Нейтрон-дифракционное определение структурного и магнитного состояний литий-допированного антиферромагнетика NiO

© А.З. Меньшиков, Ю.А. Дорофеев, А.Е. Теплых, Б.А. Гижевский, Н.А. Миронова*

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия * Институт физики Латвии, 229021 Саласпилс, Латвия

E-mail: menshikov@imp.uran.ru

(Поступила в Редакцию 21 июля 1999 г.)

Методами нейтронной дифракции на поликристаллических образцах $(Ni_{1-x}Li_x)O$ твердых растворов с x < 0.1 изучено упругое рассеяние нейтронов и впервые показано, что допирование литием монооксида никеля сопровождается образованием вакансий в анионной подрешетке, концентрация которых равна содержанию лития в твердом растворе. При этом нейтральные атомы лития располагаются хаотически по узлам катионной подрешетки с возможной пространственной поляризацией валентного электрона в сторону кислородной вакансии. В магнитном отношении диамагнитное разбавление NiO литием в данной области составов оказалось подобно разбавлению магнием. В том и другом случаях точка Нееля и средний магнитный момент на этом уменьшаются линейно с концентрацией диамагнитной примеси.

Работа выполнена при финансовой поддержке ГНТП "Актуальные направления в физике конденсированных сред", направление "Нейтронные исследования" (проект № 4).

Монооксид никеля, обладающий кристаллической решеткой типа NaCl, является антиферромагнетиком с магнитной структурой, описываемой волновым вектором $\mathbf{k} = (1/2, 1/2, 1/2)$ [1,2]. Он обнаруживает электрические свойства хорошего изолятора с величиной удельного электросопротивления примерно $10^{14} \,\Omega \cdot \text{сm}$ [3]. Было установлено [4], что если в качестве диамагнитной примеси выступает магний, имеющий ту же валентность, что и Ni²⁺. то величина электросопротивления не изменяется, а образующийся ряд твердых растворов $(Ni_{1-x}Mg_x)O$ имеет хаотически разупорядоченное состояние ионов никеля и магния в катионной подрешетке и полностью заполненную кислородом анионную подрешетку [5-9]. При этом точка Нееля и средний магнитный момент на атом линейно уменьшаются, и при концентрации *x* > 0.5 антиферромагнитный дальний порядок разрушается, переходя в состояние типа "кластерного спинового стекла" [8,9].

Совсем по-другому проявляет себя диамагнитное разбавление атомами лития. Прежде всего добавки лития значительно повышают электропроводность монооксида никеля, переводя его из изолятора в полупроводник с дырочной проводимостью [3]. Оказалось также, что NiO, допированный литием, обладает малой работой выхода электронов, что послужило основанием для использования его в качестве катодов в электромагнитных и электрохимических устройствах [10,11]. Вместе с тем было замечено, что катодные функции этого материала ослабевают со временем за счет засорения ионами Ni³⁺ и за счет простого растворения катода. Предполагалось [11], что причиной столь нежелательного факта является дефектность катионной или анионной подрешеток (Ni_{1-x}Li_x)О твердых растворов, выявить которую пытались методами термогравитометрического и рентгеноструктурного анализов. На основе полученных данных авторы [10,11] пришли к выводу о существовании дефектности в анионной подрешетке, но отвергли его как неправдоподобный из-за недостаточной точности эксперимента.

Проблема дефектности подрешеток в $(Ni_{1-x}Li_x)O$ представляется важной также в связи с вопросом о структурном и электронном состояниях диамагнитных атомов лития в решетке NiO. Действительно, в случае $(Ni_{1-x}Li_x)O$ твердых растворов из-за малости ионного радиуса лития можно предполагать, что литий размещается либо в тетраэдрических позициях кислородной подрешетки при полной занятости октаэдрических позициях, но при неполной занятости анионной подрешетки атомами кислорода.

Однако, начиная с работы [12], литий-допированные монооксиды никеля рассматриваются всегда на основе формулы $(Ni_{1-2x}^{2+}Ni_x^{3+}Li_x^+)O$, где принимается, что ионы лития занимают только октаэдрические позиции в полностью занятой ионами кислорода анионной подрешетке. Более того, установлено [13], что сначала образуются твердые растворы (Ni_{1-x}Li_x)O с хаотическим замещением узлов катионной подрешетки в структуре NaCl, а затем, при x = 0.5, происходит структурный фазовый переход из кубической фазы в гексагональную с упорядоченным расположением ионов Li⁺ и Ni³⁺ в фазе (Ni_{0.5}Li_{0.5})О. При этом ближний порядок начинает формироваться уже при x = 0.3 [14,15]. В результате структурной перестройки атомов в решетке NaCl магнитное упорядочение изменяется от антиферромагнитного до ферромагнитного через промежуточную область ферримагнитных состояний при $0.3 \leq x < 0.5$ [12,15].

Рис. 1. Зависимость электросопротивления от концентрации лития в NiO, измеренного при комнатной температуре на монокристаллах (темные кружки) [3] и на поликристаллах (светлые кружки) в настоящей работе соответственно.

Цель настоящей работы состоит в том, чтобы решить проблему дефектности структуры литий-допированного монооксида никеля методом нейтронной дифракции. В данном случае нейтрон-дифракционный метод оказался более чувствительным к структурным изменениям, чем рентгеновский метод благодаря тому, что амплитуды ядерного рассеяния у лития $(b_{\rm Li} = -0.194 \cdot 10^{-12} \text{ cm})$, никеля $(b_{\rm Ni} = 1.03 \cdot 10^{-12} \text{ cm})$ и кислорода $(b_{\rm O} = 0.577 \cdot 10^{-12} \text{ cm})$ имеют разный знак. Кроме того, нейтронные исследования позволяют одновременно проследить за изменением как атомной, так и магнитной подсистем.

1. Образцы и методика измерений

Для эксперимента были приготовлены образцы NiO с добавками лития различной концентрации методом разложения солей. Исходными материалами являлись особо чистые NiCO₃ и Li₂CO₃, которые смешивали по молярному весу в соответствии с заданным составом. Смешанные водные растворы высушивали при 120–130°С, а затем прокаливали в интервале температур 300-800°С до полного разложения солей. Затем полученный таким образом материал тщательно истирали в агатовой ступке, прессовали в таблетки и снова отжигали при температуре 1200-1300°С в течение 6-10 часов. Приготовленные образцы (Ni_{1-x}Li_x)О твердых растворов обладали следующими значениями х: 0.01; 0.02; 0.025; 0.03; 0.04; 0.05; 0.06; 0.08, которые соответствовали заданному составу лития с последующим их уточнением по параметрам кристаллической решетки. Согласно рентгеновскому анализу, все приготовленные соединения обладали кристаллической решеткой типа NaCl без каких-либо ее искажений.

Дополнительно к этому качество приготовленных образцов определяли методом измерения электросопротивления при комнатной температуре. Эти данные представлены на рис. 1, из которого следует, что с увеличением содержания лития в NiO электросопротивление изменяется более чем на тринадцать порядков и наблюдается довольно хорошая корреляция значений электросопротивления для наших поликристаллических образцов с величинами электросопротивления, измеренного на монокристаллах в [3].

Эксперименты по упругому рассеянию нейтронов проводили на поликристаллических образцах в интервале температур 77–550 К, который соответствовал магнитоупорядоченному состоянию исследуемых объектов. Все нейтронограммы были получены в интервале углов $2\theta = 10-110$ градусов ($\lambda = 1.81$ Å) с помощью дифрактометра, установленного на одном из горизонтальных каналов реактора ИВВ-2М (г. Заречный). Численную обработку результатов упругого рассеяния нейтронов, основанную на подгонке расчетных и экспериментальных интенсивностей, проводили по методу Ритвелда, встроенного в программу FULLPROF [16].

2. Экспериментальные результаты

На рис. 2 представлена типичная нейтронограмма $(Ni_{1-x}Li_x)O$ твердых растворов, которая соответствует концентрации x = 0.03. Подобные нейтронограммы зафиксированы и для других составов. В картине упругого рассеяния нейтронов исследуемых соединений отчетливо проявляются два типа отражений, которые индицируются в базисе химической ячейки целочисленными и нецелочисленными значениями (*hkl*). Первые соответствуют ядерным отражениям, а вторые — магнитным с

Рис. 2. Нейтронограмма (Ni_{1-x}Li_x)О в соединении с x = 0.03, которая является типичной для всех исследованных соединений: точки — экспериментальные значения интенсивностей; сплошные линии — расчетные значения, полученные в предположении дефектности кислородной подрешетки. Целочисленные значения (*hkl*) соответствуют ядерным отражениям, а нецелочисленные — магнитным.

I, 10³ imp/400 s

Рис. 3. Температурные зависимости рефлекса (1/2, 1/2, 1/2) для $(Ni_{1-x}Li_x)O$ твердых растворов. Стрелками показаны точки Нееля.

Рис. 4. Концентрационная зависимость температуры Нееля для $(Ni_{1-x}Mg_x)$ О и $(Ni_{1-x}Li_x)$ О твердых растворов: *1* — данные из работы [9]; *2* — данные работы [17]; *3* — настоящие измерения.

рефлексом-родоначальником (1/2, 1/2, 1/2), свидетельствующим о наличии антиферромагнитного упорядочения по типу NiO. Исследования температурной зависимости интенсивности рефлекса-родоначальника позволили определить точки Нееля исследуемых соединений. Ряд таких зависимостей показан на рис. 3, из которого видно, что температура Нееля, соответствующая нулевой интенсивности этого рефлекса, уменьшается с увеличением содержания лития в NiO. Ее полная зависимость от концентрации показана на рис. 4 в сравнении с данными для $(Ni_{1-x}Mg_x)O$ твердых растворов. Видно, что наблюдается хорошая корреляция между обеими зависимостями. Эти результаты находятся также в хорошем согласии с данными по температурной зависимости магнитной восприимчивости [17].

Для получения сведений о других параметрах атомной и магнитной подсистем $(Ni_{1-x}Li_x)O$ твердых растворов проводили численную обработку нейтронограмм по программе FULLPROF, где в качестве варьируемых величин при численной обработке нейтронограмм выступали три основных параметра атомной подсистемы: параметр решетки a(x) и вероятности заполнения узлов, законных как для атомов металла P_{Me} , так и для атомов кислорода P_O . В качестве характерного параметра магнитной подсистемы выступал средний магнитный момент на атом $\langle \mu \rangle$ антиферромагнитной подрешетки. При этом все расчеты проводили в предположении, что магнитная структура $(Ni_{1-x}Li_x)O$ твердых растворов с $x \leq 0.1$ описывается волновым вектором $\mathbf{k} = (1/2, 1/2, 1/2)$.

Результаты численных расчетов однозначно свидетельствуют о том, что наилучший фактор сходимости $(R \sim 5\%)$ для экспериментальных и теоретически рассчитанных интенсивностей ядерных и магнитных отражений для (Ni_{1-x}Li_x)О твердых растворов соответствует случаю, когда атомы никеля и лития располагаются хаотически в катионной подрешетке с вероятностью, равной 1, а узлы кислородной подрешетки заполнены с вероятностью (1-x) (рис. 5). Аналогичные расчеты, сделанные для системы твердых растворов (Ni_{1-x}Mg_x)O, изученных ранее в работе [8], показывают, что вероятность заполнения кислородом анионной подрешетки равна 1. Из этого можно сделать вывод, что никаких погрешно-

Рис. 5. Вероятности заполнения атомами кислорода анионных подрешеток в $(Ni_{1-x}Mg_x)O$ (темные кружки) и $(Ni_{1-x}Li_x)O$ (светлые кружки) твердых растворах, полученные методом подгонки экспериментальных и теоретических значений интенсивностей по методу Ритвелда, встроенного в программу FULLPROF.

Сопоставление экспериментальных и расчетных значений относительных интенсивностей отражений (111) и (200) для различных составов (Ni_{1-x}Li_x)О твердых растворов

Концент- рация	Амплитуда рассеяния	$I_{(111)}/I_{(200)}$		
x	$\langle b angle 10^{-12} { m cm}$	Экспери- мент	Расчет $P_{\rm O} = (1-x)$	Расчет $P_{\rm O} = 1$
0.010	1.020	0.127	0.139	0.132
0.015	1.012	0.135	0.136	0.128
0.020	1.005	0.133	0.137	0.126
0.025	0.999	0.132	0.136	0.123
0.030	0.994	0.139	0.137	0.121
0.040	0.981	0.133	0.135	0.113
0.050	0.968	0.127	0.129	0.110
0.060	0.809	0.133	0.132	0.105
0.080	0.956	0.136	0.135	0.095

стей, связанных с методом обработки нейтронограмм, не существует и мы имеем дело с физическим результатом, свидетельствующим о наличии в анионной подрешетке $(Ni_{1-x}Li_x)O$ твердых растворов вакансий по кислороду, концентрация которых соответствует концентрации лития.

Полученный результат был подвергнут тщательному анализу и проверке. Прежде всего были рассмотрены две альтернативные модельные структуры (Ni_{1-x}Li_x)О твердых растворов. Первая из них соответствовала формуле $(Ni_{1-2x}^{2+}Ni_{x}^{3+}Li_{x}^{+})O^{2-}$, где предполагается полное заполнение ионами никеля и лития катионной подрешетки, а ионами кислорода — анионной подрешетки. Вторая модель исходила из предположения, что нейтральные атомы лития занимают тетраэдрические позиции в ГЦК решетке кислорода, а октаэдрические позиции заняты только ионами Ni²⁺. В результате проведенных расчетов оказалось, что в том и другом случаях факторы расходимости для экспериментально измеренных и теоретически рассчитанных интенсивностей ядерных отражений превышали 50%, что указывало на несостоятельность указанных моделей при описании структурного состояния атомов лития в NiO.

Наконец, для большей доказательности существования дефектности анионной подрешетки совершенно независимым методом (без использования численных расчетов по программе FULLPROF) были определены экспериментальные значения отношений интегральных интенсивностей ядерных рефлексов (111) и (200). Затем эти же отношения были вычислены теоретически в предположении заполнения анионной подрешетки атомами кислорода с вероятностями $P_0 = 1$ и 1 - x. Все полученные данные собраны в таблицу, из которой видно, что согласие расчетных данных с экспериментальными достигается тогда, когда вероятность заполнения позиций, законных для атомов кислорода, соответствует (1 - x). В этом случае отношение интенсивности $I_{(111)}/I_{(200)}$ сохраняется примерно одинаковым во всей области составов, в то время как при заполнении кислородной подрешетки с вероятностью, равной 1, оно изменяется приблизительно в 1.5 раза. Таким образом, вывод о дефектности кислородной подрешетки в литийдопированных монооксидах никеля, полученный здесь из данных нейтрон-дифракционных измерений, кажется весьма обоснованным.

В качестве сопутствующих результатов полнопрофильного анализа нейтрон-дифракционных отражений, полученных на порошковых образцах, оказались сведения о величинах средних магнитных моментов на атом $\mu(x)$ и параметрах кристаллических решеток a(x), которые представлены на рис. 6 и 7 соответственно. Как видно из рис. 6, величина среднего магнитного момента

Рис. 6. Концентрационные зависимости среднего магнитного момента на ион металла в $(Ni_{1-x}Mg_x)O$ (темные кружки [8]) и $(Ni_{1-x}Li_x)O$ (светлые кружки) твердых растворах, полученные из данных нейтронографического эсперимента в работе [8] и в настоящей работе соответственно.

Рис. 7. Концентрационная зависимость параметра кристаллической решетки $(Ni_{1-x}Li_x)O$ и $(Ni_{1-x}Mg_x)O$ твердых растворов: *1* — данные из работы [8]; *2* — данные работы [10]; *3* — [13]; *4* — настоящая работа; *5* — [12].

 $\langle \mu(x) \rangle$ проявляет линейную зависимость подобно $\langle \mu(x) \rangle$ в (Ni_{1-x}Mg_x)О твердых растворах, в то время как значения параметров решетки близки к тем, что определены рентгеновским методом и несколько отличаются от зависимости a(x), представленной в работе [12].

3. Обсуждение

Основываясь на результатах настоящего эксперимента, можно утверждать, что литий-допированные монооксиды никеля представляют собой твердые растворы замещения, в которых атомы лития хаотически распределены в полностью заполненной катионной подрешетке с одновременным образованием вакансий по кислороду в анионной подрешетке. Тогда химическая формула таких растворов должна быть записана в виде $Ni_{1-x}^{2+}Li_xO_{1-x}^{2-}\Box_x$, где 🗆 означает вакансию по кислороду в анионной подрешетке. Как видно из этой формулы, число валентных электронов у ионов никеля и кислорода в литийдопированном NiO остается тем же самым, что и в недопированном. В то же время атомы лития, располагаясь хаотически в катионной подрешетке, находятся в нейтральном состоянии, не вступая в химическую связь с атомами кислорода. Однако можно предположить, что внешний валентный электрон лития, имеющий 2*p*-симметрию волновой функции и слабую связь с ионным остовом, может быть пространственно поляризован в сторону кислородной вакансии. Можно ожидать также образование F-центров в анионной подрешетке, концентрация которых соответствует концентрации атомов лития в твердом растворе.

Нам представляется также, что факт существования малой работы выхода электронов в этих материалах может иметь непосредственное отношение к наличию кислородных вакансий в анионной подрешетке. С точки зрения электронной структуры это означает, что в дефектных кристаллах поверхность Ферми в некоторых точках обратного пространства очень близко примыкает к поверхности кристалла. С другой стороны, высокая электропроводность лития-допированных монооксидов никеля, по сравнению с недопированными, имеющая дырочный характер, по-видимому, обусловлена образованием акцепторного уровня в запрещенной полосе, обязанного своей природой примесным атомам лития.

Относительно магнитных свойств литий-допированных монооксидов никеля следует заметить, что в области составов x < 0.1 они остаются антиферромагнетиками с тем же типом магнитного упорядочения, что и в NiO. При этом замещение магнитного иона Ni²⁺ на диамагнитный атом лития приводит к линейному изменению точки Нееля по закону $T_{\rm N} = T_{\rm N}^{\rm NiO}(1-x)$, где x < 0.25. Это совпадает с выводом теории молекулярного поля, рассмотренной в работах [8,9] для случая замещения Ni²⁺ диамагнитным ионом Mg²⁺. Следовательно, в рассматриваемой области составов нет больших различий в диамагнитном разбавлении магнием и литием. Об этом же свидетельствуют и однотипные концентрационные зависимости средних магнитных моментов на атом, которые могут быть также описаны линейным законом в данной области составов: $\langle \mu \rangle = \mu_{\rm Ni}(1-x) - M_x$, где $\mu_{\rm Ni} = 1.9 \,\mu_{\rm B}$ — локальный магнитный момент на атомах никеля в диамагнитно разбавленном и неразбавленном NiO, а М — индуцированный на диамагнитной примеси момент, имеющий направление, обратное намагниченности антиферромагнитной подрешетки [9].

Подобие в поведении магнитных свойств (Ni_{1-x}Li_x)O и (Ni_{1-r}Mg_r)О твердых растворов в области составов $0 \le x < 0.1$ свидетельствует в первую очередь о том, что обменное взаимодействие между магнитными ионами никеля осуществляется в пределах катионных подрешеток, которые в обеих системах ведут себя одинаковым образом. В качестве основных параметров магнитной подсистемы в обоих типах твердых растворов выступают обменные интегралы $J_1 > 0, J_2 < 0$ и $J_3 > 0,$ существующие на расстояниях первых ($r_1 = \frac{\sqrt{2}}{2}a$), вторых ($r_2 = a$) и третьих ($r_3 = \sqrt{3}a$) ближайших соседей соответственно. Такой характер обменного взаимодействия реализуется только в твердых растворах с кристаллической решеткой типа NaCl, которая для твердых растворов (Ni_{1-*x*}Li_{*x*})O сохраняется лишь до x = 0.5. Далее происходит структурный переход из кубической фазы в гексагональную NiLiO₂, где наблюдается упорядоченное расположение атомов лития и никеля, а также ферромагнитный порядок спинов. При этом элементы ближнего порядка по типу NiLiO₂, проявляющиеся уже при x = 0.3, приводят к тому, что в области составов 0.3 < x < 0.5 одна из антиферромагнитных подрешеток по мере заполнения ее диамагнитными атомами обладает меньшей намагниченностью, чем другая. Как следствие, возникает ферримагнитная структура, связанная с нескомпенсированностью антиферромагнитных подрешеток.

Основным экспериментальным результатом настоящего нейтрон-дифракционного исследования следует считать выявление дефектности кислородной подрешетки NiO при допировании его литием. Этот результат получен только благодаря удачному соотношению ядерных амплитуд рассеяния для атомов лития, никеля и кислорода. Обнаружение дефектности кислородной подрешетки в литий-допированном NiO, возможно, поможет в объяснении особенностей электрических свойств этих материалов, связанных с наличием большой электропроводности и малой работой выхода электронов.

Список литературы

- C.G. Shull, W.A. Strausser, E.O. Wollan. Phys. Rev. 83, 333 (1951).
- [2] W.I. Roth. Phys. Rev. 110, 1333 (1958).
- [3] S. Koide. J. Phys. Soc. Japan 20, 1, 123 (1965).
- [4] Н.И. Миронова, У.А. Улманис. Радиационные дефекты и ионы металлов группы железа в оксидах. Зинатне, Рига (1988). С. 202.

- [5] T.M. Giebultovicz, J.J. Rhyne, M.S. Seehra, R. Kamran. J. Phys. 49 Suppl. 12, C8–1105 (1988).
- [6] Z. Feng, V. Suresh Babu, J. Zhao, S. Seehra. J. Appl. Phys. 70, 6161 (1991).
- [7] S. Seehra, R. Kamran, M. Ibrahim. J. Appl. Phys. 73, 5468 (1993).
- [8] A.Z. Menshikov, Yu.A. Dorofeev, A.G. Klimenko, N.A. Mironova. Phys. Stat. Sol. (b) 164, 275 (1991).
- [9] A.Z. Menshikov, Yu.A. Dorofeev, N.A. Mironova, M.V. Medvedev. Solid Stat. Commun 98, 9, 839 (1996).
- [10] A. Marini, V. Massarotti, V. Berbenni, D. Capsoni, R. Riccardi. Solid State Ionics 45, 143 (1991).
- [11] V. Berbenni, V. Massarotti, D. Capsoni, R. Riccardi, A. Marini. Solid State Ionics 48, 101 (1991).
- [12] J.B. Goodenough, D.G. Wickhow, W.J. Croft. J. Phys. Chem. Solids 5, 107 (1958).
- [13] W. Li, J.N. Reimevs, J.R. Dahn. Phys. Rev. B46, 6, 3236 (1992).
- [14] R. Stoyanova, E. Zhecheva, S. Angelov. Solid State Technics 59, 17 (1993).
- [15] F. Kern, N. Perakis. C.r. Acad Sci. B279, 6, 143 (1974).
- [16] J. Rodriques-Carvayal. Physica B192, 55 (1993).
- [17] А.А. Архипов. Изв. АН ЛатвССР. Сер. физ. и техн. наук 3, 13 (1986).
- [18] J.P. Kemp, P.A. Cox, J.W. Hodby. J. Phys. Condens. Matter 2, 6699 (1990).