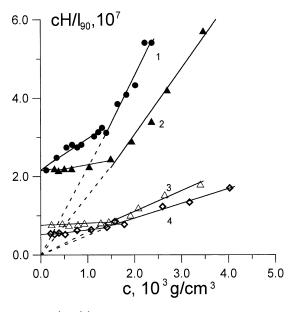
02;03;07;12

Рассеяние света в водных растворах фуллеренсодержащих полимеров. Ч. 2. Влияние молекулярного веса полимера-носителя

© М.Л. Сушко, С.И. Кленин, М.А. Думпис, Л.И. Позднякова, Л.Б. Пиотровский

Институт высокомолекулярных соединений РАН, С.-Петербург Институт экспериментальной медицины РАМН, С.-Петербург

Поступило в Редакцию 8 июня 1999 г.


Исследовано влияние молекулярной массы линейных макромолекул поливинилпирролидона $M_{\Pi B\Pi}$ на структуру доменов, образующихся в водных растворах комплексов ПВП/фуллерен (C_{60}). При постоянной концентрации C_{60} в комплексе M_{dom} начиная с $M_{\Pi B\Pi}=20\cdot 10^3$ увеличиваются пропорционально $M_{\Pi B\Pi}^{1.7}$, свидетельствуя об образовании флуктуационной сетки, узлами которой являются молекулы C_{60} .

В предыдущей публикации [1] методом рассеяния света было показано, что в разбавленных растворах комплексов поливинилпирролидона (ПВП) с фуллереном (C_{60}) концентрационная зависимость обратной интенсивности рассеяния cH/I (где I — избыточная интенсивность рассеяния, H — оптическая постоянная, c — концентрация раствора) имеет нелинейный характер: до критической концентрации комплекса $c_c = 1.45 \cdot 10^{-3} \, \text{g/cm}^3$ интенсивность рассеяния не зависит от концентрации и $cH/I \to 0$ при $c \to 0$ или $M_w \to \infty$ при $c \to 0$, а при $c < c_c$ экстраполяция к нулевой концентрации величины cH/I дает конечное значение M_w , которое, однако, на два порядка превышает M_w входящего в комплекс ПВП. Мы интерпретировали наблюдаемое явление наличием в растворе комплексов ПВП/С60 единой упорядоченной структуры при $c > c_c$, распадающейся на домены с упорядоченной структурой при $c < c_c$, к которым и относится экстраполяционное значение M_w (в дальнейшем обозначаем его M_{dom}). В работе [1] было показано, что M_{dom} существенно зависит от концентрации фуллерена в комплексе: при одном и том же молекулярном весе полимера-носителя M_{dom}

увеличивается с увеличением концентрации C_{60} . Представляется очень важным для более четкого понимания структуры растворов комплексов ПВП/ C_{60} и выявления факторов, стабилизирующих в них дальний порядок, исследовать роль второго компонента комплекса, а именно полимера-носителя. Целью настоящей работы является исследование влияния молекулярного веса полимера-носителя на свойства растворов комплексов ПВП/ C_{60} .

Комплексы ПВП/ C_{60} получены по методу, описанному в работе [2], модифицированному нами. В частности, в качестве растворителя C_{60} вместо толуола был использован бензол, что позволяет проводить выделение комплекса в более мягких условиях. В качестве полимераносителя использовались ПВП с молекулярными массами: $I=10\,000$ (Sigma), $2=25\,000$ (Merck), $3=35\,000$, $4=40\,000$ (Sigma). Молекулярные веса ПВП определялись независимо методом рассеяния света и оказались равными: $I=10\,000$, $2=20\,000$, $3=35\,000$, $4=40\,000$ — с обычной для данного метода погрешностью (10%). Содержание фуллерена в комплексах, оцененное спектрофотометрически, было равным $(0.78\pm0.03)\%$ для всех образцов.

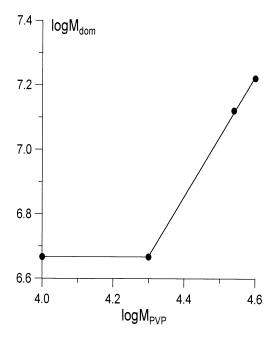

На рис. 1 представлены зависимости cH/I от концентрации комплексов ПВП/С₆₀. Как видно из рисунка, концентрационная зависимость обратной интенсивности рассеяния света для разных молекулярных весов полимера-носителя имеет один и тот же характер. На каждой кривой можно выделить два участка: 1 — при $c > c_c$, где интенсивность рассеяния не зависит от концентрации (cH/I o 0 при c o 0 или $M_w \to \infty$ при $c \to 0$) и 2 — при $c < c_c$, где экстраполяция к нулевой концентрации дает конечное значение M_w , которое относится к доменам с упорядоченной структурой. Следует подчеркнуть, что, как и в работе [1], асимметрия рассеяния $z = I_{45}/I_{135}$ (где I_{45} и I_{135} — избыточные интенсивности рассеяния под углами 45 и 135° соответственно) в растворах комплексов ПВП/С60 лишь незначительно превышает асимметрию рассеяния ПВП и равна 1.5-2.0. Это говорит о том, что в растворах комплексов ПВП/С60 практически отсутствует внутримолекулярная интерференция света, рассеянного доменами, характерная для рассеяния света большими молекулами с размерами, превышающими $\lambda/20$ (λ — длина волны света), приводящая к уменьшению интенсивности рассеяния раствора под углом 135° по сравнению с I_{45} (согласно теории рассеяния света в растворах больших молекул $I_{\theta'} < I_{\theta}$ для всех углов рассеяния $\theta' > \theta$). Это в свою очередь однозначно

Рис. 1. Зависимость $(cH/I)_{90}$ от концентрации водных растворов комплексов ПВП/C₆₀ при молекулярном весе полимера-носителя: $I=10\,000,\,2=20\,000,\,3=35\,000,\,4=40\,000.$

свидетельствует о том, что элементарные осцилляторы (коими являются комплексы $\Pi B\Pi/C_{60}$) расположены в доменах на расстояниях друг от друга, сравнимых с длиной волны света. Поэтому асимметрия рассеяния в растворах комплексов $\Pi B\Pi/C_{60}$ не характеризует размеры (радиус инерции) доменов, но указывает на отсутствие (или очень незначительное число) межмолекулярных контактов комплексов $\Pi B\Pi/C_{60}$ в растворе.

Как уже отмечалось выше, при $c>c_c$ наблюдается неизменность $I\sim \overline{(\Delta c)^2}$, где $\overline{(\Delta c)^2}$ — среднеквадратичная флуктуация концентрации, при разбавлении, т.е. в этой области концентраций флуктуации в растворах не являются независимыми, что свидетельствует об образовании упорядоченной структуры в растворах комплексов ПВП/С₆₀. По-видимому, основную роль при создании дальнего порядка играет фуллерен, так как во всех исследованных растворах комплексов с

Рис. 2. Зависимость молекулярного веса доменов в водных растворах комплексов $\Pi B \Pi / C_{60}$ от молекулярного веса полимера-носителя.

одинаковым содержанием C_{60} критическая концентрация одна и та же $1.45 \cdot 10^{-3}$ g/cm³ т.е. расстояние между молекулами фуллерена в среднем равно $R_c = 450-550$ Å и не зависит ни от общей концентрации комплекса ПВП/ C_{60} в растворе, ни от молекулярного веса ПВП, ни от соотношения ПВП и C_{60} в комплексе. Роль ПВП проявляется в большей степени при $c < c_c$, т.е. когда единая упорядоченная структура раствора уже не может сохраняться и разделяется на крупные весьма стабильные (второй вириальный коэффициент $A_2 \geqslant 0$) домены, в которых, повидимому, сохраняется дальняя упорядоченность. Как видно из рис. 2, молекулярный вес доменов не зависит от молекулярного веса полимераносителя $(M_{\rm PVP})$ при $M_{\rm PVP} \leqslant 2 \cdot 10^4$ и наблюдается сильная зависимость $M_{dom} = (M_{\rm PVP})^{1.56}$ при $M_{\rm PVP} > 2 \cdot 10^4$. Для объяснения экспериментальных результатов мы привлекли расчетные данные. Из таблицы

$M_{\rm PVP},\ 10^{-3}$	L, Å	$M_{dom}, 10^{-6}$
10	225	4.65
20	450	4.65
35	800	13.2
40	900	16.7

видно, что контурная длина ПВП (L) при $M_{\rm PVP} > 2 \cdot 10^4$ превышает R_c , т. е. принципиально возможно образование флуктуационной сетки, а это значит, что может проявляться дополнительный вид взаимодействий — взаимодействие между C_{60} , входящим в состав одного комплекса, и ПВП, входящими в состав соседних комплексов, — стабилизирующий упорядоченную структуру раствора. Очевидно, что чем больше L полимера-носителя, тем существеннее его стабилизирующее действие, т. е. тем крупнее домены. Этот вид взаимодействий не проявляется (или проявляется очень слабо) в растворах комплексов на коротких цепях ПВП, и размеры доменов не зависят от $M_{\rm PVP}$, что и наблюдается в эксперименте (рис. 2).

Таким образом, совокупность экспериментальных данных свидетельствует о наличии в растворах комплексов ПВП/ C_{60} упорядоченной структуры, зависящей от концентрации фуллерена. Причем основную роль при создании дальнего порядка играет фуллерен, а полимерноситель оказывает дополнительное стабилизирующее действие, если его молекулярный вес превышает $2 \cdot 10^4$.

Список литературы

- [1] Кленин С.И., Сушко М.Л., Думпис М.А., Позднякова Л.И., Пиотровский Л.Б. // ЖТФ. 1999 (в печати).
- [2] Yamakoshi Y.N., Yagami T., Fukuhara K. et al. // J. Chem. Soc. Chem. Commun. 1994. P. 517–519.