05;12

Требования к диэлектрикам для создания автономного источника электроэнергии на основе электрического конденсатора

© Д.И. Адейшвили 1 , В.П. Кортхонджия 2 , Н.Ф. Шульга 1

¹ Национальный научный центр "Харьковский физико-технический институт", 310108 Харьков. Украина

(Поступило в Редакцию 30 июля 1998 г.)

Рассмотрены и установлены требования к диэлектрикам для решения задач накопления, хранения и регулируемого расходования в течение длительного времени электроэнергии с необходимой номинальной мощностью с помощью электрических конденсаторов.

1. В работе [1] было обращено внимание на возможность использования электрических конденсаторов в качестве автономного источника электроэнергии. Для решения этой задачи был предложен метод регулируемого расходования энергии, накопленной в электрическом конденсаторе, позволяющий обеспечить в течение длительного времени выделение заданной номинальной мощности на потребителе. Накопленная в конденсаторе электроэнергия существенным образом зависит от применяемого в нем диэлектрика [2–5].

В настоящей работе рассматриваются требования к диэлектрикам для решения задач накопления, хранения и регулируемого расходования в течение длительного времени электроэнергии с необходимой номинальной мощностью с помощью электрических конденсаторов.

- 2. Диэлектрическая среда для указанной цели прежде всего должна удовлетворять следующим двум требованиям. Во-первых, она должна обладать высокой удельной объемной энергоемкостью. Это позволит создать компактный источник электроэнергии. Во-вторых, она должна обладать высоким удельным объемным электрическим сопротивлением, т.е. быть хорошим изолятором. Это обеспечит благодаря малости токов утечки длительную сохранность запасенной в электрическом конденсаторе энергии. Сюда же следует отнести возможность больших диссипативных потерь мощности в диэлектрике во время разрядки конденсатора на нагрузке. Обсудим эти требования более подробно.
- 3. Для обеспечения потребителя в течение времени T номинальной мощностью W_H требуется конденсатор C_b , позволяющий произвести накопление максимальной электроэнергии $E_0=1.6W_HT$ [1]. Удельная объемная электроемкость конденсатора определяется формулой $\rho_{\nu}=\varepsilon_0\varepsilon_r U_0^2/2$ (ε_0 электрическая постоянная, ε_r относительная диэлектрическая проницаемость, U_0 пробивная напряженность поля), где $U_0=V_0/d$ (V_0 пробивное напряжение, d толщина диэлектрического слоя между обкладками конденсатора). Предельный минимальный объем ν диэлектрического слоя между обкладками конденсатора, который необходим для этого случая, определяется из выражения $E_0=\rho_{\nu}\nu$ [3,6–8].

С целью подстраховки от пробоя диэлектрика в качестве максимального напряжения на обкладках конденсатора мы будем брать значение, равное половине пробивного напряжения $V_0/2$. В этом случае минимальный пространственный объем диэлектрика конденсатора будет определяться соотношением

$$\nu = \frac{12.8QW_H T}{\varepsilon_0 \varepsilon_r U_0^2}.\tag{1}$$

4. Рассмотрим теперь вопросы, связанные с энергетическими потерями в диэлектриках накопительных конденсаторов. В диэлектрике конденсатора имеют место потери энергии, связанные с объемными токами утечки и разрядными токами на нагрузке во внешней электрической схеме разрядки конденсатора. В первой части электрической схемы [1] в цепи бака-конденсатора потери энергии обусловлены только токами утечки. Других потерь здесь нет, поскольку зарядка дозатора-конденсатора от бака-конденсатора происходит без каких-либо потерь энергии. Связано это с тем, что в обоих конденсаторах используются диэлектрики с быстрой поляризацией $(10^{-14}-10^{-8}\,\mathrm{s})$. Во второй части схемы [1] при разрядке дозатора на нагрузке происходят диссипативные потери мощности в дозаторе, обусловленные мощными разрядными токами на нагрузке. Другие потери энергии здесь практически отсутствуют. Таким образом, общие потери энергии предложенного в [1] метода — регулируемого расходования энергии конденсатора складываются из потерь энергии, обусловленных токами утечки бакаконденсатора в цепи зарядки дозатора, и из потерь энергии, обусловленных токами утечки бака-конденсатора в цепи зарядки дозатора, и из потерь энергии на диссипативные потери мощности в дозаторе в цепи его разрядки.

Энергетические потери из-за объемных токов утечки характеризуются постоянной времени конденсатора $\tau_c = \varepsilon_0 \varepsilon_r \rho$ и определяются лишь электрическими параметрами диэлектрика (ρ — удельное объемное электрическое сопротивление). Отношение T/τ_c пропорционально относительным потерям энергии, обусловленным объемными токами утечки бака-конденсатора. Однако так

² Институт физики АН Грузии, 380077 Тбилиси, Грузия

как время разрядки конденсатора по энергии в e раз составляет половину его собственного времени разрядки, то вместо τ_c надо брать его половинное значение. Тогда относительные потери энергии, связанные с объемными токами утечки бака-конденсатора, будут определяться соотношением

$$P_{y} = \frac{2T}{\tau_{c}}. (2)$$

Рассмотрим теперь диссипативные потери мощности в дозаторе C_{∂} . Заметим, что диссипативные потери мощности в дозаторе $W_{n\partial}$ компенсируются соответствующими потерями мощности в баке-конденсаторе W_n . Связь между величинами W_n и $W_{n\partial}$ можно определить следующим образом. Диссипативные удельные объемные диэлектрические потери мошности определяются соотношением [2] $P_n = U_0^2/(2\rho)$. Учитывая формулы $C_b = \varepsilon_0 \varepsilon_r / d^2$, $E_0 = 1.6 \Delta E \ (\Delta E = W_H T)$ и $E_0 = C_b V_0^2 / 2$, можно определить полные диэлектрические диссипативные потери мощности бака-конденсатора $W_n = P_n \nu$ или $W_n = 1.6\Delta E/ au_c$. Заметим, что аналогично для дозатора $W_{n\partial}=1.6\Delta E au_i/ au_c$, где $\Delta E au_i=W_H au$ — передаваемое дозатором нагрузке количество энергии в импульсе. Номинальная мощность определяется формулой $W_H = \Delta E \tau_i / \tau$, поэтому $\Delta E = N \Delta E \tau_i$ и, следовательно, $W_n = NW_{n\partial}$.

Так как номинальная мощность $W_H = \Delta E/T$, то из сравнения W_n с W_H получим с учетом (2) относительные диссипативные потери мощности рассматриваемого метода

$$P_0 = 0.8P_{\rm v}.$$
 (3)

Соотношение (3) показывает, что в рассматриваемом методе относительные диссипативные потери мощности можно выразить через относительные потери энергии токов утечки. Поэтому полные относительные потери энергии в рассматриваемом методе будут $P = P_y + P_{\partial}$, т. е.

$$P = 3.6 \frac{T}{\tau_c}. (4)$$

Выражение (4) показывает, что диэлектрики в конденсаторах C_b и C_∂ будут всегда находиться в неперегруженных состояниях и опасаться утраты ими диэлектрических свойств и других неприятностей вследствие их перегрева нет оснований.

5. Полученные результаты позволяют сформулировать необходимые требования к диэлектрикам. Введем с этой целью параметры (ε, ρ) и $(\varepsilon_r U_0^2)$, которые удобны для описания электрических характеристик диэлектрика в рассматриваемой задаче.

Так как $\tau_c = \varepsilon_0 \varepsilon_r \rho$, то с учетом (4) находим, что $(\varepsilon_r \rho) = 3.6T/(\varepsilon_0 P) = 4 \cdot 10^{11} T/P$ (мы воспользовались здесь значением $\varepsilon_0 = 8.854 \cdot 10^{-12}$ F/m). В настоящее время относительные потери на уровне $P \leq 10^{-2}$ считаются малыми и для широкой практики являются очень хорошими. В этом случае $(\varepsilon_r \rho) = 4 \cdot 10^{13} T$. Это соотношение показывает, каким значениям параметров ε_r и ρ должна удовлетворять среда между обкладками

конденсатора, чтобы сохранить накопленную энергию в течение требуемого рабочего времени с потерями не более $P\leqslant 10^{-2}$. Произведение $(\varepsilon_r\rho)$ для удобства назовем "мерой качества" диэлектрика. Ее размерность в системе СИ — Ω · m. Например, если требуется обеспечить потребителя некоторой номинальной мощностью в течение рабочего времени $T=30\,\mathrm{h}\ (10^5\,\mathrm{s})$ на уровне потерь не более $P\leqslant 10^{-2}\ (1\%)$, то для этого необходим диэлектрик с мерой качества $(\varepsilon_r\rho)=4.10^{13}\ \Omega\cdot\mathrm{m}$.

Для выяснения вопросов, связанных с удельной объемной энергоемкостью конденсаторов, воспользуемся формулой (1). Подставляя в нее численное значение ε_0 , получим, что $(\varepsilon_r U_0^2) = 4 \cdot 10^{11} W_H T/\nu$.

Это соотношение показывает, каким значениям параметров ε_r и U_0^2 должна удовлетворять среда между обкладками конденсатора, чтобы возможно было бы накопить в ней при заданном объеме диэлектрика необходимое количество электроэнергии. Произведение $(\varepsilon_r U_0^2)$ для удобства назовем "мерой прочности" (по объему). Ее размерность в системе СИ — $(V/m)^2$.

Таким образом, диэлектрик должен удовлетворять следующим требованиям:

$$(\varepsilon_r U_0^2) = 4 \cdot 10^{11} \frac{W_H T}{\nu},$$
 (5)

$$(\varepsilon_r \rho) = 4 \cdot 10^{11} \frac{T}{P}.\tag{6}$$

6. Рассмотрим теперь некоторую конкретную типичную ситуацию, когда требуется загрузить потребителя электроэнергии номинальной мощностью $W_H = 100 \, \mathrm{kW}$ в течение времени $T = 30 \, \mathrm{h}$, причем потребитель допускает источник электроэнергии объемом, не превышающим $\nu \leqslant 10^{-1} \, \mathrm{m}^3$ и с уровнем потерь энергии, не превышающим $P \leqslant 10^{-2}$. Для этой цели потребуется бак-конденсатор с некоторой C_b емкостью, способный запастись максимальной энергией $E_0 = 4.8 \cdot 10^3 \, \mathrm{kWh}$. Тогда, согласно (5) и (6), бак-конденсатор должен обладать диэлектриком, удовлетворяющим требования

$$(\varepsilon_r U_0^2) \geqslant 4 \cdot 10^{22} \left(V/m \right)^2, \tag{7}$$

$$(\varepsilon_r \rho) \geqslant 4 \cdot 10^{18} \,\Omega \cdot \mathrm{m}.$$
 (8)

Эти требования являются довольно жесткими. Учитывая прогресс в области техники создания новых типов диэлектриков [11], можно надеяться на то, что в скором времени диэлектрики, удовлетворяющие отмеченным выше требованиям (7) и (8), будут созданы. Что же касается других случаев, то там, где объем не очень критичен, вполне могут оказаться пригодными для этой цели уже существующие диэлектрики [9–11], которые обладают на два порядка меньшими значениями мер прочности (7) и качества (8).

В заключение авторы приносят искреннюю благодарность А.А. Рухадзе и А.Н. Довбне за действенную поддержку и интерес к данной работе.

Список литературы

- [1] Адейшвили Д.И., Кортхонджия В.П., Шульга Н.Ф. // ЖТФ. 1999. Т. 69. Вып. 8. С. 118–121.
- [2] Сканави Г.И. Физика диэлектриков (Область слабых полей). М.: Гостехиздат, 1949. 500 с.
- [3] Сканави Г.И. Физика диэлектриков (Область сильных полей). М.: Физматгиз, 1958. 908 с.
- [4] Тареев Б.М. Физика диэлектрических материалов. М.: Энергоатомиздат, 1982. 320 с.
- [5] *Рение В.Т.* Электрические конденсаторы. Л.: Энергия, 1969. 592 с.
- [6] Франц В. Пробой диэлектриков. Пер. с нем. М.: ИЛ, 1961. 208 с.
- [7] Воробьев А.А., Завадовская Е.К. Электрическая прочность твердых диэлектриков. М.: ГТТЛ, 1956. 312 с.
- [8] Воробьев А.А., Воробьев Г.А. Электрический пробой и разрушение твердых диэлектриков. М.: Высшая школа, 1966. 224 с.
- [9] *Таблицы* физических величин. Справочник / Под ред. И.К. Кикоина. М.: Атомиздат, 1976. 1008 с.
- [10] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [11] Справочник по электротехническим материалам / Под ред. Ю.В. Корицкого, В.В. Пасынкова, Б.М. Тареева. Т. 1, 2. М.: Энергоатомиздат, 1986, 1987. Т. 3. Л.: Энергоатомиздат, 1988.