09

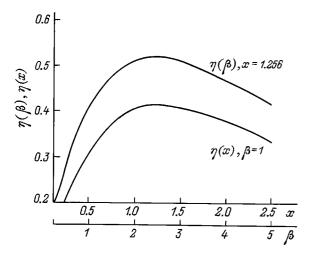
К вопросу об эффективности накопления СВЧ энергии в резонаторе

© С.Н. Артеменко

Научно-исследовательский институт ядерной физики при Томском политехническом университете, 634050 Томск, Россия

(Поступило в Редакцию 20 февраля 1998 г.)

Уточнены положения, касающиеся расчета эффективности накопления СВЧ энергии в резонаторе


Для определения оптимального значения коэффициента входной связи β , соответствующего максимуму эффективности накопления энергии η при заданной длительности питающего импульса t_i , обычно используется хорошо известное соотношение

$$\beta = (2.512\tau_p)/t_i - 1,\tag{1}$$

которое следует из выражения для эффективности накопления [1]

$$\eta = 4\beta \tau_p (1 - \exp(-t_i(1+\beta)/2\tau_p))^2/((1+\beta)^2t_i),$$
 (2)

где au_p — постоянная звучания резонатора по мощности.

Зависимости эффективности накопления от коэффициента входной связи β при фиксированной нормированной длительности питающего импульса x и от длительности импульса x при фиксированной связи β .

Дифференцируя η по $x=t_i/\tau_p$, из (2) получаем условие максимума η по x при заданном β

$$\exp(z/2) = 1 + z,\tag{3}$$

где $z=(1+\beta)x$, из которого и следует соотношение (1). Например, при $\beta=1$ из (1) находим хорошо известное оптимальное значение $t_i=1.256\tau_p$, при котором эффективность накопления приблизительно равна 0.41. Однако это не означает, что при длительности входного импульса $1.256\tau_p$ максимуму эффективности соответствует критическая связь $\beta=1$. Из (2) нетрудно получить, что в этом случае максимум эффективности имеет место при β , удовлетворяющем уравнению

$$\exp(z/2) = 1 + z\beta/(\beta - 1).$$
 (4)

Решением уравнения (4) в этом случае является $\beta \approx 2.5$, и эффективность накопления при этом составит ≈ 0.515 .

Соответствующие зависимости эффективности накопления от β при $x=1.256\tau_p$ и от x при $\beta=1$ представлены на рисунке.

Таким образом, соотношение (1) применимо только для нахождения оптимальной длительности питающего импульса по заданному значению коэффициента входной связи, а для определения оптимальной связи по заданной длительности питающего импульса во избежание ошибок необходимо пользоваться соотношением (4).

Список литературы

[1] Бараев С.В., Коровин О.П. // ЖТФ. 1980. Т. 50. Вып. 11. С. 2465–2467.