Термодесорбция кремния с текстурированных лент тантала

© В.Н. Агеев, Е.Ю. Афанасьева, Н.Д. Потехина, А.Ю. Потехин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 12 мая 1999 г.)

Изучалось взаимодействие Si с Та методами оже-спектроскопии и температурно-программируемой десорбщии (ТПД). Показано, что при монослойном покрытии адатомы Si начинают проникать в объем подложки при $T \geq 1400\,\mathrm{K}$. Форма спектра и кривые отжига могут быть объяснены влиянием латерального отталкивания Si–Si в адслое не только на десорбщию, но и на уход Si в объем. Из анализа экспериментальных данных были определены некоторые соотношения между кинетическими параметрами. Их использование в численном расчете на основе ранее предложенной модели позволило определить (путем сравнения расчета с опытом) кинетические параметры всех процессов взаимодействия Si с подложкой из Та при ТПД (десорбция, уход в объем, диффузии и выхода Si на поверхность). Показано, что удовлетворительное описание эксперимента получается только в предположении, что диффузия в конце ТПД после достижения максимума происходит лишь в пределах тонкого слоя вблизи поверхности, поэтому атомы Si быстрее выходят на поверхность и десорбируются, чем диффундируют в объем. Это означает, что слой вблизи поверхности при высоких температурах во время ТПД имеет нарушенную структуру по сравнению с начальной структурой Та.

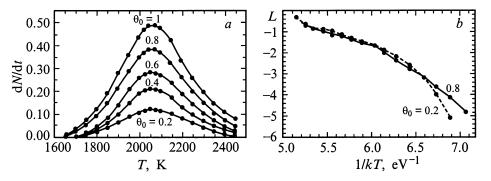
Работа выполнена в рамках программы "Атомные поверхностные структуры" (проект № 4.5.99).

Контакты "тугоплавкий металл-кремний" являются перспективными элементами высокотемпературной микроэлектроники. Однако процессы формирования этих контактов еще недостаточно изучены. Обычно с этой целью изучается система: полупроводник с нанесенным на него слоем металла [1]. В нашей лаборатории исследуются системы из металла с нанесенным на него слоем полупроводника. Это позволяет выявить новые аспекты процессов формирования приповерхностных слоев в области контакта. Данная работа продолжает серию работ, выполненных авторами по изучению взаимодействия Si с тугоплавкими металлами W, Ir, Nb, Ta [2-8] методами оже-электронной спектроскопии и температурнопрограммируемой десорбции (ТПД). Взаимодействие Si с Та изучалось в работе [9] методом фотоэлектронной спектроскопии, а диффузия кремния в тантал и силицидообразование изучены с помощью рентгеновского анализа в работе [10].

В настоящей работе измерены спектры ТПД, а также оже-сигналы и полное количество Si, оставшегося в подложке после отжига танталовой ленты с монослоем кремния на поверхности. Эти данные сравниваются с результатами расчета модельной системы, рассмотренной в работах [11,12], где учтены процессы проникновения адатомов в объем металла, их диффузия в объеме и выход на поверхность при ТПД и во время отжига. Сравнение модельного расчета с результатами измерений позволяет определить константы скоростей всех протекающих в системе процессов, а также уточнить их физический смысл.

1. Методы исследования

Измерения проводились методом ТПД с регистрацией продуктов десорбции времяпролетным масс-спектрометром. Давление остаточных газов в приборе составляло $10^{-10}\,\mathrm{Torr.}$ Абсорбентом служила


текстурированная танталовая лента с преимущественным выходом на поверхность грани (100) с размером $0.01\times1.5\times30$ mm, расположенная в зоне прямой видимости источника ионов масс-спектрометра. Очистку ленты от углерода проводили по стандартной методике путем отжига в кислороде с последующим температурным прогревом.

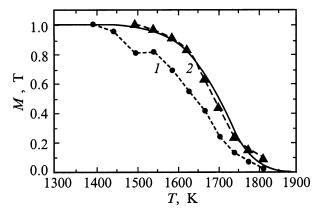
Кремний напылялся ИЗ штабиков размерами $1 \times 1 \times 30 \,\mathrm{mm}$. Штабики укрепляли параллельно ленте из Та и нагревали постоянным током. Температуру ленты определяли по зависимости сопротивления температуры. Градуировку этой зависимости осуществляли с помощью оптического микропирометра. Та нагревали пропусканием постоянного тока. Зависимость температуры ленты от времени в процессе "вспышки" была линейной. Поток атомов Si регистрировали по току ионов Si⁺, которому в массспектре соответствовала линия 28. Поток атомов Si на ленту калибровали методом "кварцевых весов".

Опыты проводили следующим образом. Ленту Та прогревали при 2600 К в течение нескольких секунд. Затем температуру ленты понижали до комнатной, напыляли Si в течение различных интервалов времени и производили "вспышку". Отжиг пленки с монослоем кремния, нанесенным при $T=300\,\mathrm{K}$, проводили в нескольких температурных точках T_i в интервале температур $1300-1800\,\mathrm{K}$ в течение 1 min. Предварительно было установлено отсутствие десорбции Si с обратной стороны ленты как во время "вспышки", так и при отжиге ленты с нанесенным на одну сторону кремнием.

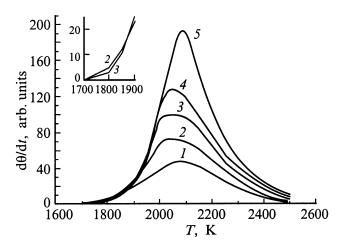
2. Результаты измерений

На рис. 1, a представлены спектры ТПД для скорости нагрева $\beta=200\,\mathrm{K}\cdot\mathrm{s}^{-1}$ и различных начальных степеней покрытия θ_0 Та (100) кремнием при $\theta_0\leq 1$.

Рис. 1. Измеренные спектры ТПД Si/Та для начальных покрытий Si $\theta_0=0.2;~0.4;~0.6;~0.8;~1.0~(a);$ зависимость функции $L=\ln(N^{-1}dN/dt)$ от $(kT)^{-1}$ для $\theta_0=0.2$ (шриховая линия) и 0.8 (сплошная линия) (b).


Для всех θ_0 на рис. 1, a наблюдается один пик ТПД. Положение максимума и полуширина пика не меняются с ростом θ_0 , что обычно характерно для одноатомной десорбции без латеральных взаимодействий в адслое и без диффузии адчастиц в объем. Тогда кривые ТПД описываются уравнением Аррениуса с первым порядком десорбции. В нашем случае однако зависимость $L(1/kT) = \ln(N^{-1}dN/dt)$, график которой для двух θ_0 приведен на рис. 1, b, не аппроксимируется прямой линией, а значит, не описывается уравнением Аррениуса. Наклон начальных прямых участков на этом графике (для $T \lesssim 1800\,\mathrm{K}$, т.е. $1/kT \gtrsim 6.4\,\mathrm{eV^{-1}}$ уменьшается с ростом покрытия от $E^* \simeq 5.4 \pm 0.2\,\mathrm{eV}$ при $\theta_0 = 0.2$ до $E^* \simeq 3.5 \pm 0.2\,\mathrm{eV}$ при $\theta_0 = 0.8$. При более высоких температурах зависимость кривых L(1/kT) от θ_0 исчезает, а их наклон уменьшается по мере роста температуры до 2200 К.

Поскольку спектры ТПД для $\theta_0 \leq 1$ не описываются уравнением Аррениуса с первым порядком десорбции, то для их объяснения необходимо привлечь другие процессы, например, возможность диффузии Si в объем танталовой ленты при ТПД. Для проверки такой возможности мы изучали зависимость оже-сигнала кремния от температуры отжига T_i монослойной пленки Si на Та. На рис. 2 через экспериментальные точки пунктиром проведены кривые отжига, дающие зависимость интенсивности оже-сигнала (кривая I) и полного количества кремния, оставшегося в системе после отжига (кривая 2). Сплошная кривая дается теоретической аппроксимацией, обсуждаемой в разделе 3.


Уменьшение оже-сигнала $I_A(T)$ (кривая I), пропорционального количеству кремния в приповерхностных слоях, происходит с ростом T_i , как за счет десорбции Si во время отжига, так и за счет его диффузии в объем тантала. Уменьшение $M(T_i)$ — полного количества Si, оставшегося в системе, — происходит только за счет десорбции во время отжига и измеряется методом ТПД. Из сравнения кривых I, 2 на рис. 2 видно, что уменьшение количества Si в приповерхностной области происходит раньше (при $T_i \geq 1400\,\mathrm{K}$), чем начинается десорбция и спад $M(T_i)$ (при $T_i \geq 1500\,\mathrm{K}$). Это означает, что в диапазоне $1400 \leq T_i \leq 1500\,\mathrm{K}$ существует только

диффузия Si в объем подложки, а при $T_i \geq 1500\,\mathrm{K}$ одновременно с диффузией Si в объеме происходит и его десорбция с поверхности Та. До температуры $T_i \leq 1400\,\mathrm{K}$ монослой Si на Та устойчив по отношению к обоим процессам.

На рис. 3 показаны спектры ТПД для больших покрытий, $\theta_0 > 1$. Начальные участки ТПД спектров для $\theta_0 = 1.2$ и 1.6 (кривые 1, 2) отличаются от таковых для $\theta_0 > 2$ (кривые 3–5). При дальнейшем увеличении покрытия фронты термодесорбционных кривых 3–5 совпадают, а максимумы смещаются с ростом θ_0 в область высоких температур (ВТ). Это свидетельствует о нулевом порядке десорбции, характерном для десорбции из толстого слоя адсорбата. Действительно, график $\ln(N^{-1}dN/dt)$ в зависимости от $(kT)^{-1}$ в этом случае удовлетворительно изображается прямой, наклон которой дает $E^* = 5.4 \pm 0.2\,\mathrm{eV}$. Известно, что при напылении Si на Та в диапазоне температур $1300 < T \le 1600 \, \mathrm{K}$ до начальных концентраций $\theta_0 < 2$ наблюдается накопление кремния в приповерхностной области с последующим образованием в этой области силицида Та₅Si₃ [8]. Если же концентрация напыленного Si превысит $\theta_0 \simeq 2$, то в приповерхностной области происходит структурный фазовый переход от Ta₅Si₃ к

Рис. 2. Изменение оже-сигнала (I) и полного количества M(T) Si (2) в пластине Та после отжига в течение 60 s в зависимости от температуры отжига.

Рис. 3. Спектры ТПД Si/Ta при больших степенях напыления Si: θ_0 : I-1.2; 2-1.6; 3-2.0; 4-2.4; 5-3.2.

Та₄Si. Поэтому различия в начальных участках ТПД спектров для $\theta_0 < 2$ и $\theta_0 > 2$, по-видимому, связаны с десорбцией Si из различных силицидов: Ta₅Si₃ и Ta₄Si. При этом резко увеличивается скорость растворения Si сквозь слой силицида [8].

При $\theta_0 \geq 2$ фронты спектров ТПД совпадают, и максимум смещается в область высоких температур. Независимость скорости десорбции от покрытия связана здесь, вероятно, с десорбцией Si из силицида Ta_4Si . Энергия активации десорбции, полученная из зависимости L(1/kT), совпадает при этом с энергией десорбции при малых θ_0 , $E_d = 5.4 \pm 0.2\,\mathrm{eV}$, что указывает на наличие небольшой поверхностной концентрации атомов Si в процессе испарения силицида.

Следует отметить, что если температура T_{ads} , при которой производилось напыление Si на Ta, меньше 1300 K, то форма спектров ТПД в отличие от Si на W при $\theta_0 > 1$ [4] не зависит от T_{ads} как при $\theta_0 \leq 1$, так и при $\theta_0 > 1$, хотя проникновение Si в Ta при $\theta_0 > 1$ начинается уже при T > 700 K [8]. Это означает что окончательный профиль концентрации Si в объеме Тa устанавливается за время "вспышки".

3. Сравнение результатов измерений с модельными расчетами спектров ТПД

Из приведенных на рис. 1–3 результатов следует, что процесс ТПД атомов Si с поверхности Та (100) сопровождается проникновением Si в объем подложки, которое начинается раньше, чем десорбция из адслоя. Уменьшение наклона начальных участков графиков L(1/kT) на рис. 1, b при увеличении θ_0 свидетельствует об отталкивательном взаимодействии между адатомами Si на поверхности Та (100), аналогичном латеральному взаимодействию Si–Si на поверхности W (100) [4].

Таким образом, при описании спектров ТПД из субмонослойных пленок кремния на поверхности Та (100) необходимо учитывать как процессы диффузии Si в объем подложки с его обратным выходом на поверхность во время "вспышки", так и латеральное взаимодействие в адслое. Расчет модельной системы для описания спектров ТПД в этих условиях был выполнен в работах [11,12]. Там рассматривалась симметричная пластина толщиной 21, на обе стороны которой нанесен слой адсорбата с начальным покрытием θ_0 . Предполагалось, что процессы диффузии и десорбции начинаются лишь при $T(t) > T_0$. В начальный момент объем свободен от частиц. В модели (рис. 4) выделен первый подповерхностный слой, который служит границей остального объема, рассматриваемого как континуум. Движение частиц в объеме характеризуется коэффициентом диффузии $D = D_0 \exp(-E_m/kT)$. В работе [11] записана система уравнений для численного решения задачи об изменениях концентрации частиц в адслое, приповерхностном слое и в объеме во время ТПД при

$$T(t) = T_0 + \beta t. \tag{1}$$

Рассматривались случаи с различным соотношением между константами скоростей десорбции k_d , перехода из адслоя в приповерхностный слой k_1 и обратно k_2 и коэффициентом диффузии D(T).

Позже аналогичная задача была сформулирована в работе [13], где диффузия в объем учитывалась при напылении адсорбата. Было показано, что чем медленнее идет напыление, тем выше в спектре диффузионный максимум в области ВТ. В наших работах предполагалось, что начальное покрытие задано и влияние диффузии изучалось лишь во время ТПД. Но в отличие от [13] в работе [11] учтено изменение концентрации в подповерхностном слое на границе объема с адслоем вместо предположения о квазистационарности потока

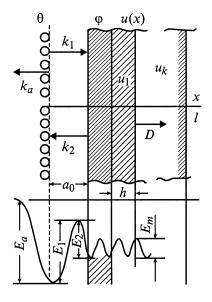


Рис. 4. Схематическая модель изучаемой системы.

частиц на границе. Одной из целей нашей работы [11] как раз и было определение условий формирования квазистационарного потока на границе объемной среды. Было показано, что это происходит лишь в конце процесса ТПД, после достижения максимума в спектре. Кроме того, в работе [12] в отличие от [13] было учтено влияние латеральных взаимодействий в адслое на спектры ТПД.

При отсутствии латеральных взаимодействий константы скоростей всех процессов подчиняются уравнению Аррениуса

$$k_i(T) = k_i^0 \exp(-E_i/kT), \tag{2}$$

где k_i^0 — предэкспоненты, E_i — энергии активации соответствующего процесса. Латеральные взаимодействия в адслое приводят к зависимости величин k_d и k_1 от покрытия $\theta(t)$. Мы брали эту зависимость из теории решеточного газа [14,15]. Спектр ТПД определяется потоком десорбирующихся частиц

$$J(t) = -dN/dt = N_s k_d(T(t))\theta(t), \tag{3}$$

(где $N(t) = N_s\theta(t)$ — полное число частиц в половине пластины, N_s — число мест адсорбции на $1\,\mathrm{cm}^2$), и может иметь один, два и три максимума [11,12]. Один пик в спектре при наличии латерального отталкивания в адслое может остаться лишь в том случае, когда отталкивание влияет не только на скорость десорбции, но и на уход частиц в объем, который при этом начинается раньше, чем десорбция.

Для предварительной оценки пределов изменения параметров, входящих в численный расчет, использовались следующие результаты.

1) Наклон графика $L(1/kT) = \ln(N^{-1} dN/dt)$ (рис. 1, b) при малых степенях покрытия $\theta_0 \to 0$ определяет величину энергии активации десорбции,

$$E_d \simeq 5.4 \pm 0.2 \,\text{eV}.$$
 (4)

2) Изменение наклона графика L(1/kT) с ростом θ_0 дает оценку энергии w латерального взаимодействия из соотношения

$$E_i(\theta) \simeq E_i(0) - z\theta w,$$
 (5)

где z — число ближайших соседей в адслое, E_i — это E_d или E_1 .

Для определения w используем $E_d(0)$ из (4) и $E_d(1)\simeq 4.5$ eV. Последнюю величину мы взяли близкой к теплоте сублимации Si, так как определение $E_d(1)$ из наклона графиков L(1/kT) не будет корректным, поскольку ТПД происходит, как показано выше, после частичного истощения адслоя за счет диффузии в объем. Если бы десорбция происходила при $\theta\simeq 1$, то латеральное отталкивание в адслое должно было бы приводить к двум пикам в спектре ТПД [14,15], в то время как в случае Si/Ta проявляется только высокоэнергетический пик, соответствующий малым покрытиям. Тогда из уравнения (5) при z=4 получим оценку

$$w \simeq 0.25 \pm 0.05 \,\text{eV}.$$
 (6)

3) Предэкспоненты десорбции оцениваем из положения максимума спектра ТПД, $T_m \simeq 2060\,\mathrm{K}$ в соответствии с уравнением Редхеда [16], полученным без учета диффузии в объем

$$E_d/(kT_m) \simeq \ln(k_d^0 T_m/\beta) - 3.64.$$
 (7)

Здесь использованы соотношения (1) и (2) для зависимостей $k_d(T)$ и T(t).

4) Разница температур начала ухода адатомов Si в Та $(T_1=1400\,\mathrm{K})$ и начала десорбции $(T_2=1500\,\mathrm{K})$ дает нижнюю границу для разности E_d и E_1 на основе соотношения $k_1(1400\,\mathrm{K})\simeq k_d(1500\,\mathrm{K})$. Используя закон Аррениуса (2) и подставляя в него зависимость энергий активации E_d и E_1 от покрытия (5), а также учитывая, что при $T_2=1500\,\mathrm{K}$ в объем ушло примерно $0.1\theta_0$ (рис. 3), получим уравнение

$$E_1 \simeq (E_d - 0.9\theta_0 zw) \frac{T_1}{T_2} + \theta_0 zw - kT_1 \ln(k_d^0/k_1^0),$$
 (8)

из которого найдем, что при $k_d^0/k_1^0 \simeq (1\!-\!10); \ w=0.3,$ $z=4,\ \theta_0=1$

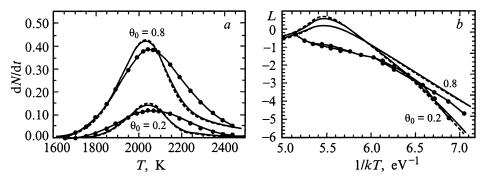
$$\delta E = E_d - E_1 \ge (0.4 - 0.8) \,\text{eV}.$$
 (9)

5) Из теории отжига субмонослоя при наличии диффузии в объем [17] следует, что изменение оже-сигнала примесных частиц в поверхностном слое в начальные моменты отжига при $t < k_d^{-1}(T)$) определяется уравнением

$$I_A(t,T) \simeq I_0 \lambda \theta_0 \left[1 - b(T) \sqrt{t} \right],$$

$$b(T) = k_1(T) \sqrt{D} / \left[a_0 k_2(T) \right], \tag{10}$$

где a_0 — постоянная решетки Та, λ — глубина проникновения оже-сигнала примеси, который спадает с ростом ее расстояния x от поверхности по закону $I_A(x) = I_0 \exp(-x/\lambda)$, а I_0 — оже-сигнал от монослоя. Из сравнения эксперимента для Si/Ta [7] с выражением (10) в работе [17] получены соотношения


$$E_1 - E_2 \simeq (1.9 - E_m/2) \text{ eV}; \quad k_2^0/k_1^0 \simeq 5,$$
 (11)

где E_2 — энергия активации обратного выхода частиц из объема на поверхность, а E_m — энергия активации объемной миграции.

При выводе уравнений (10)–(11) не была учтена зависимость от θ в коэффициентах $k_d(\theta,T)$ и $k_1(\theta,T)$. Поэтому оценки (11) являются предварительными и могут измениться при учете этих зависимостей.

6) На эксперименте не наблюдалось выхода частиц на обратную сторону ленты толщиной $0.01 \, \mathrm{mm}$. Распределения частиц в объеме, вычисленные при различных коэффициентах диффузии с параметрами, отвечающими условиям (1)–(5), показали, что атомы Si не выходят на обратную сторону ленты ни при отжиге, ни при ТПД, если коэффициент диффузии ограничен неравенством

$$D(T) \ge 10^{-4} \exp(-1.5 \,\text{eV/kT}).$$
 (12)

Рис. 5. Результат расчета спектра ТПД (a) и функции L(1/kT) (b) с параметрами I (сплошные кривые) и II (штриховые кривые) и табл. 1 для $l_1 = l = 0.001$ сm. Приведены также результаты измерений (точки, соединенные сплошными линиями) для $\Theta_0 = 0.2$; 0.6; 1.0 (a) и $\theta_0 = 0.2$; 0.8 (b).

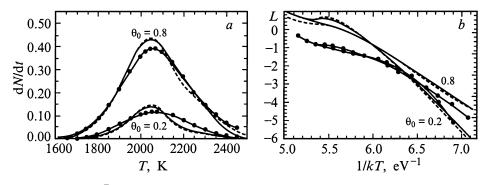
На основании этих соображений получаем набор исходных параметров, около которых производим добавочные небольшие вариации для более точного описания спектра ТПД (рис. 1) и кривых отжига (рис. 2). Исходный набор кинетических параметров при разных значениях D(T) приведен в табл. 1 (варианты I и II). Энергии активации указаны в eV , а предэкспоненты — в единицах 10^{13} s $^{-1}$ для k_i^0 и в cm $^2 \cdot$ s $^{-1}$ для D_0 .

Вычисления с этими параметрами для $l=10^{-3}\,\mathrm{cm}$ показывают (рис. 5), что хотя расчет и передает главные особенности спектра, один максимум, положение и полуширина которого почти не меняются с изменением начального покрытия θ_0 , но при этом спектр оказывается несимметричным в отличие от эксперимента, а скорость отжига при ВТ значительно меньше экспериментальной

Таблица 1. Варианты набора параметров, использованных в расчете

	I		II		III	
	E_i	k_i^0	E_i	k_i^0	E_i	k_i^0
k_d K_1 k_2	5.4 4.6 3.4	5 1 5	5.5 4.7 3.5	8 1 5	5.3 4.4 3.0	7 5 7
D	$2.1\cdot 10^{-3}$		$1.8 \cdot 10^{-4}$		1.6	$2 \cdot 10^{-4}$
l_1	0.15 <i>l</i>		0.12 <i>l</i>		0.25l	

Таблица 2. Доля Si, оставшегося в подложке после отжига в течение 60 s при разных T_i (результаты измерений и вычислений с наборами параметров I и III из табл. 1)


T_i , K	Эксперимент		I	III
	Эксперимент	$l_1 = l$	$l_1=0.15l$	$l_1=0.25l$
1400	1.0	0.994	0.99	1.0
1500	1.0	0.988	0.98	0.98
1600	0.80 - 0.89	0.92	0.90	0.88
1700	0.38 - 0.46	0.72	0.60	0.52
1800	0.10	0.36	0.13	0.06

(табл. 2, $l_1 = l$). Это означает, что в расчете более, чем в 3 раза завышено количество кремния, проникшего в объем и оставшегося в нем после отжига при $T \geq 1700\,\mathrm{K}$, независимо от величины коэффициента диффузии, удовлетворяющего условию (12). Вариации параметров не устраняли этого расхождения с экспериментом. Функция L(1/kT) (рис. 5, b) в расчете перестает расти и понижается при $T \geq T_m$, что, как показано в [11,12], также свидетельствует о завышении роли диффузии в объем для нашей модели по сравнению с экспериментом.


Восстановить симметрию вычисленных спектров можно было лишь введя предположение о резком уменьшении скорости диффузии в объеме за пределами некоторого слоя толщины $l_1 \ll l$ вблизи поверхности. При этом все варианты параметров из табл. 1 дают симметричные спектры, аналогичные показанному на рис. 6, где представлены результаты расчета с параметрами вариантов I и II при $l_1 < l$. Ход функции L(1/kT) (рис. 6, b) также больше похож на ход экспериментальных графиков. Отжиг при ВТ ускоряется, почти устраняя расхождение с экспериментом, как показывает табл. 2. Отметим, что при такой модификации теоретической модели отпадает ограничение (12).

Еще лучше подгонка к эксперименту получена некоторой вариацией констант (вариант III в табл. 1) (рис. 7). Отклонения от условий (11) в этом наборе могут быть следствием приближений, сделанных в работе [17], а также результатом связи между параметрами E_i и k_i^0 , не позволяющей определять их однозначно порознь. Взаимосвязь параметров приводит к возможности описывать эксперимент различными наборами параметров. Однако все найденные нами наборы не очень сильно отличаются друг от друга и для взаимодействия субмонослоя Si с подложкой из Та параметры ограничены следующими рамками величин (в eV для энергий активации, в 10^{13} s⁻¹ для k_i^0):

$$E_d \simeq 5.3-5.5;$$
 $k_d^0 \simeq 5-10;$ $E_1 \simeq 4.4-4.7;$ $k_1^0 \simeq 1-8;$ $E_2 \simeq 3.0-3.5;$ $k_2^0 \simeq 3-7;$ $E_m \simeq 1.6-2.1;$ $D_0 \simeq 10^{-4}-10^{-3} \text{ cm}^2 \cdot \text{s}^{-1}.$ (13)

Рис. 6. То же, что на рис. 5, но при $l_1 < l$ из табл. 1.

Рис. 7. Вычисленные спектры ТПД (a) и функция L(1/kT) при наборе параметров III из табл. 1 для $\theta_0=0.2;\ 0.6;\ 1.0\ (a)$ и $\theta_0=0.2;\ 0.8\ (b)$. Результаты измерений даны точками, соединенными сплошными линиями.

При этом в нашей модели предполагается, что в объеме пластины скорость диффузии спадает до нуля за пределами тонкого слоя вблизи поверхности. Для реальной системы это означает, что скорость диффузии примесных частиц в объеме зависит от концентрации примеси или от расстояния до поверхности. Мы моделировали эту зависимость ступенчатым спадом D(T) до 0 при $x \ge l_1 = (0.12 - 0.25)l$, где l — толщина пластины из тантала. Грубость этой модели отчасти обусловливает неточное описание вычисляемых зависимостей dN/dtи L(1/kT) при разных θ_0 . В частности, ступенчатый спад коэффициента диффузии приводит к более резкому спаду ВТ ветви спектра по сравнению с экспериментом. Ход экспериментального графика L(1/kT)также ближе к модели со ступенчатой зависимостью коэффициента диффузии D(x), чем к модели без такой зависимости (рис. 5,6). На рис. 7 наклоны различных участков графика L(1/kT), определяющие эффективные энергии активации E_i , удовлетворительно согласуются с экспериментом. Остающиеся количественные расхождения могут быть связаны с неточностью как модели, так и измерений. Данные по отжигу, рассчитанные по данной модели (последний столбец табл. 2 и сплошная кривая на рис. 2), также неплохо согласуются с экспериментом.

Проведенные вычисления показали, что совокупность требований (4)–(12) определяет довольно узкие рамки

изменения параметров скоростей реакций, представленные соотношениями (13).

Таким образом, в настоящей работе показано, что во время температурной "вспышки" кремний из субмонослоя раньше проникает в объем подложки (при $T \ge 1400 \, \mathrm{K}$), чем десорбируется (при $T \ge 1500 \, \mathrm{K}$). Это объясняет, почему в спектре ТПД кремния с поверхности тантала имеется лишь один максимум, несмотря на существование латерального отталкивания в адслое.

Из сравнения расчета с экспериментом следует, что наблюдаемая колоколообразная форма спектра почти без диффузионного "хвоста", возможна лишь при выделении вблизи поверхности некоторого слоя с повышенной скоростью диффузии в нем по сравнению с остальным объектом. Это может быть связано с образованием слоя силицида при $T \geq 1600\,\mathrm{K}$, сквозь который и осуществляется ускоренная диффузия в объем, а также более быстрый выход Si на поверхность через слой разрушающегося силицида, чем проникновение далее в глубь чистого Та. Поэтому модель с "отражением" диффундирующих частиц от границы некоторого слоя вблизи поверхности лучше передает форму спектра ТПД и скорость отжига, чем с постоянным коэффициентом диффузии по всей толщине ленты.

Определены приближенные значения энергий активации и предэкспонент в скоростях реакций всех процессов взаимодействия адатомов Si с подложкой из Ta.

Список литературы

- [1] G. Ross. Surf. Rep. 7, 1 (1987).
- [2] В.Н. Агеев, Е.Ю. Афанасьева, Н.Р. Галль, С.Н. Михайлов, Е.В. Рутьков, А.Я. Тонтегоде. Поверхность 5, 7 (1987).
- [3] В.Н. Агеев, Е.Ю. Афанасьева, Н.Р. Галль, С.Н. Михайлов, Е.В. Рутьков, А.Я. Тонтегоде. Письма в ЖТФ 12, 9, 565 (1986).
- [4] В.Н. Агеев, Е.Ю. Афанасьева. Поверхность 7, 30 (1987).
- [5] Е.Ю. Афанасьева, Н.Д. Потехина, С.М. Соловьев. ФТТ 37, 2, 463 (1995).
- [6] В.Н. Агеев, Е.Ю. Афанасьева, С.М. Соловьев, А.К. Григорьев. ФТТ 35, 2, 481 (1993).
- [7] N.R. Gall, E.V. Ryt'kov, A.Ya. Tontegode, M.M. Usufov. Phys. Low-Dim. Struct. 4/5, 75 (1996).
- [8] В.Н. Агеев, Е.Ю. Афанасьева. ФТТ 39, 8, 1484 (1997).
- [9] T.A. Nguyen Tau, V. Azizan, J. Derrien. Surf. Sci. 189/190, 339 (1987).
- [10] G.J. Campisi, A.J. Bevolo, H.R. Shanks, H.A. Schmidt. J. Appl. Phys. 53, 1714 (1982).
- [11] В.Н. Агеев, А.Ю. Потехин, Н.Д. Потехина. Поверхность 1, 31 (1987).
- [12] В.Н. Агеев, А.Ю. Потехин, Н.Д Потехина. Поверхность *1*, 5 (1991).
- [13] M. Mavrikakis, J.M. Schwank, Y.L. Gland. Surf. Sci. 355, 385 (1996).
- [14] D.L. Adams. Surf. Sci. 42, 12 (1974).
- [15] V.P. Zhdanov. Elementary Physical Chemical Processes on Solids Surfaces. Plenum, N. Y. (1991).
- [16] P.A. Redhead. Vacuum 12, 2, 203 (1962).
- [17] Н.Д. Потехина. ФТТ (1999).