} = 0, \ H_{y} = \frac{i\omega}{q_{x}c}E_{z}, \ H_{x} = 0;$$

$$|x| < a,$$

$$E_{x} = E_{2z} \sin(k_{2x}x) \exp\left[i(k_{z}z - \omega t)\right], \ E_{y} = 0,$$

$$E_{x} = \frac{ik_{z}}{k_{2x}}E_{2z} \cos(k_{2x}x) \exp\left[i(k_{z}z - \omega t)\right],$$

$$H_{x} = 0, \ H_{y} = \frac{i\varepsilon\omega}{ck_{2x}}E_{2z} \cos(k_{2x}x) \exp\left[i(k_{z}z - \omega t)\right],$$

$$H_{z} = 0.$$
(2)

Здесь ε — диэлектрическая проницаемость волновода. Амплитуды волны E_{1z} и E_{2z} связаны соотношением

$$E_{2z} = E_{1z} \frac{\exp(-q_x a)}{\sin(k_{2x} a)}.$$
 (3)

Не теряя общности, можно положить, что E_{1z} — вещественнаая величина. Частота и проекция волнового вектора собственных мод волновода связаны соотношением

$$tg(k_{2x}a) = \varepsilon q_x/k_{2x},\tag{4}$$

80 С. Оганесян

где

$$q_x = \left(k_z^2 - \frac{\omega^2}{c^2}\right)^{1/2}, \ k_{2x} = \left(\varepsilon \frac{\omega^2}{c^2} - k_z^2\right)^{1/2}.$$
 (5)

В дальнейшем нас будут интересовать электромагнитные волны, принадлежащие миллиметровому диапазону длин волн и движущиеся синхронно $(k_z = \omega/v_z)$ или почти синхронно $(k_z \approx \omega/v_z)$ с пучком электронов. Из (4) следует, что каждой скорости v_z соответствует целый набор собственных мод волновода, имеющих частоты $\omega_i(v_z)$ $(i=0,1,\dots)$. Весь дальнейший анализ относится лишь к одной моде волновода.

Пусть теперь в том же волноводе движется электромагнитный импульс, длительность которого равна τ . Его поле можно представить в виде суперпозиции полей типа (1), (2)

$$\mathbf{E} = \int d\omega \, \mathbf{E}(\omega) \exp \left[i(k_z z - \omega t) - q_x x\right]$$
 и т.д. (6)

Рассмотрим для краткости только z-проекцию электрического поля волны. Предположим для определенности, что спектральное разложение поля имеет гауссову форму

$$E_z(\omega) = \frac{\tau}{2\sqrt{\pi}} E_{1z} \exp\left[-\frac{(\omega - \omega^0)^2 \tau^2}{4}\right]$$
 (7)

и найдем форму огибающей импульса в лабораторной системе координат. Очевидно, что выполнить точное интегрирование в (6) невозможно. Чтобы упростить задачу предположим, что спектральная ширина импульса $\Delta\omega=1/\tau$ не очень велика. Предположим также, что в этой области частот можно пренебречь дисперсией материала волновода $\varepsilon(\omega)=\varepsilon=\mathrm{const}$ (это равенство хорошо выполняется, например, в кристалле кварца). Пусть $\omega^0,\ q_x^0,\ k_{2x}^0,\ k_z^0$ — частота и проекции волнового вектора несущей волны. Из (4), (5) следует, что для частот ω , близких к ω_0 , проекции волнового вектора $\mathbf k$ определяются выражениями

$$k_z = k_z^0 + \nu_1 \delta \omega, \ q_x = q_x^0 + \nu_2 \delta \omega, \ k_{2x} = k_{2x}^0 + \nu_3 \delta \omega.$$
 (8)

Здесь расстройка $\delta \omega = \omega - \omega^0$ (при расчетах учитывались только линейные по этому параметру слагаемые),

$$\nu_1 = \frac{\varepsilon \omega^0}{c^2 k_{\varepsilon}^0} \frac{q_x^0 a \left[(k_{2x}^0)^2 + \varepsilon^2 (q_x^0)^2 \right] + 2 \left[(k_{2x}^0)^2 + \varepsilon (q_x^0)^2 \right]}{q_x^0 a \left[(k_{2x}^0)^2 + \varepsilon^2 (q_x^0)^2 \right] + 2\varepsilon \left[(k_{2x}^0)^2 + (q_x^0)^2 \right]},$$

$$\nu_2 = (\nu_1 k_z^0 - \omega^0/c^2)/q_x^0, \ \nu_3 = (\omega^0 \varepsilon/c^2 - \nu_1 k_z^0)/k_{2x}^0.$$
 (9)

Формулы (8) справедливы в случае, когда

$$\delta\omega < \min\{k_z^0\nu_1^{-1}, q_x^0\nu_2^{-1}, k_{2x}^0\nu_3^{-1}\}.$$

Подставляя (8) в (6), получаем, что *z*-проекции электрического поля вне волновода (x>a и знак + и x<-a и знак -) и в волноводе (-a< x< a) равны соответственно

$$E_z = \tilde{E}_{1z}^{\pm}(\eta_1^{\pm}) \exp(i\Phi_1^{\pm}),$$
 (10)

$$E_z = E_{2z}^+(\eta_2^+) \exp(i\Phi_2^+) + E_{2z}^-(\eta_2^-) \exp(i\Phi_2^-).$$
 (11)

Здесь введены следующие обозначения:

$$\Phi_1^{\pm} = k_z^0 z - \omega^0 t \pm i q_x^0 x, \ \eta_1^{\pm} = \nu_1 z \pm i \nu_2 x - t,$$

$$\Phi_2^{\pm} = k_7^0 z - \omega^0 t \pm k_{2x}^0 x, \quad \eta_2^{\pm} = \nu_1 z \pm \nu_3 x - t. \tag{12}$$

Что касается амплитуд \tilde{E}_{1z}^{\pm} и E_{2z}^{\pm} , то они имеют наиболее простой вид в случае, когда слагаемые $\nu_2 x$ и $\nu_3 x$ в формулах (12) невелики ($|\nu_2 x| \ll \tau$, $|\nu_3 x| \ll \tau$),

$$\tilde{E}_{1z}^{\pm} = \tilde{E}_{1z} = E_{1z} \exp \left[-\frac{(\nu_1 z - t)^2}{\tau^2} \right],$$

$$E_{2z}^{\pm} = \mp \frac{i}{2} \tilde{E}_{2z} \mp \frac{1}{2} k_{2x}^{0} a \left(\frac{\nu_{2}}{k_{2x}^{0}} + \frac{\nu_{3}}{\varepsilon a_{x}^{0}} \right) \frac{\partial \tilde{E}_{2z}}{\partial t}, \tag{13}$$

где

$$E_{2z} = E_{1z} \frac{\exp(-q_x^0 a)}{\sin(k_{2x}^0 a)} \exp\left[-\frac{(\nu_1 z - t)^2}{\tau^2}\right]$$
(14)

(так как поле (1), (2) заметно отлично от нуля лишь в области $-a-q_x^{-1} < x < a+q_x^{-1}$, то неравенства, использованные при получении формул (16), означают, что время движения импульса в этой области меньше длительности импульса τ).

Из (13), (14) следует, что огибающая сигнала имеет гауссову форму, а его групповая скорость $v_{gr}=1/\nu_1$ (9). В случае монохроматической волны $(\tau \to \infty)$ выражения (13), (14) совпадают с (1), (2).

Пусть теперь в поле (1) (т.е. по обе стороны волновода) движется пучок электронов (отметим, что это приводит к слабой зависимости амплитуды поля E_{1z} от координаты z и времени t). Довольно громоздкие расчеты показывают, что в этом случае уравнения Максвелла можно привести к виду

$$\frac{\partial P}{\partial z} + \nu_1 \frac{\partial P}{\partial t} = -\int_a^\infty dx \int_{-l/2}^{l/2} dy \operatorname{Re}(\mathbf{j} \mathbf{E}^*). \tag{15}$$

Здесь j — плотность тока пучка электронов, а

$$P = \frac{c}{8\pi} \frac{l\omega^{0}k_{z}^{0}}{c\varepsilon(q_{x}^{0})^{3}(k_{2x}^{0})^{2}} \tilde{E}_{1z}^{2} \exp(-2q_{x}^{0}a)$$

$$\times \left\{ \varepsilon \left[(q_{x}^{0})^{2} + (k_{2x}^{0})^{2} \right] + aq_{x}^{0} \left[(\varepsilon q_{x}^{0})^{2} + (k_{2x}^{0}) \right] \right\}$$
(16)

— поток энергии электромагнитного импульса через плоскость xy. Если длительность импульса велика $(\tau \to \infty)$, то выражение (16) совпадает с потоком энергии монохроматической волны (1), (2) [6].

Ток пучка электронов в поле поверхностной волны

Пусть начальный пучок электронов имел гауссов разброс по проекциям импульса

$$f_0(\mathbf{p}) = \left(\frac{4\ln 2}{\pi}\right)^{3/2} \frac{1}{\Delta_{\perp}^2 \Delta_{\parallel}} \exp\left\{-4\ln 2 \frac{p_x^2 + p_y^2}{\Delta_{\perp}^2} - 4\ln 2 \frac{(p_z - p_0)^2}{\Delta_{\parallel}^2}\right\}.$$

Направим вдоль него постоянное магнитное поле $\mathbf{H}(0,0-H_0)$. Пусть длина волновода равна L, а его начало помещено в точку z=0. Решая уравнение Власова

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{p}} + e \left\{ \mathbf{E} + \frac{1}{c} \left[\mathbf{v} (\mathbf{H} + \mathbf{H}_0) \right] \right\} \frac{\partial f}{\partial \mathbf{p}} = 0$$

точно по постоянному магнитному полю и в линейном приближении по полю (1), найдем функцию распределения электронов в этих полях $f=f_0+f_1$ [1]. Вычислим затем ток пучка электронов $\mathbf{j}=e\rho_0\int \mathbf{v}f_1d\mathbf{p}$. Если напряженность магнитного поля достаточно велика $H_0\gg mc\omega^0\Delta/|e|p_0$, то

$$j_{z} = 0,$$

$$j_{z} = j_{1z} + j_{2z} = -ie^{2}\rho_{0} \int d\omega \int_{-\infty}^{+\infty} dp_{z} \int_{0}^{\infty} p_{\perp} dp_{\perp}$$

$$\times \int_{0}^{2\pi} d\varphi \frac{v_{z}E_{z}(\omega)}{\omega - k_{z}v_{z} + i\eta'} \frac{\partial f_{0}}{\partial p_{z}} \exp(-q_{x}x)$$

$$\times \left\{ \exp\left[i(k_{z}z - \omega t)\right] - \exp\left[i\left(\frac{\omega}{v_{z}}z - \omega t\right)\right] \right\}$$
(18)

(бесконечно малая мнимая добавка $i\eta'$ введена для правильного обхода черенковского полюса).

Отметим, что обычно первое слагаемое в токе (18) учитывают в случае, когда область усиления в лазере на свободных электронах велика $(L \to \infty)$ [9], а второе — в случае, когда область взаимодействия конечна [10]. Соответственно усиление сигнала в первом случае происходит за счет электронов, лежащих на черенковском конусе $(\omega - k_z v_z = 0)$, а во втором — вне его $(\omega - k_z v_z \neq 0)$. Выполним сначала интегрирование по импульсам и частоте в токе j_{1z} . Пусть импульс $p_z = b$ удовлетворяет условию синхронизма $\omega - k_z v_z = 0$ при $\omega = \omega^0$, $k_z = k_z^0$ и $p_\perp = 0$. Тогда в общем случае решение этого уравнения можно записать в виде $p_z = b + q_1 p_\perp + q_2 p_\perp^2 + q_3 \delta \omega$, где

$$q_1 = 0, q_2 = \frac{b}{2m^2c^2},$$

$$q_3 = \frac{b}{\omega^0\beta_0^2} \left(\frac{b}{mc}\right)^2 (v_0\nu_1 - 1), \ \beta_0 = \frac{v_0}{c}.$$
 (19)

Полагая для простоты, что $q_2\Delta_\perp^2\ll\Delta_\parallel$, получаем

$$j_{1z} = \pi^{-1/2} (4 \ln 2)^{3/2} \rho_0 r_0 \lambda_0 \left(\frac{p_0}{mc}\right)^2 \frac{mcE_0(b - p_0)}{D_{fe}^3}$$

$$\times \exp\left[-4 \ln 2 \frac{(b - p_0)^2}{D_{fe}^2}\right] E_{1z} \exp\left[i(k_z^0 - \omega^0 t)\right]$$

$$-q_x^0 x - \frac{\eta^2}{\tau^2} \frac{\Delta_{\parallel}^2}{D_{fe}^2} \left[\cos(g_1 \eta) + g_2 \eta \sin(g_1 \eta)\right]. \quad (20)$$

Здесь

$$D_{fe} = \left[\Delta_{\parallel}^2 + 16 \ln(2) \frac{q_3^2}{\tau^2} \right]^{1/2} \tag{21}$$

— эффективная ширина, характеризующая одновременно пучок фотонов и пучок электронов, $\eta = \nu_1 z - t$,

$$g_1 = 16 \ln(2) q_3 (b - p_0) / \tau^2 D_{fe}^2, \ g_2 = 2q_3 / \tau^2 (b - p_0).$$

Отметим, что огибающая тока (20) больше огибающей усиливаемого сигнала (13), (14) $\tau_j = \tau D_{ef}/\Delta_\parallel > \tau$. Кроме того, вдоль огибающей тока появились осцилляции, период которых $T_j = (\pi/8\ln 2)\tau^2D_{fe}^2/q_3|b-p_0|$. Вычислим теперь ток j_{2z} . Как известно [10], в пределе короткого волновода можно пренебречь разбросом электронов по импульсам, т.е. положить, что $f_0 = \delta(p_x)\delta(p_y)\delta(p_z-p_0)$. Учитывая разложения (8), запишем условие синхронизма в виде $\omega - k_z v_0 = \omega^0 - k_z^0 v_0 + \delta\omega(1-\nu_1 v_0)$. Очевидно, что в случае, когда групповая скорость волны равна скорости пучка электронов $(\nu_1^{-1} = \nu_0)$ или когда длительность импульса достаточно велика $\tau \gg |1-\nu_1 v_0|/|\omega^0 - k_z^0 v_0|$, вторым слагаемым в этом разложении можно пренебречь. В этом случае ток

$$j_{2z} = ie^2 \rho_0 E_{1z} \int d\mathbf{p} \frac{v_z}{\omega^0 - k_z^0 v_z} \frac{\partial f_0}{\partial p_z}$$

$$\times \exp\left[i\omega^0 (\nu_1 z - t) - q_x^0 x - \frac{(\nu_1 z - t)^2}{\tau^2}\right] \tag{22}$$

прямо пропорционален усиливаемому импульсу (10), (13).

Коэффициенты усиления

Подставляя токи (20), (22) в (15) и выполняя интегрирование уравнения в частных производных, получаем $p = p_0 \exp(G_{1,2}L)$, где

$$G_{1} = -4\sqrt{\pi} (4 \ln 2)^{3/2} \rho_{0} r_{0} \lambda_{0} Q \frac{mc}{p_{0}} \left(\frac{p_{0}}{D_{fe}}\right)^{2} \frac{b - p_{0}}{D_{fe}}$$

$$\times \exp\left[-4 \ln 2 \frac{(b - p_{0})^{2}}{D_{fe}^{2}}\right] \exp\left(-\frac{\eta^{2}}{\tau^{2}} \frac{D_{fe}^{2} - \Delta_{\parallel}^{2}}{D_{fe}^{2}}\right)$$

$$\times \left[\cos(g_{1}\eta) + g_{2}\eta \sin(g_{1}\eta)\right], \tag{23}$$

82 С. Оганесян

$$G_2 = 2\pi^2 \rho_0 r_0 L^2 \lambda_0^{-1} \beta_0^{-5} Q\left(\frac{mc^2}{r_0}\right) \frac{d}{d\Theta} \frac{\sin^2 \Theta}{\Theta^2}.$$
 (24)

Здесь множитель

$$Q = (\varepsilon \beta_0^2 - 1)/(\varepsilon - 1)\beta_0^2 \left\{ 1 - 2\pi \frac{a}{\lambda_0} \right\}$$

$$\times \frac{1}{\varepsilon \beta_0^3} \frac{mc^2}{r_0} \left[1 - \varepsilon \left(\frac{mc^2}{r_0} \right)^2 \right] \right\},$$

а параметр $\Theta = (\omega^0 - k_z^0 v_0) L/2v_0$. Очевидно, что в первом случае различные точки огибающей импульса имеют различные коэффициенты усиления $G_1 = G_1(\eta)$, причем эта зависимость носит осцилляционный характер. Величина коэффициента усиления зависит как от разброса электронов по энергиям, так и от ширины разброса сигнала по частотам (21). В случае монохроматической волны оба эти эффекта исчезают.

Рассмотрим более подробно случай, когда расстройка в $b-p_0=-D_{fe}/\sqrt{8\ln 2}$. В этом случае центр огибающей импульса $(\eta=0)$ имеет максимальный коэффициент усиления

$$G_{1 \max} = 8.4 \rho_0 r_0 \lambda_0 Q \frac{mc}{p_0} \left(\frac{p_0}{\Delta_{\parallel}}\right)^2. \tag{25}$$

Введем понятие характерного времени au_0 исходя из условия $\Delta_{\parallel}=4\sqrt{8\ln 2}\,q_3/ au_0$ (20). Учитывая (19), получаем

$$\tau_0 = 2\pi^{-1}\sqrt{\ln 2}T_0|\nu_0\nu_1 - 1|\left(\frac{r_0}{mc^2}\right)^2\frac{p_0}{\Delta_{\parallel}},\tag{26}$$

где $T_0 = \lambda/c$.

Примем, что длительность импульса велика, если $au\gg au_0$. В этом слуае эффективная ширина $D_{ef}\approx\Delta_\parallel$ и коэффициент усиления (25) совпадает с коэффициентом усиления монохроматической волны [1]

$$G_0 = 8.4 \rho_0 r_0 \lambda_0 Q \frac{mc}{p_0} \left(\frac{p_0}{\Delta_{\parallel}}\right)^2. \tag{27}$$

Если длительность импульса невелика $T_0 < \tau < \tau_0$, то коэффициент усиления (25) зависит от его продолжительности τ и уменьшается по мере его укорочения. Для очень коротких импульсов ($\tau \ll \tau_0$) коэффициент усиления центра огибающей

$$G = \frac{\tau^2}{\tau_0^2} G_0. {28}$$

Учитывая определение (26), получаем, что усиление коротких импульсов определяется только их спектральной шириной $\Delta \omega = 1/\tau$.

Рассмотрим теперь коэффициент усиления на крыльях импульса. Подставляя (27) в (23), получаем

$$G_1(\eta) = G_0 \exp\left(-\frac{\eta^2}{\tau^2} \frac{D_{fe}^2 - \Delta_{\parallel}^2}{D_{fe}^2}\right)$$

$$\times \left[\cos(g\eta) + g\eta \sin(g\eta)\right]. \tag{29}$$

Здесь величина

$$g = -\frac{4\sqrt{2\ln 2}\,q_3}{\tau^2 D_{fe}} = -\frac{\sqrt{2}\,\tau_0}{\tau^2 (1+\tau_0^2/\tau^2)^{1/2}}.\tag{30}$$

Очевидно, что тригонометрический множитель в выражениях (29) убывает с ростом $|\eta|$ от единицы до нуля. Затем коэффициент усиления становится отрицательным, т. е. пучок электронов поглощает энергию этих участков волны. Потом G_1 вновь обращается в нуль, и т.д. Приравнивая выражения в круглых скобках к нулю, получаем условие обращения коэффициента усиления в нуль tg $g\eta=-1/g\eta$. Очевидно, что, используя осцилляторный характер коэффициента усиления (29) (особенно в режиме с расстройкой $b-p_0>0$), можно воздействовать на форму огибающей импульса.

Если необходимо усилить электромагнитный импульс без изменения его формы, то следует воспользоваться вторым режимом (24).

Заключение

Теперь проиллюстрируем полученные результаты численными оценками. Рассмотрим сначала случай длинного волновода. Предположим, что плотность пучка электронов $ho_0 = 0.5 \cdot 10^9 \, \mathrm{cm}^{-3} \, \, (\mathrm{ток} \, \, j_0 = 1.25 \, \mathrm{A/cm}^2),$ его средняя энергия $E_0 = U + mc^2 = 660 \,\mathrm{keV}$, а угловой и энергетический разбросы $\delta = \Delta_{\perp}/p_0 = 10^{-2},$ $\Delta/E_0=0.5\cdot 10^{-2}$. Рассмотрим усиление импульса с несущей частотой $\omega^0=4.7\cdot 10^{-11}\,\mathrm{Hz}\ (\lambda_0=4\,\mathrm{mm}).$ Пусть волновод выполнен из кварца ($\varepsilon = 3.8$), его длина $L_1 = 7 \, {\rm cm}, \ {\rm a} \ {\rm напряженность} \ {\rm постоянного} \ {\rm магнитного}$ поля $H_0 = 4 \,\mathrm{Gs.}$ Тогда из (26) получаем, что для выбранных параметров характерное время $\tau_0 = 0.5 \, \text{ns}$. Если длительность импульса велика $\tau = 3 \tau_0 = 1.5 \, \mathrm{ns}$, то коэффициент усиления (27) $G_0 = 0.1 \,\mathrm{cm}^{-1}$. Коэффициент усиления (28) короткого импульса $au= au_0/3=0.2\,\mathrm{ns}$ на порядок меньше $G_1 = 0.01 \, \mathrm{cm}^{-1}$. Это обстоятельство должно учитываться при постановке эксперимента. Отметим, что коэффициент усиления (29) обращается первый и второй раз в нули в точках $|\eta_1| = 0.2 \,\mathrm{ns}$, $|\eta_2| = 0.5 \,\mathrm{ns}.$

Перейдем теперь ко второму режиму (24). Пусть длина волновода $L_2=4\,\mathrm{cm}$, а все остальные параметры волновода и излучения выбраны такими же, как и в предыдущем случае. Учитывая, что функция $d\sin^2\Theta/d\Theta^2$ достигает своего максимального значения, равного 0.5 при $\Theta=-1.26$, получаем, что в этом случае необходимо выбрать среднюю энергию пучка электронов $E_0=690\,\mathrm{keV}$. Отметим, что при этих условиях групповая скорость импульса $v_{gr}/c\approx 1/\varepsilon\beta_0=0.39$ не равна скорости электронов $\rho_0=0.6\cdot 10^{10}\,\mathrm{cm}^{-1}$ (ток $\rho_0=15\,\mathrm{A/cm}^2$). Тогда коэффициент усиления $\rho_0=0.1\,\mathrm{cm}^{-1}$ для импульсов с длительностями $\rho_0=0.5\,\mathrm{cm}$

Работа выполнена при поддержке Международного научно-технического центра, грант № А-87.

Список литературы

- [1] Harutunian V.M., Oqanesyan S.G. // Phys. Rep. 1996. Vol. 270. N 4–6. P. 217–385.
- [2] Walsh J.E. // Adv. in Electr. and Electron Phys. 1982. Vol. 58. P. 271–310.
- [3] Walsh J.E., Murphy J.B. // IEEE J. Quant. Elecrt. 1982.Vol. QE-18. N 8. P. 1259–1264.
- [4] Garate E.P., Walsh J.E., Shaughnessy C.H. et al. // Nucl Instr. Meth. in Phys. Res. 1987. Vol. A 259. P. 125–127.
- [5] *Garate E.P., Shaughnessy C.H., Walsh J.E.* // IEEE J / Quant. Electr. 1987. Vol. QE-23. N 9. P. 1627–1631.
- [6] Акопов Р.А., Лазиев Э.М., Оганесян С.Г. // ЖТФ. 1995. Т. 65. Вып. 1. С. 99–106.
- [7] Жеваго Н.К., Глебов В.Н. // ЖЭТФ. 1997. Т. 111. Вып. 3. С. 847–861.
- [8] Оганесян С.Г. // Письма в ЖТФ. 1997. Т. 22. Вып. 7. С. 32–36.
- [9] Pantell R.H., Soncini G., Putthoff H.E. // IEEE J. Quant. Electr. 1968. Vol. QE-4. N 11. P. 905–907.
- [10] Sukhatme V.P., Wolf P.A. // J. Quant. Electr. 1974. Vol. QE-10. N 12. P. 870–873.