05;09

Дисперсия магнитостатических волн в касательно намагниченной ферритовой пластине с нормальной одноосной анизотропией

© В.И. Зубков, В.И. Щеглов

Институт радиотехники и электроники РАН, Фрязино

Поступило в Редакцию 18 февраля 1999 г.

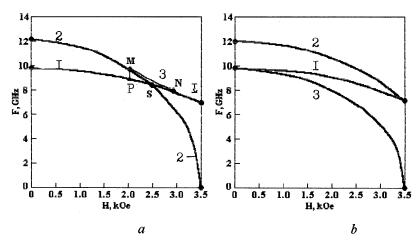
Впервые получен и проанализирован закон дисперсии магнитостатических волн в касательно намагниченной ферритовой пластине с одноосной анизотропией, ось которой перпендикулярна плоскости пластины, в случае, когда приложенное постоянное магнитное поле меньше поля анизотропии. Эта модель качественно описывает дисперсию магнитостатических волн в гекса- и ортоферритовой пластинах, а также в ненасыщенной ферритовой пластине.

Магнитостатические волны (МСВ) в произвольно намагниченной до насыщения анизотропной ферритовой пластине (ФП) рассматривались в [1–5]. Однако в них ограничивались либо учетом только кубической анизотропии [1–4], либо учитывали также и одноосную анизотропию, но считали ее малой по сравнению с кубической [5]. Последние эксперименты [6] показывают, что одноосная анизотропия может превосходить кубическую даже в эпитаксиальных пленках железоиттриевого граната. В гекса- и ортоферритах одноосная анизотропия больше намагниченности насыщения и определяет их СВЧ-свойства.

В этой связи актуально исследование дисперсии МСВ в касательно намагниченной $\Phi\Pi$ с одноосной анизотропией, ось которой перпендикулярна плоскости $\Phi\Pi$, когда подмагничивающее поле H_0 меньше поля анизотропии H_A . Результаты такого исследования (без учета, как и в [1–5], доменной структуры) приведены ниже.

Пусть плоскость y0z системы координат совпадает с плоскостью $\Phi\Pi$, а ось 0x ей перпендикулярна. Ось одноосной анизотропии направлена вдоль оси 0x. Поле анизотропии H_A превышает намагниченность насыщения $\Phi\Pi$ 4 πM_0 . Поле H_0 приложено в плоскости $\Phi\Pi$ вдоль оси 0z, и вектор намагниченности $\Phi\Pi$ **М** всегда лежит в плоскости x0z.

Он ориентирован вдоль оси 0x в поле $H_0=0$, а при его увеличении поворачивается к оси 0z и ложится на нее при $H_0=H_A$, где эффективное поле анизотропии $H_A=2KM_0-4\pi M_0$ — разность поля одноосной анизотропии и поля размагничивания ФП. В поле $H_0=H_A$ происходит фазовый переход второго рода, после чего вектор намагниченности \mathbf{M} всегда направлен по оси 0z. В плоскости ФП распространяются МСВ. Угол между волновым вектором \mathbf{k} этих волн и осью 0y обозначим через φ .


Полученное стандартными методами [7,8] дисперсионное соотношение для МСВ имеет вид

$$\beta - 2\mu_H \alpha \operatorname{cth} (\alpha kd) = 0, \tag{1}$$

где $\alpha=\{(\mu_A\mu_H^{-1})[(1-\mu_P\mu_A\mu_H^{-1})\sin^2\varphi+\cos^2\varphi]\}^{1/2},\ \beta=(\nu_H^2-\mu_P^2)\times\times\cos^2\varphi-\mu_H\mu_A+\mu_P^2-1,\ \mu_H=1+\Omega_H^2\Lambda^{-1},\ \mu_A=1+(\Omega_A^2-\Omega_H^2)\Lambda^{-1},\ \mu_P=-\Omega_H(\Omega_A^2-\Omega_H^2)^{1/2}\Lambda^{-1},\ \nu_H=\Omega\Omega_H\Lambda^{-1},\ \Lambda=\Omega_A[(\Omega_A^2-\Omega_H^2)-\Omega^2],\ \Omega=\omega(4\pi\gamma M_0)^{-1},\ \Omega_H=H_0(4\pi M_0)^{-1},\ \Omega_A=H_A(4\pi M_0)^{-1},\ \omega$ — частота, γ — модуль гиромагнитного отношения для электрона, k— волновое число.

Из (1) видно, что характер решения определяется видом параметра α и возможны МСВ двух типов. Как и МСВ в изотропной ФП [7,8], при α мнимом — волны объемные (ОМСВ), а при α действительном — поверхностные (ПМСВ). Ниже они называются анизотропными МСВ (АМСВ, АОМСВ и АПМСВ). Их волновой фронт не перпендикулярен плоскости ФП, как в [7,8], а наклонен к ней тем сильнее, чем ближе H_0 к H_A . Распределение высокочастотной намагниченности по толщине ФП в отличие от [7,8] не стоячее, а бегущее и описывается периодической функцией или с постоянной амплитудой (АОМСВ), или с амплитудой, максимальной на поверхностях ФП и спадающей в глубину ФП по экспоненте (АПМСВ). АОМСВ многомодовы, АПМСВ одномодова. При $\varphi=0^\circ$ АМСВ вырождаются в ПМСВ и ОМСВ, аналогичные описанным в [7,8].

АМСВ существуют в заданных частотно-полевых областях, в частотных диапазонах (от $\Omega(0)$ до $\Omega(\infty)$) и интервалах волновых чисел k (от 0 до ∞), определяемых соотношением (1) и особенностями входящих в него компонент тензора магнитной проницаемости ν_H , μ_P , μ_H и μ_A (нули, ∞ , пределы).

Рис. 1. Зависимости граничных частот спектра от поля при распространении волн перпендикулярно полю H_0 ($a-\varphi=0^\circ$) и параллельно полю H_0 ($b-\varphi=90^\circ$).

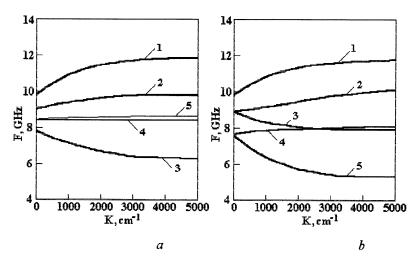
На рис. 1 приведены границы частотно-полевых областей для АМСВ, распространяющихся под углами $\varphi=0^\circ$ (a) и $\varphi=90^\circ$ (b) при $4\pi M_0=1750\,{\rm Gs}$ и $H_A=3.5\,{\rm kOe}$.

Для МСВ с $\varphi=0^\circ$ кривая $\it 1$ описывается формулой

$$\Omega(0) = \left\{ \left[\Omega_A (\Omega_A^2 - \Omega_H^2) + \Omega_H^2 \right] \Omega_A^{-1} \right\}^{1/2}, \tag{2}$$

ОМСВ и ПМСВ с этой частотой имеют k=0.

Кривая 2 описывается формулой


$$\Omega_{\nu}(\infty) = \left[\left(\Omega_A^2 - \Omega_H^2 \right) (\Omega_A + 1) \Omega_A^{-1} \right]^{1/2}, \tag{3}$$

ОМСВ с этой частотой имеют $k=\infty$.

Кривая 3 существует только на участке MN и описывается формулой

$$\Omega_S(\infty) = (\Omega_A^3 + \Omega_H^2) (2\Omega_A \Omega_H)^{-1}, \tag{4}$$

ПМСВ с этой частотой имеют $k=\infty$.

Рис. 2. Дисперсионные кривые при распространении волн перпендикулярно полю H_0 ($a-\varphi=0^\circ$) и параллельно полю H_0 ($b-\varphi=90^\circ$) при его различных значениях: $a-1-H_0=0$ Oe, 2-2 kOe, 3-3 kOe, 4 и 5-2 kOe, 3-3 kOe.

Кривые I и 2 пересекаются в точке S. Поле H_0 , соответствующее ей, далее названо критическим и обозначено как H_S (на рис. 1,a $H_S=2474\,\mathrm{Oe}$). Точки M и N — точки касания кривых I и 2 с кривой 3. Между кривыми I и 2 существуют ОМСВ (при поле $H_0 < H_S$ прямые волны, а при поле $H_0 > H_S$ — обратные). В области, ограниченной криволинейным треугольником MPN, существует прямая ПМСВ, спектр которой в треугольнике MPS перекрывается со спектром ОМСВ, что имеет место и для МСВ в $\Phi\Pi$ с кубической анизотропией [3-5].

При $\varphi=90^\circ$ существуют только AOMCB (рис. 1, b). Кривая 1 описывается формулой (2). Кривые 2 и 3 соответственно описываются формулами:

$$\Omega_{\nu,1}(\infty) = \left[\left(\Omega_A^2 - \Omega_H^2 \right) + \Omega_A \right]^{1/2},\tag{5}$$

$$\Omega_{\nu,2}(\infty) = \left(\Omega_A^2 - \Omega_H^2\right)^{1/2},\tag{6}$$

у AOMCB с этими частотами $k=\infty$.

АОМСВ в области между кривыми 1 и 2 являются прямыми, а между кривыми 1 и 3 — обратными.

На рис. 2 приведены дисперсионные кривые МСВ с $\varphi=0^\circ$ (a) и $\varphi=90^\circ$ (b) при различных значениях поля H_0 для $\Phi\Pi$ с толщиной $15\,\mu\mathrm{m}$.

На рис. 2,a кривые I-4 описывают первую моду ОМСВ, кривая 5 — ПМСВ. Кривая I соответствует полю $H_0=0$ Ое и описывает дисперсию прямых ОМСВ, аналогичных ОМСВ в изотропной ФП при нормальном намагничивании [7,8]. Кривая 2 соответствует полю $H_0 < H_S$, выгнута вверх и описывает прямые волны в области между кривыми I и 2 (на рис. 1,a). Кривая 3 соответствует полю $H_0 > H_S$, выгнута вниз и описывает обратные волны в области между кривыми I и I (на рис. I, I). Кривая I соответствует полю I0 с I1 и описывает ОМСВ, для которой частотный диапазон существования вырождается в точку, а дисперсионная кривая — в горизонтальную прямую линию. Кривая I3 также соответствует полю I3, но описывает прямую ПМСВ, для которой частотный диапазон существования конечен.

Рис. 2, b описывает первую моду АОМСВ. Кривая I совпадает с кривой I на рис. 2, a. Кривые 2 и 3 соответствуют полю $H_0=2$ kOe. Кривая 2 выгнута вверх и описывает прямую волну в области между кривыми I и 2 на рис. 1, b. Кривая 3 выгнута внизх и описывает обратную волну в области между кривыми I и I на рис. 1, I кривые I и I соответствуют полю I и I кое. Их частоты лежат ниже, чем при I п

Полученные результаты качественно объясняют спектр, дисперсию и особенности возбуждения МСВ в ФП с нормальной одноосной анизотропией при касательном намагничивании в присутствии доменной структуры [6]. АМСВ в гекса- и ортоферритах пока не наблюдены и сравнение с ними невозможно.

Работа поддержана РФФИ (грант № 96-02-17283а).

Список литературы

- [1] Берегов А.С. // Изв. вузов. Радиоэлектроника. 1984. Т. 27. № 10. С. 9–16.
- [2] Чивилева О.А., Гуревич А.Г., Эмирян Л.М. // ФТТ. 1987. Т. 29. № 1. С. 110— 115.

- [3] Зависляк И.В., Талаевский В.М., Чевнюк Л.В. // ФТТ. 1989. Т. 31. № 5. С. 319–321.
- [4] Дудко Г.М., Казаков Г.Т., Сухарев А.Г., Филимонов Ю.А., Шеин И.В. // Радиотехника и электроника. 1990. Т. 35. № 5. С. 960–965.
- [5] Зильберман П.Е., Куликов В.М., Тихонов В.В., Шеин И.В. // Радиотехника и электроника. 1990. Т. 35. № 5. С. 966–976.
- [6] Вашковский А.В., Локк Э.Г., Щеглов В.И. // ЖЭТФ. 1997. Т. 111. № 3. С. 1016–1031.
- [7] *Damon R.W., Eshbach J.R.* // J. Phys. Chem. Solids. 1961. V. 19. № 3/4. P. 308–320
- [8] Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике СВЧ. Саратов: Изд-во СГУ, 1993. 316 с.