Дисперсия скорости звука в борате железа при ядерном магнитоакустическом резонансе

© Х.Г. Богданова, В.Е. Леонтьев, М.М. Шакирзянов, А.Р. Булатов

Казанский физико-технический институт Российской академии наук, 420029 Казань, Россия

E-mail: bogdanova@dionis.kfti.kcn.ru

(Поступила в Редакцию 15 июля 1999 г.)

Экспериментально и теоретически исследована частотная зависимость скорости связанных магнитоупругих волн в слабом ферромагнетике FeBO₃. В условиях ядерного магнитоакустического резонанса, когда частота возбуждаемого в образце звука близка к частоте ЯМР ядер Fe⁵⁷, обнаружена аномальная зависимость скорости поперечного звука от частоты в монодоменном образце. Показано, что наблюдаемая зависимость обусловлена существенным влиянием неравновесных состояний ядерной спин-системы на перенормировку упругих констант вследствие эффективной магнитоупругой связи.

Работа выполнена при финансовой поддержке РФФИ (проект № 99-02-16268).

Одним из проявлений эффективной магнитоупругой (МУ) связи в магнитоупорядоченных веществах является перенормировка модулей упругости второго порядка и возникновение их зависимости от величины магнитного поля Н. Эти эффекты наиболее сильны в легкоплоскостных антиферромагнетиках (АФЛП), таких как KMnF₃, RbMnF₂, α -Fe₂O₃, FeBO₃ и др. [1,2]. Изменение модулей упругости обусловливает в свою очередь перенормировку соответствующих скоростей звука и их полевую зависимость, выражение для которой, полученное в приближении линейной связи упругих и спиновых волн, хорошо согласуется с экспериментальными данными в АФЛП [2,3]. Очевидно, что полевая зависимость упругих констант определяется зависимостью параметров магнитной компоненты связанных МУ-волн от постоянного магнитного поля, т.е. от состояния магнитной подсистемы вещества. Состояние магнитной подсистемы помимо внешнего постоянного магнитного поля определяется множеством других взаимодействий [1,2], в том числе сверхтонким взаимодействием (СТВ) с магнитными моментами ядер. Необходимо заметить, что эффективное магнитное поле, действующее со стороны ядер, является достаточно слабым [4] и влияние ядерных спинов на намагниченности подрешеток образца может быть обнаружено лишь при существенном изменении состояния ядерной спин-системы. Хорошо известно, что этого можно добиться, воздействуя на спин-систему ядер переменными магнитными полями, частота которых близка к частоте ЯМР [4]. В этом случае изменения в магнитной подсистеме будут носить также резонансный — по величине постоянного магнитного поля или по частоте внешнего переменного поля — характер, что соответственно должно отразиться и на перенормировке модулей упругости второго порядка вследствие эффективного МУ-взаимодействия. В этой связи особый интерес вызывает случай, когда частота возбуждаемого в образце звука попадает в область частот ядерных спиновых волн (ЯСВ) в магнетиках с сильным взаи-

модействием Сула-Накамуры (KMnF₃, RbMnF₃) или совпадает с частотой ЯМР в кристаллах, где ширина зон ЯСВ (δ) значительно уже ширины линии ЯМР (Δ). При совпадении частот, т.е. в условиях ядерного магнитоакустического резонанса (ЯМАР) [4], динамическая компонента СТВ, определяемая магнитной компонентой связанных МУ-волн, резонансным образом воздействует на спин-систему ядер, приводя ее в сильнонеравновесное состояние. Ранее нами было обнаружено [5,6], что в АФЛП KMnF₃ акустическое поле в условиях ЯМАР возбуждает ЯСВ с волновым вектором $\mathbf{q} \neq \mathbf{0}$ и что при этом наблюдается не только значительное (более 10 раз) ослабление интенсивности, но и аномальная дисперсия скорости звука. При этом волновой вектор (k) и поляризация звука (е) выбирались такими, чтобы исключить эффект резонансного поглощения вследствие возбуждения переходов между зеемановскими подуровнями энергии в спин-системе ядер [4]. Аналогичные эксперименты, проведенные в АФЛП FeBO₃, в котором ЯСВ не наблюдаются, показали, что ослабление интенсивности звука в $KMnF_3$ связано именно с возбуждением ЯСВ с $\mathbf{q} \neq 0$. Аномальная же дисперсия звука, изучению которой в FeBO₃ посвящена настоящая работа, обусловлена, на наш взгляд, расталкиванием спектров колебаний ядерной намагниченности (в том числе и нулевой моды) и возбужденного в образце звука в условиях ЯМАР.

1. Результаты измерений

Соединение FeBO $_3$ принадлежит к классу антиферромагнетиков с ромбоэдрической структурой $R\bar{3}C$ и магнитной анизотропией типа "легкая" плоскость (111), обладающих слабым ферромагнетизмом. Переход в антиферромагнитное состояние происходит при температуре $T_N=384\,\mathrm{K}$, ниже которой борат железа обладает слабым ферромагнетизмом.

В работе использовались образцы FeBO₃, выращенные газотранспортным методом и имеющие вид пря-

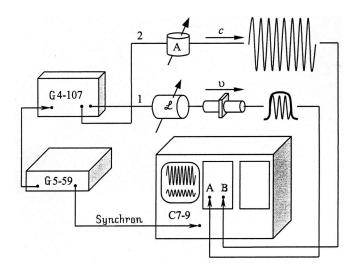


Рис. 1. Блок-схема измерительной установки фазово-импульсного метода измерения скорости звука.

моугольных параллелепипедов с линейными размерами $8\times8\times1.45\,\mathrm{mm}$. Торцевые рабочие грани образцов соответствовали "легкой" базисной плоскости кристалла $\mathrm{FeBO_3}$, отклонение которых от плоскопараллельности составляло не более 1'. В эксперименте применялся импульсный режим возбуждения ультразвуковых волн по принципу "на прохождение" (с двумя пьезопреобразователями). В качестве акустических преобразователей для возбуждения поперечного ультразвука применялись цилиндрические стержни X-среза $\mathrm{LiNbO_3}$ длиной 15 и диаметром $5\,\mathrm{mm}$. Акустический контакт образца с преобразователями обеспечивался тонким слоем силиконового кремнийорганического масла $\mathrm{\Gamma}\mathrm{K}\mathrm{K}$.

Измерения проводились при температуре $T=77\,\mathrm{K}$. Для избежания образования доменной структуры образец был предварительно охлажден в магнитном поле $H=1000\,\mathrm{Oe}$.

Акустические измерения, а именно измерения относительной скорости $\Delta \nu_s/\nu_{s0}=(\nu_s(H^*,\omega)-\nu_s(H^*,\omega'))/\nu_s(H^*,\omega')$, где $\nu_{s0}=\nu_s(H^*,\omega')$ — скорость звука вдали от резонанса при постоянном магнитном поле $H^*=60\,\mathrm{Oe}$ и на частоте $\omega'/2\pi=70\,\mathrm{MHz}$, в зависимости от частоты возбуждаемых акустических колебаний ω проводились по фазово-импульсной методике [7].

Суть метода состоит в следующем (рис. 1). Непрерывный ВЧ-сигнал разветвлялся по двум каналам. По первому каналу импульсно-промодулированный сигнал проходил через коаксиальную линию переменной длины \mathcal{L} , преобразовывался в УЗ-волну, которая, проследовав через образец, затем вновь преобразовывалась в ВЧ-сигнал, поступающий на один из входов стробоскопического осциллографа. По второму каналу непрерывный ВЧ-сигнал поступал на второй вход осциллографа. Развертка на осциллографе устанавливалась так, чтобы на экране наблюдалось порядка 5–10 периодов исследуемых

сигналов (рис. 1). На экране осциллографа подстройкой длины линии $\mathcal L$ контролировалась фазировка сигналов двух каналов

$$\varphi_1 = \varphi_2 + (2n+1)\pi, \quad (n=1,2,3...),$$

где φ_1 и φ_2 — фазы сигналов первого и второго каналов. Набег фазы в первом канале составлял

$$\varphi_1 = \varphi_{\mathcal{L}} + \varphi_d,$$

где $\varphi_{\mathcal{L}}=2\pi f\mathcal{L}/c$ — набег фазы в линии переменной длины, c — скорость света, $\varphi_d=2\pi fd/\nu_{s0}$ — набег фазы в образце, d — длина образца. Набег фазы во втором канале —

$$\varphi_2 = 2\pi f L_2/c$$

где L_2 — путь электромагнитной волны во втором канале. Тогда получаем

$$f\mathcal{L}/c + fd/\nu_{s0} = fL_2/c + (n+1/2).$$

Набег фазы в образце за счет изменения скорости звука компенсировался изменением фазы в линии переменной длины, так что $\varphi_1=\varphi_{\mathcal{L}}+\varphi_d=\text{const.}$ Таким образом, $\Delta\nu/\nu_{s0}=\nu_{s0}\Delta\mathcal{L}/cd$, где $\Delta\mathcal{L}$ — изменение длины измерительной линии. Измерения проводились по первому прошедшему УЗ-импульсу.

В работе была получена зависимость относительного изменения фазовой скорости $\Delta \nu / \nu_{s0}$ от частоты УЗ-колебаний (рис. 2). Далее на рис. 5 для сравнения с теоретически полученными соотношениями $F_T(H^*,\omega)$ (34) будет приведена зависимость $F_{\rm exp}(H^*,\omega)$ относительной разности квадратов скоростей от частоты звука вблизи ЯМАР.

При приближении со стороны меньших частот к частоте ЯМР происходит уменьшение фазовой скорости, а со стороны больших частот от частоты ЯМР — увеличение. Максимальное изменение фазовой скорости при монодоменном состоянии образца $FeBO_3$ ($H^*=60\,Oe$) составило $\sim 20\%$ с изменением знака дисперсии при $\omega=\omega_n\approx 75.4\,\mathrm{MHz}$. Ошибка в измерении величины $\Delta\nu/\nu_{s0}$ составила $\sim 10^{-2}$.

2. Теоретическое описание и обсуждение результатов

Для теоретического описания влияния ядерной спинсистемы магнетика вблизи ЯМАР на характеристики упругих колебаний можно исходить из решения совместной системы уравнений движения ядерных намагниченностей подрешеток (\mathbf{m}_i) (i=1,2 в FeBO₃) [4] и уравнений упругой волны [2]

$$\frac{d\mathbf{m}_{i}}{dt} = \gamma_{n}[\mathbf{m}_{i} \times \mathbf{H}_{ni}], \ \rho \frac{\partial^{2} u_{k}}{\partial t^{2}} = \frac{\partial \sigma_{kl}}{\partial X_{l}}, \ k, l = X, Y, Z, \ (1)$$

где γ_n — ядерное гиромагнитное отношение, \mathbf{H}_{ni} — эффективные магнитные поля, определяемые взаимодействиями, в которых участвуют ядерные спины, u_k — компонента вектора смещений, σ_{kl} — компонента тензора

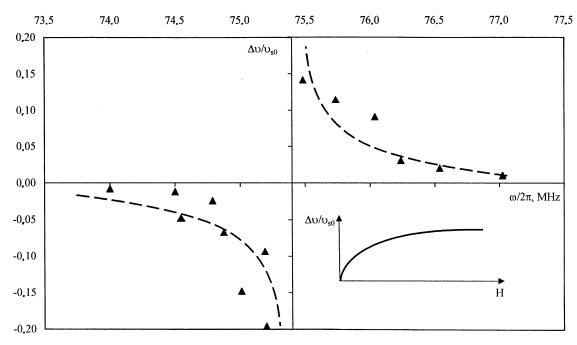


Рис. 2. Частотная и полевая (на вставке) зависимости относительной фазовой скорости поперечной ультразвуковой волны.

упругих напряжений, вычисляемого с учетом МУ-связи V_{ME} . Ограничимся в дальнейшем рассмотрением эффективного магнитного поля $\mathbf{H}_m = A\mathbf{M}_i$, определяемого СТВ [4]

$$V_{HFI} = A \sum_{i=1}^{2} \mathbf{M}_{i} \mathbf{m}_{i} \tag{2}$$

поскольку СТВ является наиболее сильным, существенно превышающим все остальные взаимодействия (\mathbf{M}_i — намагниченность подрешеток). Уравнения движения ядерных намагниченностей имеют наиболее удобный вид в собственных системах координат (x_i, y_i, z_i) связанных с равновесными направлениями намагниченностей подрешеток \mathbf{M}_{0i} (\mathbf{M}_{0i} || z_i) [8]. В приближении малых колебаний \mathbf{m}_i , когда можно пренебречь изменениями z-компонент ($m_i^{z_i} \approx m_0$) как величинами второго порядка малости по сравнению с изменениями $m_i^{x_i}$, $m_i^{y_i}$ [4], эти уравнения запишутся в виде

$$\frac{dm_i^{x_i}}{dt} = \omega_{0n}m_i^{y_i} - \gamma_n m_0 \Delta H_{ni}^{y_i};$$

$$\frac{dm_i^{y_i}}{dt} = -\omega_{0n}m_i^{x_i} + \gamma_n m_0 \Delta H_{ni}^{x_i},\tag{3}$$

где $\omega_{0n}=\gamma_nAM_0$ — несмещенная частота ЯМР, определяемая статической частью ($\mathbf{H}_{ni}^0=A\mathbf{M}_0$) сверхтонкого поля,

$$\mathbf{H}_{ni} = \mathbf{H}_{ni}^{0} + \Delta \mathbf{H}_{ni} = A(\mathbf{M}_{0i} + \Delta \mathbf{M}_{ni}) \tag{4}$$

 $(M_0 = M_{01} = M_{02}$ — равновесное значение намагниченностей подрешеток). Введя новые переменные

$$m_{+}^{\alpha} = m_{1}^{\alpha_{1}} \pm m_{2}^{\alpha_{2}}, \quad \alpha = x, y, \quad \alpha_{1} = x_{i}, y_{i},$$
 (5)

уравнения (3) можно переписать в виде

$$rac{dm_{\pm}^{x}}{dt} = \omega_{0n}m_{\pm}^{y} - \gamma_{n}m_{0}A(\Delta M_{1}^{y_{1}} \pm \Delta M_{2}^{y_{2}}),$$

$$\frac{dm_{\pm}^{y}}{dt} = -\omega_{0n}m_{\pm}^{x} + \gamma_{n}m_{0}A(\Delta M_{1}^{x_{1}} \pm \Delta M_{2}^{x_{2}}).$$
 (6)

Величины $\Delta \mathbf{H}_{ni}^{\alpha_i}$, входящие в уравнения (3) и (6) и равные

$$\Delta \mathbf{H}_{ni}^{\alpha_i} = A \Delta \mathbf{M}_i^{\alpha_i} = A(\mathbf{M}_i^{\alpha_i} - \mathbf{M}_{0i}^{\alpha_i}), \tag{7}$$

представляют собой динамическую часть эффективного магнитного поля \mathbf{H}_{ni} , обусловленную колебаниями векторов \mathbf{M}_i вблизи своих равновесных значений \mathbf{M}_{0i} . Колебания намагниченностей подрешеток вблизи своих равновесных значений в рассматриваемом случае равны

$$\Delta \mathbf{M}_i = \Delta \mathbf{M}_{im} + \Delta \mathbf{M}_{iu}$$

где колебания $\Delta \mathbf{M}_{im}$ определяются сверхтонкими полями $\mathbf{H}_i = A\mathbf{m}_i$, действующими со стороны ядерных магнитных моментов на электронные спины, а колебания $\Delta \mathbf{M}_{iu}$ — магнитоупругими полями \mathbf{h}_{iu} , связанными с упругими деформациями звуковой волны. Поля \mathbf{h}_{iu} определяются как вариационные производные от МУ-энергии [9]

$$\mathbf{h}_{iu} = \frac{\delta V_{ME}}{\delta \mathbf{M}},\tag{8}$$

$$V_{ME} = 2B_{44}l_Zl_Yu_{ZY} + 4B_{14}l_Zl_Yu_{ZY}, \ u_{ZY} = \frac{1}{2}\left(\frac{\partial u_Z}{\partial Y}\right), \ (9)$$

где u_{ZY} — компонента тензора упругих деформаций, создаваемых в образце звуком. B_{44} , B_{14} — соответствующие компоненты тензора магнитострикции, l_X , l_Y , l_Z —

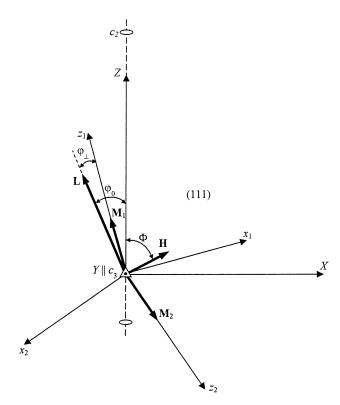


Рис. 3. Главная (X, Y, Z) и локальные (x_i, y_i, z_i) системы координат.

компоненты вектора антиферромагнетизма $\mathbf{L} = \mathbf{M}_1 - \mathbf{M}_2$, $\mathbf{I} = \mathbf{L}/2M_0$. Вид МУ-энергии (9) определяется из общего вида МУ-энергии [9] с учетом того, что в кристалле возбуждается поперечная ультразвуковая волна частоты ω , направленная вдоль "трудной" оси $c_3 \parallel Y$, $\mathbf{k} \parallel Y$ и поляризованная вдоль оси $Z \parallel c_2$ в "легкой" плоскости (c_2 — ось второго порядка).

Дальнейшие расчеты и преобразования уравнений (6), связанные с величинами $\Delta \mathbf{M}_i^{\alpha_i}$, удобнее вести в полярной системе координат (с полярной осью вдоль оси $c_3 \parallel Y$), в которой компоненты векторов I и $\mathbf{M} = (\mathbf{M}_1 + \mathbf{M}_2)/2M_0$ имеют вид [5]

$$l_Z = \cos\theta\cos\varphi, \quad l_X = \cos\theta\sin\varphi, \quad l_Y = \sin\theta,$$

$$M_Z = M \sin \varphi, \quad M_X = M \cos \varphi, \quad M_Y = 0,$$
 (10)

где φ и θ — азимутальный и полярный углы вектора ${\bf L}$, отсчитываемые соответственно от оси Z от "легкой" плоскости (рис. 3). Выражения (10) записаны при условии, что вектор ${\bf M}({\bf M}\perp {\bf L})$, характеризующий слабый ферромагнетизм FeBO3, расположен в этой же плоскости. Слабый ферромагнетизм, обусловленный взаимодействием Дзялошинского, определяется отклонением векторов ${\bf M}_1$ и ${\bf M}_2$ при H=0 от строгой параллельности на некоторый малый угол $\varphi_\perp \approx (H+H_D)/2H_E$ [8].

Поскольку $H,\ H_D \ll H_E\ (H_D$ — поле Дзялошинского, H_E — обменное поле), то угол $\varphi_\perp \approx 56'$ крайне мал, и при решении данного круга задач им можно пренебречь. Тогда легко видеть, что "собственные" системы

координат спин-систем ядерных подрешеток z_i , x_i , y_i получаются из систем координат Z, X, Y путем поворота на угол φ_0 для первой (i=1) подрешетки и на угол $\varphi_0+\pi$ для второй вокруг оси $c_3\parallel Y$ (рис. 3). Угол φ_0 — есть равновесное значение азимутального угла φ . Равновесное значение угла θ равно нулю ($\theta_0=0$, см. далее). В этом случае с учетом неравенства $|L|\gg |M|$ [2] для компонент динамической части эффективного магнитного поля $\Delta H_{ni}^{\alpha i}$ можно записать

$$\Delta H_{ni}^{y_1} \approx \frac{1}{2} A \Delta L^Y, \qquad \Delta H_{n2}^{y_2} \approx -\frac{1}{2} A \Delta L^Y,$$

$$\Delta H_{n1}^{x_1} \approx -\frac{1}{2} A \Delta L_Z \sin \varphi_0 + \frac{1}{2} A \Delta L_X \cos \varphi_0,$$

$$\Delta H_{n2}^{x_2} \approx \frac{1}{2} A \Delta L_Z \sin \varphi_0 - \frac{1}{2} A \Delta L_X \cos \varphi_0, \qquad (11)$$

где ΔL_{α} характеризуют малые колебания вектора **L** около положения равновесия. В полярной системе координат эти колебания описываются малыми отклонениями $(\Delta \varphi, \Delta \theta)$ углов φ и θ от своих равновесных значений φ_0 и θ_0 и в линейном приближении равны

$$\Delta L_Z \approx -L_0 \sin \varphi_0 \Delta \varphi, \quad \Delta L_X \approx L_0 \cos \varphi_0 \Delta \varphi,$$

$$\Delta L_Y \approx L_0 \Delta \theta. \tag{12}$$

Соответствующие компоненты динамической части эффективного поля ($\Delta H_m^{\alpha_i}$), согласно выражениям (11), есть

$$\Delta H_{n1}^{y_1} \approx AM_0 \Delta \theta, \quad \Delta H_{n2}^{y_2} \approx -AM_0 \Delta \theta,$$

$$\Delta H_{n1}^{x_1} \approx AM_0 \Delta \varphi, \quad \Delta H_{n1}^{x_2} \approx AM_0 \Delta \varphi. \tag{13}$$

Подставив выражение (13) в (6) для уравнений, описывающих движение ядерных намагниченностей, окончательно получаем

$$rac{dm_+^x}{dt} = \omega_{0n}m_+^y, \qquad rac{dm_+^
u}{dt} = -\omega_{0n}m_+^x + 2\gamma_n m_0 A M_0 \Delta arphi,$$

$$\frac{dm_{-}^{x}}{dt} = \omega_{0n}m_{-}^{y} - 2\gamma_{n}m_{0}AM_{0}\Delta\theta, \quad \frac{dm_{-}^{y}}{dt} \approx -\omega_{0n}m_{-}^{x}. \quad (14)$$

Рассмотрим далее уравнение упругой волны (второе уравнение в системе (1)). Тензор упругих напряжений σ_{kl} , входящий в уравнение, определяется как вариационная производная от упругой (V_E) и МУ (V_{ME}) энергий и записывается в виде [2,9]

$$\sigma_{kl} = \frac{\delta(V_E + V_{ME})}{\delta u_{kl}}, \quad V_E = c_{mnkl} u_{mn} u_{kl}, \quad (15)$$

где c_{mnkl} — компоненты тензора модулей упругости. Для реализуемой в эксперименте ситуации ($\mathbf{k} \parallel c_3 \parallel Y$, $\mathbf{e} \parallel Z$), когда $V_E = c_{44}u_{ZY}^2$ [9] (c_{44} — компонента тензора модуля упругости в обозначениях Фогта), уравнение упругой

волны с учетом вида V_{ME} в линейном приближении по малым $\Delta \varphi, \, \Delta \theta$ и u_{ZY} имеет вид

$$\rho \frac{\partial^2 u_Z}{\partial t^2} = \frac{\partial}{\partial y} \left\{ 2c_{44}u_{ZY} + B_{44}\cos\varphi_0 \Delta\theta + 2B_{14}\cos2\varphi_0 \Delta\varphi \right\}. \tag{16}$$

Для определения малых отклонений $\Delta \varphi$ и $\Delta \theta$, обусловленных малыми возмущениями $V_{HFI} = -\mathbf{H}_i \mathbf{M}_i$ и V_{ME} , можно исходить из условия минимума плотности энергии

$$F = F_M + V_{ME}^0 + V_{HFI} + V_{ME}, (17)$$

где V_{ME}^0 — энергия спонтанной магнитострикции [2,9,10], а F_M представляет собой магнитную часть, которая равна [9,10]

$$F_{M} = 2M_{0} \left\{ H_{E}M^{2} + H_{D}M\cos\theta + \frac{1}{2}H_{A}\sin^{2}\theta + HM\sin(\varphi - \Phi) \right\}$$
(18)

 $(H_A$ — поле анизотропии вдоль трудной оси). Условия равновесия, определяемые из минимизации энергии F_M , при постоянном магнитном поле, приложенном в "легкой" плоскости под углом Φ к оси второго порядка $c_2 \parallel Z$, для рассматриваемого типа $A\Phi$ ЛП получены в работе [10] (с учетом условий $\mathbf{M} \cdot \mathbf{L} = 0$, $M^2 + L^2 \approx L_0^2$), согласно которым

$$\mathbf{M} \parallel \mathbf{H}, \quad \mathbf{L} \perp Y, \quad M_{\text{equil}} \propto \frac{H + H_D}{2H_E},$$

$$\theta_0 = 0, \quad \varphi_0 = \Phi + \frac{\pi}{2}. \tag{19}$$

Разлагая далее энергию F около положения равновесия (19) по малым величинам $\Delta M, \, \Delta \varphi, \, \Delta \theta, \, m_\pm^\alpha$ и $u_{ZY} \ll u_0$ (u_0 — величина спонтанной деформации) с точностью до второго порядка включительно и минимизируя полученное выражение, можно получить, что

$$\Delta\varphi \approx \frac{H_n H_E}{2M_0} \left(\frac{\gamma}{\omega_f}\right)^2 m_+^x - \frac{2B_2 H_E}{M_0} \left(\frac{\gamma}{\omega_f}\right) u_{ZY},$$

$$B_2 = 2B_{14} \cos 2\varphi_0, \qquad (20)$$

$$\Delta\theta \approx \frac{H_n H_E}{2M_0} \left(\frac{\gamma}{\omega_a}\right)^2 m_-^y - \frac{2B_1 H_E}{M_0} \left(\frac{\gamma}{\omega_a}\right)^2 u_{ZY},$$

$$B_1 = B_{44} \cos \varphi_0 \qquad (21)$$

$$\omega_a^2 = \gamma^2 (H_D(H_D + H) + 2H_E H_A),$$

$$\omega_f^2 = \gamma^2 (H(H + H_D) + 2H_E H_{ng}^0), \qquad (22)$$

где ω_a и ω_f — частоты АФМР [10], γ — электронное гиромагнитное отношение, H_{ms}^0 — эффективное поле спонтанной магнитострикции [2]. Таким образом, подставляя выражения (20) и (21) в уравнения (14) и

(16), получаем в окончательном виде систему уравнений, описывающих МУ-динамику АФЛП вблизи частоты ЯМР $(m_+ = m_+^x/m_0, m_- = m_-^y/m_0)$

$$\frac{d^{2}m_{+}}{dt^{2}} = -\omega_{nf}^{2}m_{+} - 2\omega_{0n}^{2}\eta_{f}B_{2}u_{ZY};$$

$$\frac{d^{2}m_{-}}{dt^{2}} = -\omega_{na}^{2}m_{-} - 2\omega_{0n}^{2}\eta_{a}B_{1}u_{ZY}, \qquad (23)$$

$$\frac{d^{2}u_{Z}}{dt^{2}} = \frac{1}{\rho}\frac{\partial}{\partial Y} \begin{cases} 2c_{44}u_{ZY} + \frac{1}{4}m_{0}H_{n}\eta_{a}m_{-} \\ +\frac{1}{4}m_{0}H_{n}\eta_{f}B_{2}m_{+} - \eta_{a}B_{1}^{2}u_{ZY} - \eta_{f}B_{2}^{2}u_{ZY} \end{cases}, \qquad (24)$$

$$\omega_{nf}^{2} = \omega_{0n}^{2} \left(1 - \frac{1}{2}m_{0}H_{n}\eta_{f}\right), \qquad \omega_{na}^{2} = \omega_{0n}^{2} \left(1 - \frac{1}{2}m_{0}H_{n}\eta_{a}\right), \qquad (25)$$

$$\eta_{f} = \frac{2H_{E}}{M_{0}} \left(\frac{\gamma}{\omega_{f}}\right)^{2}, \quad \eta_{a} = \frac{2H_{E}}{M_{0}} \left(\frac{\gamma}{\omega_{a}}\right)^{2}. \qquad (25)$$

Ограничимся в дальнейшем рассмотрением малых колебаний вектора L лишь в плоскости базиса ($\Delta \varphi \neq 0$, $\Delta \theta \approx 0$). В этом случае $m_- \approx 0$ и система уравнений (23), (24) примет вид

$$\frac{d^2m_+}{dt^2} = -\omega_{nf}^2 m_+ - 2\omega_{0n}^2 \eta_f B_2 u_{ZY},\tag{26}$$

$$\frac{d^2 u_Z}{dt^2} = \frac{1}{\rho} \frac{\partial}{\partial Y} \left\{ 2c_{44} u_{ZY} + \frac{1}{4} m_0 H_n \eta_f B_2 m_+ - \eta_f B_2^2 u_{ZY} \right\}. \tag{27}$$

Предполагая, что величины $m_+=m_+(Y,t)$, $u_Z=u_Z(Y,t)$ изменяются по закону $m_+(Y,t)=m_+^0\exp[i(\omega t-kY)]$, $u_Z=u_Z^0\exp[i(\omega t-kY)]$, где ω и ${\bf k}$ частота и волновой вектор связанных МУ-волн, из уравнений (26) и (27) можно получить дисперсионное уравнение, определяющее влияние ядерной спин-системы на связь ω и k

$$(\omega_{nf}^{2} - \omega^{2})(\nu_{s}^{2}(H)k^{2} - \omega^{2})$$

$$-k^{2}\nu_{s}^{2}(\infty)\omega_{0n}^{2}\left(\frac{\gamma}{\omega_{f}}\right)^{2}H_{E}H_{e}B = 0,$$

$$H_{e} = Am_{0}, \qquad (28)$$

$$\nu_{s}^{2}(H) = \nu_{s}^{2}(\infty)(1 - B),$$

$$B = \frac{4H_{E}B_{14}^{2}\cos^{2}2\varphi_{0}}{M_{0}c_{44}[H(H + H_{D}) + 2H_{E}H_{ms}^{0}]}, \qquad (29)$$

где $\nu_s(H)$ — скорость звука при определенном значении H, $\nu_s^2(\infty) = \nu_s^2(H=\infty)$. Выражение для скорости звука $\nu_s(H)$ (29) полностью соответствует выражениям, полученным в работах [2,3], и описывает ее полевую зависимость, связанную с перенормировкой упругих констант вследствие МУ-связи (вставка к рис. 2). Как следует из дисперсионного уравнения (28), при совпадении частот ЯМР и звука ($\omega_{nf} \approx \omega_s(k) = \nu_s(H)k$), т.е. в условиях ЯМАР (рис. 4), МУ-волна имеет две ветви и

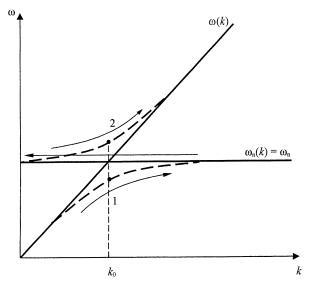


Рис. 4. Спектры магнитоупругих волн вблизи ЯМАР в отсутствие дисперсии в спектре колебаний ядерных спинов.

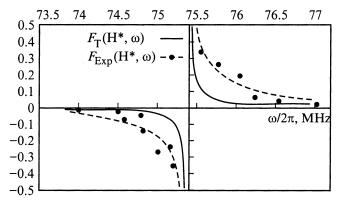


Рис. 5. Теоретическая $(F_T(H^*, \omega))$ и экспериментальная $(F_{\exp}(H^*, \omega))$ зависимости относительной разности квадратов скоростей от частоты вблизи ЯМАР.

одному значению волнового вектора k_0 соответствуют две частоты, максимальная разность между которыми, $(\delta\omega)$, определяемая из соотношения

$$(\omega_s^2 - \omega_{1,2}^2) = \pm (\omega_s \omega_{0n}) \left(\frac{\beta_0 B}{1 - B}\right)^{\frac{1}{2}},$$

$$\beta_0 = \frac{H_E H_e}{H(H + H_D) + 2H_E H_{ms}^0},$$
(30)

приблизительно равна (считаем $\omega_1 + \omega_2 \approx 2\omega_s$)

$$\delta\omega \approx \omega_{0n} \sqrt{\frac{\beta_0 B}{1 - B}}.$$
 (31)

Параметры, входящие в выражение (30), хорошо известны [3] и величина $\delta\omega$ при значении H=60 Ое составляет примерно ~ 300 kHz, что существенно больше ширины линии ЯМР ($\Delta\omega_{NMR}\approx 3$ kHz) и АЯР ($\Delta\omega_{ANR}\approx 30$ kHz). Таким образом, можно предположить, что наблюдаемое

на эксперименте скачкообразное изменение скорости звука вблизи частоты ЯМР обусловлено переходом в точке пересечения (в точке резонанса) кривых дисперсии с нижней ветви МУ-волн (ветвь I на рис. 4) на верхнюю (ветвь 2). Сам же ход кривой зависимости скорости звука в образце от частоты может быть определен из уравнений (26) и (27), которые легко сводятся к одному уравнению для смещений $u_z(Y)$

$$-\omega^{2}u_{Z}(Y) = \frac{c_{44}}{\rho} \left\{ 1 - B - \frac{\omega_{0n}^{2}}{\omega_{nf}^{2} - \omega^{2}} \beta_{0}B \right\} \frac{\partial^{2}u_{Z}(Y)}{\partial^{2}Y}.$$
(32)

Из выражения (32) видно, что пространственно меняющаяся часть ядерной намагниченности, обусловленная упругим смещением, действуя через сверхтонкую и магнитоупругую связи, вносит вклад в эффективный модуль упругости (c_{44}^*)

$$c_{44}^* = c_{44} \left\{ 1 - B - \frac{\omega_{0n}^2 \beta_0}{\omega_{nf}^2 - \omega^2} B \right\}.$$
 (33)

Причем этот вклад носит резонансный по частоте характер и имеет максимальное значение вблизи частоты ЯМР ω_{nf} , сравнимое по величине с изменением модуля упругости вследствие Му-связи без учета взаимодействия между электронной и ядерной подсистемами [2,3] (см. формулу (29)). Определенная из экспериментальных данных величина относительного изменения квадрата скорости звука при данном значении постоянного магнитного поля $H=H^*$ может быть определена из (33) и имеет вид

$$F_{T}(H^{*}, \omega) = \frac{\nu_{s}^{2}(H^{*}, \omega) - \nu_{s}^{2}(H^{*}, \omega = \omega')}{\nu_{s}^{2}(H^{*}, \omega = \omega')}$$

$$= \frac{\omega_{nf}^{2}\beta_{0}B}{(\omega^{2} - \omega_{nf}^{2})(1 - B)},$$
(34)

где $\nu_s^2(H^*,\omega) = c_{44}^*/\rho$, $\nu_s^2(H^*,\omega=\omega') = c_{44}(1-B)/\rho$ значение квадрата скорости звука, когда его частота $\omega = \omega'$ далека от частоты ЯМР ($\nu_s^2(H^*, \omega = \omega')$) $\equiv \nu_s^2(H^*)$ (формула (29))). Ход кривой зависимости $F_T(H^*,\omega)$ от частоты возбуждаемого звука имеет вид кривой дисперсии и находится в качественном согласии с ходом экспериментальной кривой $F_{\rm exp}(H^*,\omega)$ (рис. 5). Мы здесь не ставили перед собой задачи добиться количественного согласия с экспериментальными данными, что, прежде всего, требует учета как реальной ширины линии ЯМР, так и затухания МУ-волн, что внесло бы определенные сложности в теоретические выкладки, не изменяя при этом принципиальной картины происходящих явлений. Таким образом, можно утверждать, что ядерная спин-система оказывает существенное влияние на магнитоупругие свойства магнетиков в области частот, близких к частоте ЯМР, т.е. в условиях ядерного магнитоакустического резонанса.

Авторы благодарны М.И. Куркину за ценные замечания, высказанные при обсуждении работы.

Список литературы

- [1] А.И. Ахиезер, В.Г. Барьяхтар, С.В. Пелетминский. Спиновые волны. Наука, М. (1967).
- [2] В.И. Ожогин, В.Л. Преображенский. УФН 155, 4, 593 (1988).
- [3] M.H. Seavey. Solid Stat. Commun. 10, 219 (1972).
- [4] Е.А. Туров, М.П. Петров. Ядерный магнитный резонанс в ферро- и антиферромагнетиках. Наука, М. (1969).
- [5] Х.Г. Богданова, В.А. Голенищев-Кутузов, М.И. Куркин и др. ЖЭТФ 112, 5(11), 1830 (1997).
- [6] Kh.G. Bogdanova, V.A. Golenishev-Kutuzov, M.I. Kurkin et. al. Appl. Magn. Reson. 14, 4, 583 (1998).
- [7] В.Р. Гакель. ЖЭТФ 67, 5(11), 1827 (1974).
- [8] М.И. Куркин, Е.А. Туров. ЯМР в магнитоупорядоченных веществах и его применение. Наука, М. (1990).
- [9] В.И. Ожогин, В.Л. Преображенский. ЖЭТФ 73, 988 (1977).
- [10] Е.А. Туров, В.Г. Шавров. ФТТ 7, 217 (1965).