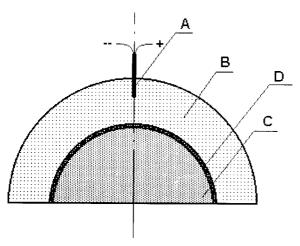
05;12

К вопросу о глубине проникания микроударников в металлическую мишень при обработке ее высокоскоростным потоком порошка

© С.К. Андилевко, С.С. Карпенко, В.А. Шилкин

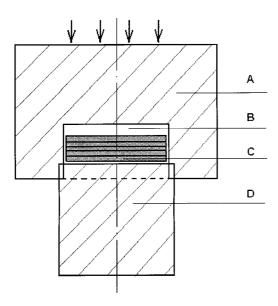

Научно-исследовательский институт импульсных процессов Белорусского государственного научно-производственного концерна порошковой металлургии, Минск

Поступило в Редакцию 26 ноября 1998 г.

Приведены результаты эксперимента по определению предельно достижимых глубин при сверхглубоком проникании и по проверке выводов одной из существующих моделей этого явления.

Вопрос о предельно достижимых глубинах при сверхглубоком проникании (СГП) порошков в мишени [1-3] вызывал повышенный интерес исследователей с самого момента экспериментального обнаружения данного явления. Используя методы послойного химического, микрорентгеноспектрального и рентгеноструктурного анализа, нейтронографии, а также ряд других косвенных методов исследования твердых материалов, авторы [1-3] доказали, что сверхглубокое проникание микрочастиц (исходные размеры порядка $10\,\mu$) порошкового потока происходит на глубине в несколько десятков миллиметров. Однако при изучении предельных глубин проникания исследование не отличалось высокой точностью и категоричностью эксперимента. Для повышения надежности результатов было разработано специальное устройство, позволяющее фиксировать проникание на различные, заранее определенные глубины.

С этой целью на пути потока частиц, генерируемого взрывным ускорителем (рис. 1), помещается детектирующее устройство в виде предохраняющего контейнера из стали со встроенными внутрь образцами (рис. 2), обеспечивающее полную защиту от влияния бокового заноса вводимого материала. Глубина проникания определяется по сквозному


Рис. 1. Принципиальная схема взрывного ускорителя порошковых частиц для реализации сверхглубокого проникания: A — детонатор; B — взрывчатое вещество; C — порошковый контейнер; D — облицовка порошкового контейнера.

пробиванию частицами верхнего образца контейнера. Проникающий материал улавливается в рабочей камере контейнера наборов фольг толщиной 0.00003 m каждая (до 30 штук), перекладываемых калькой, которые обеспечивают надежное торможение частиц порошка. Последующий химический анализ позволяет не только установить сам факт проникания на глубины, определяемые верхним образцом, но и обеспечивает возможность количественно оценить этот процесс без использования дорогостоящего оборудования.

Последовательно увеличивая высоту испытуемого верхнего образца (рис. 2), авторы стабильно отмечали повышенное содержание вводимого порошка (кобальта) в фольгах вплоть до глубин порядка $70-75\,\mathrm{mm}$ (исходный размер кобальтовых частиц не превышал $10\,\mu$), что позволяет считать вопрос о проникании частиц на эту глубину при СГП надежно доказанным.

Использование для регистрации результатов СГП устройства, изображенного на рис. 2, позволило провести прямую экспериментальную проверку утверждения авторов [4], которые предполагали, что СГП определяется последствиями осесимметричного кольцевого удара при

Письма в ЖТФ, 1999, том 25, вып. 7

Рис. 2. Схема составного предохраняющего контейнера: A — испытуемый образец; B — рабочая камера (цилиндрическая полость); C — сборка фольг, перекладываемых калькой; D — нижний, запирающий образец.

встрече с поверхностью мишени алюминиевой облицовки порошкового контейнера ускорителя (рис. 1), разогнанной и свернутой в кольцо энергией взрывчатого вещества. Авторы [4] полагают, таким образом, что СГП должно являться просто частным случаем реализации описываемого ими эффекта "ужаления" (термин взят из [4]), описывающего механизм образования зоны чрезвычайно высоких давлений на оси кольцевого удара под поверхностью твердого тела, зачастую приводящего к образованию там каверны, в которую, по их мнению, и попадают частицы.

Не вдаваясь в подробную полемику с выводами [4], отметим, что в эксперименте с СГП такое сворачивание облицовки заряда реализуется крайне редко, в то время как сам факт СГП регистрируется стабильно. Более того, используя подобный подход, следовало бы ожидать разупрочнения преграды вне зависимости от ви-

Письма в ЖТФ, 1999, том 25, вып. 7

да вводимого материала. Практика же экспериментальных исследований и десятилетнего практического использования эффекта показывает, что в зависимости от вида вводимого материала можно достигать как упрочнения, так и разупрочнения матрицы. Кроме того, авторы [5] стабильно получают СГП, используя схему, в которой отсутствует вообще какая-либо возможность взаимодействия преграды с чем-либо, кроме порошкового потока. Однако в данном случае ответ на предположение авторов [4] можно получить в результате прямого эксперимента, что в любом случае будет гораздо более убедительным, чем любая полемика. Для этого достаточно убрать из схемы разгоняющего ускорителя (рис. 1) "виновника" СГП (по мнению авторов [4]) — алюминиевую облицовку порошкового контейнера.

Такой эксперимент был проведен с использованием в качестве улавливающего устройства составного предохраняющего контейнера (рис. 2). Во взрывном ускорителе, изображенном на рис. 1, отсутствовала облицовка порошкового контейнера. Прямой контакт взрывчатого вещества и порошка приводит к потере части энергии разгона в связи с прямой "продувкой" продуктов детонации сквозь пористую толщу порошка, поэтому для более уверенного определения факта проникания высота верхнего образца в составном предохраняющем контейнере составляла 50 mm. Анализ фольг, изъятых из камеры контейнера после обработки, показал уверенный рост содержания вводимого материала (кобальта), что неоспоримо свидетельствует о наличии проникания по крайней мере на глубину 50 mm (для использовавшегося порошка кобальта с размерами частиц не более $10\,\mu$ относительная глубина проникания в таком случае превысит 5000, что несомненно относится к порядку величин, регистрируемых при СГП).

Таким образом, проведенные эксперименты позволили установить, что:

предельная глубина проникания при СГП порошка кобальта с размерами частиц не превышающими $10\,\mu$, составляет не менее $70\,\mathrm{mm}$ (т.е, относительная глубина проникания превышает 7000);

СГП не является результатом реализации эффекта "ужаления" при кольцевом ударе разогнанной продуктами взрыва облицовки порошкового контейнера, поскольку, вопреки мнению авторов [4], наблюдается и в условиях нагружения преграды потоком частиц, разгоняемых ускорителем, в котором данный конструкционный элемент отсутствует.

Письма в ЖТФ, 1999, том 25, вып. 7

Список литературы

- [1] Альтшулер Л.В., Андилевко С.К., Романов Г.С., Ушеренко С.М. // Письма в ЖТФ. 1989. Т. 15. В. 5. С. 55–57.
- [2] Andilevko S.K., Romanov G.S., Shilkin V.A., Usherenko S.M. // Int. J. Heat Mass Transfer. 1993. V. 36. N 4. P. 1113–1124.
- [3] Jeandin M., Vardavoulias M., Andilevko S.K., Roman O.V., Shilkin V.A., Usherenko S.M. // Revue de Metallurgie. 1992. N 12. P. 808–812.
- [4] Ададуров Н.А., Беликова А.Ф., Буравова С.Н. // ФГВ. Т. 28. № 4. С. 95–101.
- [5] Aleksentseva S.E., Isaev D.V., Krivchenko D.A. // Proc. of Int. Conf. Shock Waves in Condensed Matter. St. Petersburg, Russia. September 2–6. 1996. P. 122.