05;11;12

Соотношение между восстановленной и невосстановленной твердостью при испытании наномикроиндентированием

© С.И. Булычев

Московский государственный индустриальный университет, 109280 Москва, Россия

(Поступило в Редакцию 18 марта 1998 г.)

Обобщен закон Гука на случай произвольного упругого или пластического вдавливания индентора $\varepsilon=(2/\sqrt{\pi})(w_1/\sqrt{A})$, где $\varepsilon=q/E_r$ — упругая деформация, q — среднее давление по площади контакта, E_r — приведенный модуль упругости, A — площадь проекции контакта, w_1 — деформация при упругом вдавливании плоского штампа. На этой основе получено соотношение между восстановленной H и невосстановленной H_h твердостью, которое зависит от отношения $w_s/w_1=m_s$; w_s — упругая деформация по периметру отпечатка, $m_s\cong 0.78$. Показано, что поправка ΔE_r к модулю E_r , определенному из условия линейности начального участка кривой разгружения, равна $\delta E_r=0.27(\Delta P/P_m)$, где ΔP — принятая при расчете E_r длина линейного участка диаграммы, отсчитываемая от максимальной нагрузки P_m . Показано, что для конструкционных металлических материалов средней твердости q=HM, где HM — твердость по Мейеру. С ростом HM и угла φ при вершине индентора отношение HM/q растет по экспоненциальному закону.

Введение

В отечественной практике термины восстановленная (H) и невосстановленная (H_h) (микро)твердости были регламентированы ГОСТ 9450-76 (СТ СЭВ 1195-78) и определяют в первом случае ее традиционное измерение по проекции разгруженного пластического отпечатка, а во втором (H_h) — по глубине отпечатка h. В этом случае H_h измеряется непрерывно с ростом нагрузки на индентор P путем регистрации трех переменных величин: P, h и времени t [1]. В зарубежной практике подобная терминология не выработана [2-8], хотя необходимость отличия такого способа испытания от традиционного измерения (микро)твердости очевидна. Анализ и эксперименты показывают [1], что величины H и H_h характеризуют два самостоятельных свойства материала и их отношение является новым показателем его физико-механических свойств. Эффективность испытания с регистрацией диаграммы P-h-t многократно повышается и позволяет получать комплекс не только физико-механических, то и структурных характеристик материала [1,9-18]. Предельная чувствительность регистрации глубины и нагрузки достигает порядка 1 nm и $1 \cdot 10^{-4} \,\mathrm{N}$ соответственно [2–7], что позволяет исследовать не только тонкие пленки, покрытия и отдельные фазы, но и структуру монофазного материала с разрешением порядка 10 пт. При таком разрешении стало возможным исследование фазовых превращений в кремнии на основе анализа особенностей петли гистерезиса [7,16-18].

Закон Гука при индентировании

Типичная диаграмма P-h представлена на рис. 1. Ее участки 1-3 зависят при фиксированной форме индентора от трех свойств материала: сопротивления

пластическим деформациям (кривая 1), ползучести или релаксации напряжений (кривая 2) и от упругих свойств (кривая 3). Петля гистерезиса шириной δ регистрируется при повторном нагружении того же отпечатка. Она определяет интенсивность накопления обратимых пластических деформаций при циклических нагружениях, а следовательно, и интенсивность износа, и кинетику роста трещины при усталости.

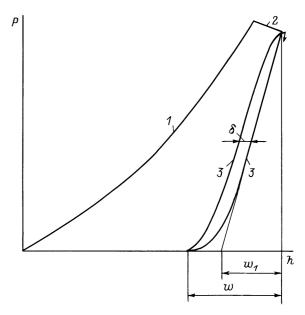


Рис. 1. Типовая диаграмма вдавливания с тремя участками: I — нагружение и непрерывное измерение твердости H_h в зависимости от h, 2 — выдержка под нагрузкой (режим релаксации или ползучести), 3 — разгружение с повторным нагружением и регистрацией петли гистерезиса шириной δ . Масштаб по осям P и h (или w при разгружении) зависит от твердости H_h материала.

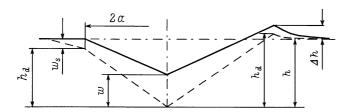


Рис. 2. Соотношения между различными компонентами упругих деформаций в отпечатке с учетом навала высотой Δh (справа от осевой) и без его учета (слева от осевой). Штриховая и сплошная кривые — контуры отпечатка под нагрузкой и после ее снятия.

При анализе диаграмм P-h определяющую роль приобретают упругие деформации в отпечатке, и разработка основ теории такого испытания начинается с их анализа [9–12]. Был обнаружен ряд свойств, позволивший установить и экспериментально подтвердить аналитическое соотношение между H и H_h [12].

На рис. 2 дана схема упругого восстановления отпечатка, в том числе и на материалах, образующих вокруг отпечатка заметный валик выдавленного материала (навал) высотой Δh . Нормальное восстановление по периметру отпечатка меньше, чем в его центре, поэтому угол разгруженного отпечатка увеличивается [19,20]. Замечательно, что изменение поперечного размера a отпечатка при этом не обнаруживается [20,21].

Отвлечемся от формы индентора и заменим его средним давлением HM (твердостью по Мейеру), распределенным по заранее неизвестному закону на площади пластического отпечатка. Анализ [10], выполненный на базе известных решений контактных задач в теории упругости [22], показывает, что начальный этап процесса упругого разгружения пластического отпечатка, осуществляемый после практического прекращения ползучести на участке 2 [10], не зависит от конкретного характера распределения давления по его площади и определяется уровнем твердости и модулем упругости E материала.

С учетом жесткости dP/dh_c прибора формула для E приобретает вид [10]

$$E = \frac{1 - \nu^2}{\frac{2 - \sqrt{A}}{\sqrt{\pi}} \left(\frac{dh}{dP} - \frac{dh_c}{dP}\right) - \frac{1 - \nu_i^2}{E_i}},\tag{1}$$

где A — площадь проекции отпечатка; ν, ν_i, E, E_i — коэффициенты Пуассона и модули упругости материала образца и индентора.

Для описания процесса разгружения пластического отпечатка целесообразно систему отсчета поместить в точку начала разгружения с максимальными значениями $P = P_m$ и $h = h_m$, а h заменить на символ w, употребляемый механиками. С учетом этой замены выражение (1)

запишем в более компактной форме

$$\frac{dP}{dw} = S = \left(\frac{2}{\sqrt{\pi}}\right)\sqrt{A} \cdot E_r,\tag{2}$$

где S — жесткость, включающая в себя и жесткость прибора dP/dh_c [10]; E_r — контактный модуль упругости: $(1/E_r)=(1-\nu^2/E)+(1-\nu_i^2)/E_i$.

Круглый и квдаратный отпечатки со стороной \sqrt{A} практически равнозначны [10,22,23]: при равномерном давлении для квадратного отпечатка жесткость S уменьшается, по оценке [10], на 0.6%, а по оценке [23] — на 1.2% (расчет по методу конечных элементов, при этом для трехгранного отпечатка пирамиды Берковича это уменьшение достигает 3.4%).

При анализе соотношения между H и H_h важно обратить внимание на то не столь очевидное обстоятельство, что глубина h на диаграмме не реагирует на величину E_i и равна глубине, регистрируемой при абсолютно жестком инденторе. Это следует из того условия, что в момент соприкасания индентора с поверхностью образца он еще не нагружен и, следовательно, дальнейшая зависимость P(h) определяется только геометрией индентора — инструмента, поскольку при нагружении поперечный размер индентора, так же как и отпечатка, не изменяется [20,21]. Следовательно, h — инструментальная глубина, заданная геометрией индентора. Вторая особенность этой глубины состоит в том, что она измеряется от исходной поверхности образца, в то время как при измерении восстановленной твердости поперечный размер отпечатка измеряют с учетом высоты навала Δh . Поэтому соотношение между H и H_h зависит только от нормальной упругой деформации по периметру отпечатка w_s и высоты навала Δh . Тогда по определению соотношение между H и H_h в отпечатке, полученном при некоторой фиксированной нагрузке P_m , запишется, согласно рис. 2, в следующей форме [1,12]:

$$\left(\frac{H}{H_h}\right)^{1/2} = \frac{h}{h_d} = \frac{h_d + w_s - \Delta h}{h_d}.$$
 (3)

Анализ известных решений контактной задачи в теории упругости [22,24] систематизирован в табл. 1 [1,12], в которой приняты следующие дополнительные обозначения: $P_e = P_m/A$ — среднее давление по площади отпечатка; w_1 — деформация при упругом вдавливании плоского штампа, имеющего фиксированную площадь A и произведение $E_r\sqrt{A}$; m — показатель, характеризующий закон распределения давления по площади контакта; u_s — радиальная деформация по периметру отпечатка, имеющая противоположный знак. Она увеличивает размер d=2a при разгружении, однако это увеличение, как следует из приведенных в таблице формул, практически равно нулю, что и подтверждает эксперимент [20,21]: $w_s/d \ll 1$; $w_s \cong -5u_s$; $u_s/d \cong 0$.

Для плоского штампа из зависимости (2) следует линейная зависимость между P_m и w_1 :

$$P_m = w_1 E_r d. (4)$$

Способ нагружения	Закон распределения давления	$w/w_1 = m$	w_s/w_1	$-u_s/w_s$
Штамп с плоским торцом	$p = P/(2\pi ax)$	1.0	1.0	
Равномерное давление	$p=p_e$	4π	0.81	$\pi(1-2\nu)/8(1-\nu)$
Конический штамп	$\exp(2p/p_e) = (1+x)/(1-x)$	2	$2-(4/\pi)$	
Сферический индентор	$p=3p_ex/2$	1.5	0.75	$4(1-2\nu)/3\pi(1-\nu)$
Сосредоточенная сила	$p o \infty$			$(1-2\nu)/2(1-\nu)$
Квадратный отпечаток	$p=p_e$	$4/\pi$	0.635^{*}	
			0.865**	

Таблица 1. Основные соотношения между упругими деформациями в круглом и квадратном отпечатках

Производная dP/dw в начальной точке кривой упругого разгружения пластического отпечатка отсекает на оси h в отсчете от h_m величину w_1 . Это — минимальная величина из всех возможных при данной твердости HM и модуле E материала [1,12,25]. Из рис. 1 следует простое соотношение между w и w_1 , если аппроксимировать кривую разгружения зависимостью [4,11] $P = Bw^m$ (табл. 1),

$$m = w/w_1, (5)$$

где m может изменяться в интервале от 2 до 1.

При упругом вдавливании конуса m=2 и $w=2w_1$, для сферического индентора m=1.5 и $w=1.5w_1$; для плоского штампа m=1 и $w=w_1$; в модели равномерно распределенного давления $m=4/\pi$ и $w\cong 1.27w_1$. При нормировании деформации w_s на w_1 получаем, согласно табл. 1, ее экстраполированную зависимость от m (рис. 3) [12]. Для пластических отпечатков при вдавливании пирамиды Виккерса m=1.3-1.5 [1,12]. Из рис. 3 видно, что для круглого отпечатка в этом интервале изменения m зависимость $(w_s/w_1)(m)$ близка к постоянному значению в отличие от зависимости $(w_s/w)(m)$. В работе [4] для пирамиды Берковича получен более широкий интервал значений m, равный 1.2-1.6.

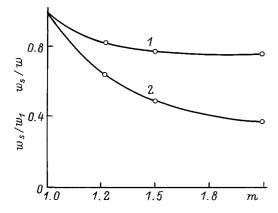


Рис. 3. Аналитические значения упругих деформаций в круглом и квадратном отпечатках размером 2a в зависимости от показателя m распределения давления по его площади $(1 - w_s/w_1, 2 - w_s/w)$.

В табл. 1 даны также две деформации по периметру квадратного отпечатка при его равномерной загрузке — по концам диагоналей w_{sd} и в середине его сторон w_{sm} , отмеченные * и ** соответственно. В линейном приближении, исходя из известной деформации w_s , для круглого отпечатка получаем следующие выражения для интервала m=1.27-1.5:

$$w_s/w_1 = 0.81 - 0.26(m - 1.27),$$
 (6)

$$w_{sd}/w_1 = 0.635 - 0.204(m - 1.27),$$
 (7)

$$w_{sm}/w_1 = 0.865 - 0.28(m - 1.27).$$
 (8)

Если исходить из усредненной деформации $w_{sc}=w_s$ вдоль стороны квадратного отпечатка, то в этом случае применима приближенная формула (6). Она предпочтительнее формулы (7), поскольку современные твердомеры измеряют реальную площадь проекции отпечатка с учетом искажений формы квадрата, вызванных навалом.

На рис. 4 сравниваются экспериментальные и рассчитанные по формуле (3) значения H_h/H . Деформацию на контуре отпечатка находили по формуле (6) при среднем значении m = 1.4, при этом для круглого отпечатка $w_s/w_1 = 0.78$. Высота навала принята равной нулю. Здесь же даны результаты экспериментальных измерений, включающие данные работы [26]. Положение экспериментальных точек показывает, что при более тщательных измерениях величин т и притупления вершины острого индентора по отношению H_h/H можно измерять высоту навала, которая зависит от коэффициента деформационного упрочнения материала и определяет его основные механические характеристики. Более полные результаты экспериментальных измерений представлены в табл. 2, в которой дано также отношение дифференциалов работ упругой dA_e и полной dA в отпечатке, рассмотренное в работе [25]. Следует обратить внимание на различное отклонение от расчетной кривой двух точек, соответствующих двум маркам стекла: содоизвестковому строительному и кварцевому марки КВ. Расчетная высота навала для них различается более чем на 10%. Эксперименты показывают, что на металлических стеклах различных составов это различие может быть гораздо больше. В работе [27] проведены тщательные интерференционные измерения высоты навала

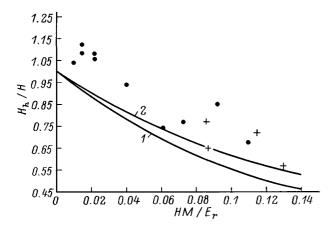


Рис. 4. Расчетные (сплошные кривые) и экспериментальные (точки) зависимости H_h/H от HM/E_r при $w_s/w_1 = 0.78$ (1), 0.61 (2); + — данные работы [26].

и профилей разгруженных отпечатков. Из анализа этих данных следует, что на традиционных конструкционных материалах высота навала может изменить отношение H_h/H более чем в 1.2 раз.

Учитывая, что $P_m/A = HM$, из зависимости (4) получаем

$$\frac{HM}{E_r} = \frac{2}{\sqrt{\pi}} \frac{w_1}{\sqrt{A}} = \frac{4}{\pi} \frac{w_1}{d}.$$
 (9)

Закономерность (9) не изменяется при замене HM на истинное среднее давление q и истинную площадь контакта A. Получаем выражение для закона Гука при любом, упругом или пластическом, локальном контактном нагружении

$$\frac{q}{E_r} = \frac{2}{\sqrt{\pi}} \frac{w_1}{\sqrt{A}}.\tag{10}$$

При испытании на растяжение закон Гука имеет подобное выражение: $\sigma/E=\varepsilon$. Следовательно,

$$\varepsilon = \frac{2}{\sqrt{\pi}} \frac{w_1}{\sqrt{A}}.\tag{11}$$

Площадь упругого контакта

Выше принималось, что HM=q и $d=d_c$, где d_c — размер, включающий зону пластического и упругого контакта, расположенную по периметру отпечатка. Аналитические оценки, выполненные в работе [28], показывают, что во многих случаях это приближение выполняется. Воспользуемся данными табл. 1 для нахождения соотношения между HM и q. Кроме того, необходимо найти условия более точного экспериментального определения модуля E, обсуждаемые в работах [3–6,23].

При упругом вдавливании пирамиды или эквивалентного ей конуса упругий контакт по периметру пластического отпечатка описывается уравнениями

$$P = \frac{2}{\sqrt{\pi}} \frac{E_r}{\operatorname{ctg}\,\varphi} w^2, \quad w = \frac{\pi}{4} d \operatorname{ctg}\,\varphi, \tag{12}, \tag{13}$$

а закон распределения переменного давления p в функции от полярной координаты r — зависимостью:

$$p = \frac{p_e}{2} \ln \frac{1+x}{1-x},\tag{14}$$

где 2φ — угол при вершине конуса; p_e — среднее давление при чисто упругом контакте; x — величина, определяющая размер r, по периметру которого действует давление p,

$$x^2 = 1 - r^2/a^2, (15)$$

где $a = d_c/2$ — радиус периметра, на котором давление p давно нулю.

Нас интересует граница пластической области размером r, на которой давление p=HM. Распределим одну и ту же нагрузку P_m в одном случае по области a, а в другом — по области r. Разделив числитель и знаменатель правой части зависимости (14) на P_m , получаем

$$x^2 = 1 - (q/HM), (16$$

где $q=P_m/(\pi a^2)$ — среднее давление по суммарной площади упругого и пластического контакта; $P_m/(\pi r^2)=HM$ — твердость, измеренная по разгруженному пластическому отпечатку.

Разгружение по периметру шириной $\Delta r = a - r$ является упругим. Для конического индентора введем замену (13) в (12) и разделим на A. Получим

$$p_e = \frac{1}{2} E_r \operatorname{ctg} \varphi. \tag{17}$$

Распределение давления в пластической зоне контакта близко к равномерному [29]. Поэтому примем с некоторым запасом, что размер x зависит от давления p, равного HM (анализ распределения давления по данным [29] по порядку величины дает значение HM=1.1q). После подстановки этого значения в (14) и несложных преобразований получаем

$$\exp\left(\frac{4}{\operatorname{ctg}\varphi}\frac{HM}{E_r}\right) = \frac{1+x}{1-x}.\tag{18}$$

По найденным значениям x, используя формулы (16) и (15), находим отношения q/HM и $\Delta r/a$, при этом, как следует из сравнения (16) и (15),

$$\left(\frac{HM}{a}\right)^{1/2} = \frac{d_c}{d} = \frac{r + \Delta r}{r}.\tag{19}$$

Решения уравнений (18) и (19) приведены в табл. 3. Величина $(4/\cot\varphi)(HM/E_r)$ обозначена через y. Для пирамиды Виккерса $2\varphi=136^\circ$; $4/\cot\varphi=11.11$. Тогда $y=11.11HM/E_r$. Для этого частного случая даны значения HM/q и d_c/d в зависимости от HM/E_r . Из таблицы видно, что при $HM/E_r>>0.03$ отношение HM/q>1.03 и интенсивно возрастает с увеличением HM/E_r . Приведены также расчеты для другого частного случая, характерного для сталей: E=200 GPa, $\nu=0.25$;

No	Материал	HV, GPa	HV_h/HV	E, GPa	HM/E	HM/E_r	$\delta/w_1, \%$	dA_e/dA
1	30ХГСА	2.50	1.08	210	0.013	0.015	14.0	0.96
2	12X18H9T	1.60	1.04	204	0.085	0.010	7.0	0.31
3	45	2.46	1.12	195	0.013	0.015	14.0	0.97
4	Латунь Л62	1.33	1.08	98	0.014	0.015	9.0	0.62
5	Дюралюминий Д16	1.61	1.06	80	0.021	0.022	4.5	0.45
6	Сплав Ті	2.47	1.08	130	0.020	0.022	7.0	0.70
7	Ni-Al-Cr	7.10	0.94	210	0.037	0.040	6.0	1.02
8	Стекло	6.25	0.85	74	0.091	0.092	8.5	3.16
9	Стекло КВ	6.95	0.68	71	0.110	0.110	5.0	1.99
10	FeAl ₃	7.20	0.77	110	0.071	0.073	1.0	0.28
11	GaAs	5.93	0.74	118	0.055	0.061	_	0.46
12	Si	11.00	0.65	150	0.079	0.087	_	0.62
13	α -Al ₂ O ₃	25.00	0.77	430	0.063	0.086	_	0.65
14	BN	45.00	0.57	550	0.088	0.130	_	0.87
15	В	32.00	0.72	400	0.080	0.115	_	0.86

Таблица 2. Физико-механические свойства материала

 $E_i=1141\,\mathrm{GPa},\ \nu_i=0.07\ [4].$ При этих значениях получаем $HM/E_r=1.19HM/E$. Тогда величина HM/q>1.03 достигается уже при HM/E>0.027. Аналогичные расчеты можно выполнить для других углов φ . При $2\varphi>136^\circ$ удобно воспользоваться приближением $\mathrm{tg}\,\psi=\psi$, где $\psi=(90^\circ-\varphi)$. Если ψ уменьшается в 5 раз и становится равным $\psi=(22/5)^\circ$, то отношение тангенсов этих углов равно 5.2, т.е. увеличивается по сравнению с отношением углов лишь на 4%. Для такого индентора значение HM/q>1.03 достигается при HM/E>(0.03)/5=0.006.

Рассмотрим далее другие формы инденторов. Для упругого процесса вдавливания параболического (сферического) индентора, согласно табл. 1, запишем по аналогии с (14)

$$p = (3/2)p_e x. (20)$$

С другой стороны, для упругого процесса

$$P = d_c^3 E_r / (6R). (21)$$

После деления на А получаем

$$p_e = \frac{4}{3\pi} \frac{a}{R} E_r. \tag{22}$$

При условии p = HM преобразование зависимости (20) с учетом (22) дает

$$\frac{q}{HM} = 1 - \left(\frac{\pi}{2} \frac{HM}{E_r} \frac{R}{a}\right)^2. \tag{23}$$

Сравним два индентора более наглядно. Возьмем отношение зависимости (20) к (14) и учтем, что при малых $x \ln[(1+x)/(1-x)] \cong 2x$. После замены p_e по (22) и (17) получаем

$$\frac{p_s}{p_c} = \frac{4}{\pi} \frac{a}{R} \frac{1}{\operatorname{ctg} \varphi},\tag{24}$$

где индексы s и c относятся к сферическому и коническому инденторам.

Величины a/R и сtg φ характеризуют угол между нормалью к поверхности образца и касательной к профилю отпечатка в точке, расположенной на его периметре. При одинаковых φ получаем из геометрических соотношений

$$(a/R)(1/\operatorname{ctg}\varphi) = \sin\varphi. \tag{25}$$

С увеличением φ значение выражения (25) приближается к единице и, следовательно,

$$p_s/p_c \cong (4/\pi). \tag{26}$$

Из анализа зависимостей (24)–(26) можно заключить, что в первом приближении ширина упругого пояса по периметру пластического отпечатка при вдавливании конического и сферического инденторов при одинаковых углах вдавливания, равных $\psi = (90^{\circ} - \varphi)$, одинакова.

Точность определения E, а следовательно, и отношения H_h/H повышается, если начальный участок кривой разгружения пластического отпечатка линеен. На наличие этого признака указывается в работах [1,3,9,10], а в работах [4,16] доказывается необходимость учета нелинейности этого участка. В связи с этим проанализируем модель плоского штампа, которая также представлена в

Таблица 3. Соотношения между средним контактным давлением q и твердостью по Мейеру HM для пирамиды Виккерса в зависимости от HM/E (HM/E = y/11.32)

y	exp y	HM/q	d_c/d
0.1111	1.1175	1.003	1.001
0.3333	1.3956	1.028	1.014
0.5555	1.7428	1.079	1.039
0.7777	2.1765	1.159	1.077
1.1110	3.0375	1.342	1.158
1.4443	4.2392	1.619	1.272
1.7777	5.9161	2.021	1.422
2.2221	9.2266	2.834	1.683

табл. 1. Упругий контакт в этой модели описывается линейной зависимостью (4). Острая кромка этого штампа притуплена на участке перехода от d к d_c . Геометрия этого перехода задана геометрией реального конического или сферического индентора. Следовательно, разгружение на участке уменьшения размера площади контакта от d_c к d описывается уже рассмотренными зависимостями, которые определяют и его длину. Сопоставляя формулы (19) и (12) для конического индентора с учетом подстановки зависимости (13), заключаем, что нагрузка Р при разгружении от размера d_c до d равна $P/P_m=q/HM$. Из приведенного выше следует, что этот участок на кривой разгружения становится заметным при $HM/E_r > 0.03$ и с увеличением этого отношения интенсивно растет. Из сопоставления формул (26) и (21) следует, что для сферического индентора этот участок увеличивается.

Если отношение E_i/E велико, то дальнейшее упругое разгружение приближается к модели жесткого штампа, поскольку все точки площади пластического отпечатка восстанавливаются на одну и ту же величину Δw_s , равную подъему индентора. Распределение обратного давления при разгружении будет изменяться в соответствии с формулой

$$p_x = \Delta P/(2\pi a^2/x) = p_e/(2x),$$
 (27)

где ΔP — снижение нагрузки при разгружении; p_x — текущее значение противодавления.

На участке разгружения от d_c до d давление по периметру отпечатка снижается до нуля, а затем возрастает до величины $p_x \cong -HM$. При этом условии равенство (27) принимает вид $-HM = p_e/(2x)$ или

$$x = (p_e)/(2HM),$$
 (28)

где p_e возрастает при разгружении от нуля до HM при завершении разгружения, при этом x также возрастает от 0 до 0.5.

Заменяя в (16) q на p_e , получаем для x=0.5 предельное значение противодавления

$$p_{em} = 0.75HM. (29)$$

До этого предельного значения размер площади контакта не изменяется и равен d. $p_e/HM = \Delta P/P_m$. По мере разгружения возникают обратные пластические деформации и по периметру отпечатка растет ширина пояса $\Delta r/r$, по которому распределено равномерное давление величиной q. Для такого закона распределения давления $w_e = (4/\pi)w_1 \cong 1.27$, где $4/\pi = m_e$, а разгружение осуществляется также по линейному закону, подобному (4), но углы наклона ветвей разгружения различны $dP/dw_1 = (4/\pi)dP/dw_e$. В линейной зависимости (4) и ей подобной величины d и w_1 или d и w_e взаимозаменяемы: значение P не изменится, если одна величина увеличится, а другая на такую же долю уменьшится. Это свойство позволяет рассмотреть процесс разгружения пластического отпечатка как сумму двух линейных процессов, в которых параметры d_1 и d_2 изменяются, но их сумма остается равной d. Для одного из них $m_e=\pi/4$. Их удельный вклад определим из граничных условий. В начальный момент разгружения выполняется условие (2), по которому $dw/dP=w_1/P_m$. В этот момент ширина пояса, по которому распределено равномерное давление, равна нулю. Если при завершении разгружения равномерное давление распространяется на всю площадь пластического отпечатка, то получим деформацию $w_e=(4/\pi)w_1$. В промежуточном положении вклад этой деформации равен $\Delta w_e=(4/\pi)\Delta w_1(\Delta P/P_m)$. Удельный вклад обоих процессов выразится суммой

$$\Delta w = \frac{4}{\pi} \Delta w_1 \frac{\Delta P}{P_m} + \Delta w_1 \frac{P}{P_m} = \Delta w_1 \left(\frac{4}{\pi} \frac{\Delta P}{P_m} + \frac{P}{P_m} \right). \tag{30}$$

Из сопоставления зависимостей (30) и (2) следует, что в правой части (30) выражение в скобках равно поправке к значению E_w , найденному из допущения, что участок ΔP является отрезком прямой. Истинное значение модуля E_r при таком суммировании двух линейных процессов, учитывая выполнимость для каждого из них свойства (4), найдем из равенства

$$d \cdot E_r = \frac{\Delta P}{\Delta w} \left(\frac{4}{\pi} \frac{\Delta P}{P_m} + \frac{P}{P_m} \right). \tag{31}$$

В начальной точке разгружения $\Delta P/P_m=0,\ P=P_m$ и поправка равна нулю. С уменьшением P и ростом ΔP эта поправка линейно увеличивается. Для значения E_r получаем

$$E_r/E_w = 1 + [(4/\pi) - 1]\Delta P/P_m,$$
 (32)

где E_w — величина, найденная по зависимости (2) и по участку кривой разгружения длиной ΔP , который принят за отрезок прямой.

В модели разгружения жесткого штампа предельное значение $\Delta P_m = 0.75$. В реальном процессе эта величина меньше и зависит от нескольких параметров. Если E/E_i увеличивается, то растет вклад упругих деформаций индентора, в результате которых плоская модель штампа трансформируется в выпуклую, при этом ΔP_m уменьшается. Для реального распределения давления по площади отпечатка характерно его повышение к центру отпечатка, что также уменьшает величину ΔP_m . Влияние отклонений формы отпечатка от круглой также подобно этому. Оно возрастает при последовательном переходе от конуса или сферического индентора к пирамидам Виккерса, Берковича, Кнуппа. С ростом числа циклов повторного нагружения обратные пластические деформации приводят к самосогласованию поверхностей отпечатка и индентора, обратимая пластическая деформация исчерпывается и ΔP_m также стремится к нулю, соответственно изменяется петля гистерезиса. Интенсивность протекания обратных пластических деформаций и их исчерпание с ростом числа циклов повторного нагружения зависят также от коэффициента деформационного упрочнения материала. В его ростом увеличивается размер D_z/d пластической зоны под отпечатком, интенсивность обратных пластических деформаций уменьшается вследствие их торможения пластической зоной и для их исчерпания потребуется увеличенное число циклов повторного нагружения.

Заключение

Таким образом, ветвь первого разгружения отпечатка состоит из трех участков. Начальный участок обусловлен упругим разгружением пояса по периметру отпечатка. Его длина и показатель m зависят от HM/E_r и типа индентора. Для конического и пирамидального индентора m = 2, для сферического — 1.5. На участке 2 разгружение осуществляется по модели жесткого штампа с накоплением обратной пластической деформации по мере разгружения. Его длина уменьшается с ростом отношения E/E_i и асимметрии отпечатка. Последняя максимально выражена для пирамиды Кнуппа. На заключительном участке начинает уменьшаться площадь контакта индентора с поверхностью пластического отпечатка. Концентрация давления в центру отпечатка вызывает рост показателя m и кривизны этого участка. После 10–15 циклов повторного разгружения обратная деформация, уменьшаясь, стабилизируется. Показатель m увеличивается с ростом отношения E/E_i и коэффициента деформационного упрочнения k. Влияние kсвязано с тем, что с ростом D_z/d длина второго участка уменьшается, а на третьем участке растут показатель т и концентрация давления в центре отпечатка. Такая схема процессов разгружения и методика уточненного определения модуля упругости согласуются с данными работы [4], в которой получены следующие значения m: для вольфрама и алюминия 1.51 и 1.38 соответственно; для сапфира, кварца и плавленого кремнезема 1.47, 1.43 и 1.25 соответственно.

Экспериментальные измерения, представленные в табл. 2 и обсужденные выше, также согласуются с изложенным анализом соотношения между восстановленной и невосстановленной твердостью и нахождения высоты навала.

Список литературы

- [1] *Бульичев С.И., Алехин В.П.* Испытание материалов непрерывным вдавливанием индентора. М.: Машиностроение, 1990. 224 с.
- [2] Petica J.B., Hutckings R., Oliver W.C. // Phill. Mag. A. 1983.Vol. 48. N 4. P. 593–606.
- [3] Doerner M.F., Nix W.D. // J. Amer. Cer. Soc. Vol. 1. N 4–5. P. 601–606.
- [4] Oliver W.C., Pharr G.M. // J. Mater. Res. 1992. Vol. 7. N 6. P. 1564–1583.
- [5] Mutakami Y., Tanaka K., Itokazu M., Shimamoto A. // Phil. Mag. A. 1994. Vol. 69. N 6. P. 1131–1136.

[6] Novikov N.V., Voronkin M.A., Dub S.N. et al. // Diamond Relat. Mater. 1997. Vol. 6. P. 574–578.

- [7] Дуб С.Н. // Сверхтвердые материалы. 1997. № 6. С. 17–25.
- [8] Chechemin N.G., Bottiger J., Krog J.P. // Phin Solid Films. 1997. Vol. 304. N 1–2. P. 70–74.
- [9] *Терновский А.П., Алехин В.П., Шоршоров М.Х.* и др. // Зав. лаб. 1973. Т. 39. № 10. С. 1242–1246.
- [10] *Бульичев С.И., Алехин В.П., Шоршоров М.Х.* и др. // Зав. лаб. 1975. Т. 41. № 9. С. 1137—1141.
- [11] *Булычев С.И., Алехин В.П., Шоршоров М.Х., Терновский А.П.* // Проблемы прочности. 1976. № 9. С. 79–83.
- [12] *Алехин В.П., Бульиев С.И.* // Физика и хим. обраб. материалов, 1978. № 3. С. 134–178.
- [13] Алехин В.П., Бульчев С.И. // ДАН СССР. 1978. Т. 238. № 6. С. 1328–1331.
- [14] *Булычев С.И., Малышев В.Н.* // Физика и хим. обраб. материалов. 1986. № 3. С. 98–102.
- [15] *Булычев С.И., Алехин В.П.* // Зав. лаб. 1987. Т. 53. № 11. С. 76–80.
- [16] Pharr G.M., Oliver W.C., Clarke D.R. // Scrip. Met. 1989. Vol. 19. N 9. P. 881–887.
- [17] *Pharr G.M., Oliver W.C., Harding D.S.* // J. Mater. Res. 1991. Vol. 6. N 6. P. 1129–1130.
- [18] Pharr G.M. // Mater. Res. Soc. Simp. Proc. 1992. Vol. 239. P. 301–312.
- [19] Марковец М.П. // ЖТФ. 1949. Т. 19. Вып. 3. С. 371–382.
- [20] Stillwell N.A., Tabor D. // Proc. Phys. Soc. London, 1961.
 Vol. 78. P. 169–176.
- [21] Bückle H. Zeits. Metalk. 1954. Bd 45. N 11. P. 623-632.
- [22] *Лурье А.И.* Пространственные задачи теории упругости. М.: ГТТИ, 1955. 408 с.
- [23] King R.B. // Int. J. Solids Struct. 1987. Vol. 3. P. 1657–1666.
- [24] Sneddon I.N. // Int. J. Engen. Sci. 1965. Vol. 3. P. 47-58.
- [25] Шоршоров М.Х., Булычев С.И., Алехин В.П. // ДАН СССР. 1981. Т. 259. № 4. С. 839–842.
- [26] *Галанов Б.А., Григорьев О.Н., Мильман Ю.В.* и др. // ДАН СССР. 1984. Т. 274. № 4. С. 815–817.
- [27] Хрущов М.М., Беркович Е.С. Определение износа деталей машин методом искусственных баз. М.: Изд-во АН, 1959. 219 с.
- [28] *Григорьев О.Н., Мильман Ю.В., Трефилов В.Н.* // Элементарные процессы пластической деформации кристаллов. Киев.: Наукова думка, 1978. С. 144–159.
- [29] Ишлинский А.Ю. // ПММ. 1944. Т. 3. С. 201–222.