Экситоны Ванье-Мотта в гетероструктурах узкощелевых полупроводников

© А.П. Силин, С.В. Шубенков

Физический институт им. П.Н. Лебедева Российской академии наук, 117924 Москва, Россия

(Поступила в Редакцию 28 апреля 1999 г. В окончательной редакции 19 мая 1999 г.)

В двухзонной модели Дирака проведено исследование спектров экситонов в массивном полупроводнике и в тонком полупроводниковом слое. Получены тонкие структуры спектров, зависимость энергии связи экситона от ширины запрещенной зоны и в двумерном случае — от толщины слоя.

Расчеты энергии связи экситона — как аналитические, так и численные — проведены для всевозможных широкозонных полупроводниковых структур и хорошо известны [1-3]. Однако до сих пор отсутствует исследование зависимости энергии связи экситона от величины энергетической щели полупроводника. Это связано с тем, что обычно отношение энергии связи экситона к ширине энергетической щели, во-первых, мало, а во-вторых, постоянно. Поэтому влияние конечности энергетической щели маскируется другими эффектами, такими, например, как анизотропия энергетических зон, дисперсия диэлектрической проницаемости и т.п. Представляет, однако, большой интерес исследование расщепления основного состояния экситона, связанное с конечностью энергетической щели. Последние достижения полупроводниковой технологии позволяют создавать полупроводниковые структуры, для которых исследование зависимости энергии связи экситона от величины энергетической щели довольно актуально. Это связано с тем, что в полупроводниковых гетероструктурах эффективная энергерическая щель зависит от размеров квантовой ямы, квантовой нити или квантовой точки, где локализованы носители тока, и ее легко можно изменить (см., например, [4]). Следует также отметить, что энергия связи экситона в двумерных и квазиодномерных структурах существенно больше, чем в трехмерном случае. Рассматриваемые нами эффекты особенно существенны для гетероструктур, составленных из таких полупроводников, в которых отношение энергии связи экситона к энергетической щели может превышать 1/10 (см., например, [5]). Именно такие полупроводники мы и будем называть узкощелевыми.

В данной работе рассмотрены две задачи: об образовании трехмерного и двумерного экситона в узкощелевом полупроводнике с изотропными энергетическими зонами и постоянной изотропной диэлектрической проницаемостью ε . В этом случае свободные носители тока описываются уравнением Дирака [6]

$$i\hbar \frac{\partial}{\partial t} \psi = \left(\nu \hat{\boldsymbol{\alpha}} \hat{\boldsymbol{p}} + \hat{\boldsymbol{\beta}} \Delta\right) \psi. \tag{1}$$

Здесь и далее $\hat{\alpha}$, $\hat{\beta}$ — матрицы Дирака, $\hat{\mathbf{p}}$ — оператор трехмерного импульса, $\Delta = E_g/2$ — полуширина

запрещенной зоны, ψ — огибающая волновой функции электрона, ν — кейновский матричный элемент (квазискорость света), $\nu = \sqrt{\Delta/m} \ll c, \ c$ — скорость света в вакууме, m — эффективная масса электрона и дырки (в этой модели их массы равны). При этом закон дисперсии носителей

$$E(p) = \pm \sqrt{p^2 \nu^2 + \Delta^2}.$$
 (2)

В первом разделе рассмотрен трехмерный экситон в массивном полупроводнике, во втором — двумерный экситон в тонком полупроводниковом слое в сверхрешетке или квантовой яме.

1. Экситон в массивном узкощелевом полупроводнике

Задача нахождения энергии связи и тонкой структуры экситона в массивном узкощелевом полупроводнике в основном состоянии аналогична задаче о позитронии. Отличие состоит в том, как включается взаимодействие в свободное уравнение Дирака (1) [7]. В квантовой электродинамике слагаемое, отвечающее взаимодействию с электромагнитным полем, имеет следующий вид:

$$\hat{V} = \frac{e}{c} \int \hat{j}^{\mu}(\mathbf{r}) \hat{A}^{\mu}(\mathbf{r}) d^{3}\mathbf{r}.$$
 (3)

Здесь e — заряд электрона, $\hat{j}^{\mu}=\left(\hat{\overline{\psi}}\gamma^{\mu}\hat{\psi}\right)$ — оператор плотности тока, $\hat{\overline{\psi}}=\hat{\psi}^*\gamma^0$, $\hat{A}^{\mu}=\left(\hat{\Phi},\hat{\mathbf{A}}\right)$ — оператор электромагнитного поля, $\gamma^{\mu}=\left(\gamma^0,\gamma\right)$ — матрицы Дирака, по четырехкомпонентному индексу μ делается свертка. В узкощелевых полупроводниках из-за наличия двух характерных констант размерности скорости оператор тока содержит коэффициент ν/c перед векторной частью (см. [7])

$$j^{\mu} = (j^0, j^i) = \left(\hat{\overline{\psi}} \gamma^0 \hat{\psi}, \frac{\nu}{c} \hat{\overline{\psi}} \gamma^i \hat{\psi}\right),$$

и слагаемое, отвечающее взаимодействию с электромагнитным полем, выглядит иначе

$$\hat{V} = e \int \hat{\psi}^*(\mathbf{r}) \,\hat{\psi}(\mathbf{r}) \,\hat{\Phi}(\mathbf{r}) d^3r$$

$$+ \frac{e\nu}{c} \int \hat{\overline{\psi}}(\mathbf{r}) \,\boldsymbol{\gamma} \hat{\psi}(\mathbf{r}) \,\hat{\mathbf{A}}(\mathbf{r}) d^3r. \tag{4}$$

При выводе (4) мы использовали требование градиентной инвариантности получаемого уравнения. Понятно, что поскольку в полупроводниках всегда $\nu \ll c$, то следует оставить только первое слагаемое

$$\hat{V} = e \int \hat{\psi}^*(\mathbf{r}) \,\hat{\psi}(\mathbf{r}) \,\hat{\Phi}(\mathbf{r}) \,d^3r. \tag{5}$$

Сравнение (5) и (3) показывает, что при вычислении тонкой структуры экситона мы пренебрегаем запаздыванием кулоновского взаимодействия электрона и дырки, а также магнитным взаимодействием между частицами.

Для нахождения спектра связанного состояния двух частиц мы построили эффективный одночастичный гамильтониан, описывающий их динамику и взаимодействие с точностью до α^2 ($\alpha=e^2/\varepsilon\hbar\nu$). Для этого мы рассчитали амплитуду рассеяния электрона на дырке во втором порядке теории возмущений по α и по амплитуде рассеяния восстановили эффективный гамильтониан

 $i\hbar \frac{\partial}{\partial t} \psi = \hat{H}\psi,$

$$\hat{H} = \hat{H}_{0} + \hat{V}_{1} + \hat{V}_{2} + \hat{V}_{3} + \hat{V}_{4},$$

$$\hat{H}_{0} = \frac{\hat{p}^{2}}{m} - \frac{e^{2}}{\epsilon r},$$

$$\hat{V}_{1} = -\frac{\hat{p}^{4}}{4m^{3}\nu^{2}} + 4\pi\mu^{2}\delta(\mathbf{r}),$$

$$\hat{V}_{2} = 4\mu^{2} \frac{(\hat{\mathbf{S}}, \hat{\mathbf{I}})}{r^{3}},$$

$$\hat{V}_{3} = 0,$$

$$\hat{V}_{4} = \frac{4}{3}\pi\mu^{2}\hat{\mathbf{S}}^{2}\delta(\mathbf{r}) + 6\frac{\mu^{2}}{r^{3}}\left(\frac{(\hat{\mathbf{S}}, \mathbf{r})(\hat{\mathbf{S}}, \mathbf{r})}{r^{2}} - \frac{1}{3}\hat{\mathbf{S}}^{2}\right).$$
 (6)

Здесь \hat{H}_0 — эффективный гамильтониан, описывающий взаимодействие электрона и дырки в приближении эффективных масс без учета взаимодействия зоны проводимости и валентной зоны, \hat{V}_1 — поправка орбитального происхождения, \hat{V}_2 — спин-орбитальное взаимодействие, \hat{V}_3 — спин-спиновое взаимодействие (это слагаемое мало по параметру ν/c для экситона и введено нами для сравнения с позитронием), \hat{V}_4 — обменное (аннигиляционное) взаимодействие, ψ — трехкомпонентная волновая функция (это обстоятельство связано с тем, что система электрон-дырка может иметь спин как единица, так и ноль), $\hat{\mathbf{S}}$ — операторы спина, $\hat{\mathbf{I}}$ — операторы орбитального момента, $\mu = e/2\sqrt{\varepsilon}m\nu$ — величина, аналогичная эффективному магнетону Бора в полупроводнике $\mu^* = e\hbar/mc$, появляющемуся в слагаемых, отвечающих взаимодействию с магнитным полем, которым мы пренебрегли. Подобная процедура была проделана для электрона и позитрона (см., например, [8]). Для сравнения выпишем потенциал взаимодействия электрона и позитрона в вакууме с точностью до слагаемых,

пропорциональных α_0^2 (постоянная тонкой структуры $\alpha_0 = e^2/\hbar c$,

$$i\hbar \, \frac{\partial}{\partial t} \, \psi = \hat{H} \psi,$$

где
$$\begin{split} \hat{H} &= \hat{H}_0 + \hat{V}_1 + \hat{V}_2 + \hat{V}_3 + \hat{V}_4, \\ \hat{H}_0 &= \frac{\hat{p}^2}{m_e} - \frac{e^2}{r}, \\ \hat{V}_1 &= -\frac{\hat{p}^4}{4m_e^3c^2} + 4\pi\mu_0^2\delta(\mathbf{r}) - \frac{e^2}{2m_e^2c^2r} \left(\hat{\mathbf{p}}^2 + \frac{(\hat{\mathbf{p}},\mathbf{r})(\hat{\mathbf{p}},\mathbf{r})}{r^2}\right), \\ \hat{V}_2 &= 6\mu_0^2 \frac{(\hat{\mathbf{S}},\hat{\mathbf{l}})}{r^3}, \\ \hat{V}_3 &= 6\frac{\mu_0^2}{r^3} \left(\frac{(\hat{\mathbf{S}},\mathbf{r})(\hat{\mathbf{S}},\mathbf{r})}{r^2} - \frac{1}{3}\hat{\mathbf{S}}^2\right) + 4\pi\mu_0^2 \left(\frac{4}{3}\hat{\mathbf{S}}^2 - 2\right)\delta(\mathbf{r}), \\ \hat{V}_4 &= 4\pi\mu_0^2\hat{S}^2\delta(\mathbf{r}), \\ \mu_0 &= \frac{e}{2m_ec}. \end{split}$$
(7)

Здесь m_e — масса свободного электрона, а \hat{H}_0 , \hat{V}_1 , \hat{V}_2 , \hat{V}_3 и \hat{V}_4 имеют тот же смысл, что и для экситона.

Потенциал взаимодействия электрона и дырки (6) в сравнении с электрон-позитивным потенциалом (7) содержит, как можно было ожидать, в целом меньше слагаемых, так как в (6) не вошли слагаемые, связанные с запаздыванием взаимодействия и магнитным взаимодействием между частицами. Наличие в гамильтониане (6) поправок $\hat{V}_1 - \hat{V}_4$ приводит к появлению тонкой структуры экситона. Для расчета расщепления энергетических уровней мы усреднили поправки $\hat{V}_1 - \hat{V}_4$ по невозмущенным волновым функциям экситонных состояний с различными значениями энергии п, полного момента j, орбитального момента l, спина s и проекции орбитального момента т. Именно для состояний с таким набором квантовых чисел поправочные члены диагональны (это существенно, так как невозмущенные состояния вырождены). Используя при усреднении результаты, приведенные в [8], легко получить полное выражение для энергии экситона

$$E_x^{njls} = -\frac{1}{4n^2} + \alpha^2 \frac{3}{64n^2} - \alpha^2 \frac{(1 - \delta_{l0})}{8n^3(2l+1)} + \alpha^2 \frac{\delta_{l0}(1 - \delta_{s0})}{12n^3} + \alpha^2 \frac{(1 - \delta_{l0})(1 - \delta_{s0})}{8n^3} \times \begin{cases} -\frac{1}{l(l+1)(2l+1)}, & j = l \\ -\frac{4l-1}{l(2l-1)(2l+1)}, & j = l-1 \\ \frac{4l+5}{(l+1)(2l+3)(2l+1)}, & j = l+1 \end{cases}$$
(8)

Энергия здесь отсчитывается от дна зоны проводимости. Результат приведен в единицах, аналогичных атомным. За единицу длины и энергии приняты величины

Кристалл	GaSb	GaAs	InSb	InAs	InP	AlSb	ZnTe	ZnSe	ZnS	CdTe	CdSe	CdS
E_g , meV	813	1410	236	425	1416	2320	2301	2670	3912	1606	1842	2583
E_x , meV	1.8	5.1	0.5	1.8	6.5	7.5	13.0	19.0	40.1	10.0	15.7	29.4
ΔE_0 , meV	0.011	0.049	0.003	0.020	0.080	0.065	0.20	0.036	1.10	0.17	0.36	0.89

Таблица 1. Орто-пара-расщепление основного состояния экситона для различных полупроводников

 $a_x = \varepsilon \hbar^2 \nu^2 / \Delta e^2$ и $E_x = \Delta e^4 / \varepsilon^2 \hbar^2 \nu^2$ соответственно. Полезно привести величину орто-пара-расщепления основного состояния как важный частный случай формулы (8)

$$\Delta E_0 = E_x^{1101} - E_x^{1000} = \frac{\alpha^2}{12}.$$
 (9)

Удобно выразить энергию орто-пара-расщепления через наблюдаемые величины E_x и E_g

$$\Delta E_0 = \frac{8(E_x)^2}{3E_g}. (10)$$

Расщепление для некоторых полупроводников приведено в табл. 1.

2. Экситон в тонком слое узкощелевого полупроводника

Подход, аналогичный использованному нами в предыдущем разделе, был применен и для нахождения тонкой структуры квазидвумерного экситона. Для последовательного нахождения поправок, связанных с непараболичностью дисперсии свободных электронов и дырок (2), а также с их антитождественностью, мы использовали следующую модель.

- 1) Невзаимодействующие носители тока описываются уравнением Дирака (1).
- 2) Вдоль одной из пространственных осей (ось z) модуляцией ширины запрещенной зоны создана квантовая яма, в которой локализованы как электроны, так и дырки

$$\Delta = \Delta(z) = \begin{cases} \Delta_1, & |z| < a; \\ \Delta_2, & |z| > a. \end{cases}$$
 (11)

При этом предполагается, что высота барьеров для электронов и дырок существенно превосходит энергию размерного квантования, а стенки ямы являются бесконечными, т. е. $\Delta_2\gg\Delta_1$.

- 3) Ширину ямы 2a мы полагали много меньше радиуса объемного экситона $r_x=2e\hbar^2\nu^2/\Delta_1e^2,~\delta=a/r_x\ll 1$, т.е. расстояния между уровнями размерного квантования много больше энергии связи объемного экситона $E_x=\Delta_1e^4/4\varepsilon^2\hbar^2\nu^2$. Таким образом, можно считать, что на каждом уровне размерного квантования имеется свой экситон
- 4) Диэлектрическую проницаемость среды, окружающей слой узкощелевого полупроводника, мы считали равной диэлектрической проницаемости слоя ε , частотной и пространственной дисперсией которой мы

пренебрегли. Если не учитывать антитождественности взаимодействующих частиц, то полное двухчастичное уравнение выглядит следующим образом:

$$\hat{E}\Phi(r_{-}, r_{+}) = \hat{H}\Phi(r_{-}, r_{+}),$$

$$\hat{H} = \nu\hat{\alpha}_{-}\hat{\mathbf{p}}_{-} + \nu\hat{\alpha}_{+}\hat{\mathbf{p}}_{+} + \hat{\beta}_{-}\Delta(z_{-})$$

$$+ \hat{\beta}_{+}\Delta(z_{+}) - e^{2}/\varepsilon r.$$
(12)

Здесь $\hat{\mathbf{p}}_{\pm} = -i\hbar\partial/\partial\mathbf{r}_{\pm}$, индекс плюс относится к дырке, минус — к электрону, $r = |\mathbf{r}_{-} - \mathbf{r}_{+}|$. Поправки, связанные с антитождественностью электрона и дырки ("аннигиляционные" поправки), будут рассмотрены далее. Мы рассмотрели экситон на нижнем уровне размерного квантования. Свободной частице на нижнем уровне соответствует волновая функция в "стандартной" калибровке уравнения Дирака (конечный ответ не зависит от калибровки, о калибровках см., например, [8])

$$Z_0(z) = C \left(\hat{\sigma}_z \omega \frac{\omega \cos(k_0 z)}{i\hbar \nu k_0 \sin(k_0 z)} \right), \quad |z| < a. \quad (13)$$

Здесь $\omega = \binom{a}{b}$, где a и b — произвольные комплексные числа. Энергия E_0 и волновое число k_0 определяются из дисперсионного уравнения

$$\begin{cases} \operatorname{tg}(2k_0 a) = -\frac{\hbar k_0 \nu}{\Delta_1} \\ E_0^2 = \Delta_1^2 + \nu^2 k_0^2. \end{cases}$$
 (14)

Чтобы получить двумерное уравнение, описывающее взаимодействие электрона и дырки, необходимо усреднить (12) по z_+ и z_- . В низшем порядке по δ и α , как и следовало ожидать, мы получили уравнение Шредингера для двух частиц с массами $m^*=E_0/\nu$ и кулоновским взаимодействием между ними

$$\left(\frac{\hat{\mathbf{q}}_{-}^{2}\nu^{2}}{2E_{0}} + \frac{\hat{\mathbf{q}}_{+}^{2}\nu^{2}}{2E_{0}}\right)\phi(\boldsymbol{\eta}_{-}, \boldsymbol{\eta}_{+}) - \frac{e^{2}}{\varepsilon\eta}\phi(\boldsymbol{\eta}_{-}, \boldsymbol{\eta}_{+})$$

$$= (E - 2E_{0})\phi(\boldsymbol{\eta}_{-}, \boldsymbol{\eta}_{+}). \tag{15}$$

Здесь $E=2E_0$ — энергия экситона, отсчитанная от нижнего уровня размерного квантования, η_\pm двумерные векторы, координаты частиц в плоскости XY, $\eta=\eta_--\eta_+$, $\eta=|\eta|$, $\hat{\mathbf{q}}_\pm=-i\hbar\partial/\partial\eta_\pm$ — двумерный импульс.

Кристалл	InSb		GaSb		GaAs		InAs		InP		AlSb		ZnTe	
a, Å	20	100	20	100	20	100	20	100	20	100	20	100	20	100
$E_x^{(2)}$, meV \tilde{A}_1 \tilde{A}_2	3.8	1.8	9.0	6.3	17	13.6				11.8	28.4	28.4	50.0	45.8
$ ilde{A}_1$	0.015	0.070	0.019	0.010	0.02	0.10	0.009	0.04	0.20	0.11	0.024	0.15 0.83	0.03	0.22
$ ilde{A}_2$	0.028	0.070	0.06	0.29	0.01	0.54	0.018	0.11	0.01	0.53	0.01	0.83	0.01	0.80
Решение этого уравнения хорошо известно (см., например, [9]). Приведем лишь формулу для энергии связи вумерного экситона $E_x^{(2)} = \frac{m^* e^4}{4\varepsilon^2 \hbar^2 \left(n - \frac{1}{2}\right)^2} = \frac{E_0 \alpha^2}{4 \left(n - \frac{1}{2}\right)^2}. \tag{16}$							характеризующий увеличение запрещенной зоны при данной толщине слоя; $\phi = k_0 a \propto 1$ и определяется и уравнения ${\rm tg}2\phi = -2\phi\zeta$ (см. (14)). Интересно, что $\tilde{A}_1(\zeta)$ — первого порядка малости по α , тогда как трехмерном случае все поправки к энергии не ниже α^2 $\tilde{A}_2(\zeta)$ — функция первого порядка по ${\rm max}(\alpha,\delta)$. Дей							
		` .	- /	. 27										
$E_{x}^{(2}$ Эта энергия Чтобы получ	получен	а в низг	пем при	ближени	и по δ	иα.	$\tilde{A}_2(\zeta)$	— фу	нкция і	ервого		а по т	$ax(\alpha, \delta)$	 Дей

Ų амплитуду рассеяния электрона на дырке. После ее усреднения по z_+ и z_- выделили слагаемые, линейные по (δ, α) . Затем по этим поправкам восстановили поправки к рассеивающему потенциалу уравнения (15), линейные по (δ, α) . Поправки "аннигиляционного" происхождения оказались, вообще говоря, комплексными, причем мнимая часть расходится при $(2k_0 - E_0\sqrt{\varepsilon}/\hbar c) \rightarrow 0$. Дело в том, что при $2k_0 \approx E_0 \sqrt{\varepsilon}/\hbar c$ велико сечение однофотонной аннигиляции

$$\sigma_{1\gamma}^{ann} \propto \left(4k_0 - \frac{E_0^2 \varepsilon}{\hbar^2 c^2}\right)^{-2}$$
 (17)

и говорить об экситоне как о связанном состоянии неправомерно. Поэтому для рассмотрения экситона мы считали ширину ямы а такой, что

$$4k_0^2 \gg \Delta_1^2 \varepsilon / \hbar^2 c^2. \tag{18}$$

Обратное соотношение в реальных полупроводниках трудно выполнимо одновременно с ограничением, принятым в данном разделе. С учетом этих оговорок поправка к кулоновскому потенциалу имеет вид

$$\hat{U} = \hat{U}^{(ann)} + \hat{U}_1. \tag{19}$$

Для того чтобы оценить порядок слагаемых в (19), удобно ввести безразмерные величины, принимая за единицы длины и энергии $\tilde{a}=2\nu\hbar/E_0\alpha$ и $\tilde{E}=E_0\alpha^2/2$. Тогда

$$\tilde{U}^{(ann)}(\eta) = \pi \tilde{A}_1(\zeta) \left(\hat{\mathbf{S}}^2 - 2\hat{S}_z^2\right) \delta(\eta),$$

$$\tilde{A}_1(\zeta) = \alpha \frac{(1 + \zeta^2 \phi^2)^{1/2} \left(\frac{3}{4}\zeta + \frac{3}{8}\zeta^2 + \frac{1}{4}\zeta\phi^2\right)}{(1 + \frac{1}{2}\zeta + 2\zeta^2\phi^2)^2},$$

$$\tilde{U}_1(\eta) = \pi \tilde{A}_2(\zeta) \delta(\eta),$$

$$\tilde{A}_2(\zeta) = \delta(1 + \zeta^2\phi^2)^{1/2} \left(1 + \frac{1}{2}\zeta + 2\zeta^2\phi^2\right)^{-2}$$

$$\times \left[\frac{4}{3} - \frac{5}{4}\phi^2 + \zeta\left(2 - \frac{1}{2}\phi^2\right) + \zeta^2\left(\frac{8}{3}\phi^2 - \frac{3}{4}\right) + \zeta^3\left(2\phi^2 + \frac{1}{2}\right) + \frac{4}{3}\zeta^4\phi^4\right].$$
(20)

$$E_x^n = \frac{1}{2(n-1/2)^2} - \frac{\delta_{m0}}{2(n-1/2)^3} \left(\tilde{A}_2 - \tilde{A}_1 \delta_{s_1} \delta_{s_2} 0 \right). \tag{21}$$

Здесь s, s_z и m — квантовые числа: полный спин экситона, его проекция на ось z и проекция орбитального момента на ось z. Значение энергии связи экситона и ее расщепление для некоторых полупроводников приведены в табл. 2 [9].

Авторы благодарны С.Г. Тиходееву за обсуждение результатов.

Работа выполнена при финансовой поддержке РФФИ (проекты № 96-02-16701 и № 97-02-16346), Миннауки (проект № 97-1087) и INTAS (№ 96-0398).

Список литературы

- [1] Н. Нокс. Теория экситонов. Мир, М. (1996).
- В.М. Агронович. Теория экситонов. Наука, М. (1968).
- [3] Е.А. Андрюшин, А.П. Силин. ФТТ 35, 1947 (1993).
- А.П. Силин. УФН 147, 485 (1993).
- М.В. Валейко, И.И. Заславский, А.В. Матвиенко, Б.Н. Мацонашвили. Письма в ЖЭТФ 43, 140 (1986).
- Б.А. Волков, Б.Г. Идлис, М.Ш. Усманов. УФН 165, 799 (1995).
- Е.А. Андрюшин, А.П. Силин, С.В. Шубенков. Краткие сообщения по физике ФИАН 7-8, 22 (1995).
- А.И. Ахиезер, В.Б. Берестецкий. Квантовая электродинамика. Наука, М. (1989), §83.
- [9] А.П. Силин, С.В. Шубенков. Краткие сообщения по физике ФИАН 7-8, 9 (1996).