Поляризация и деполяризация релаксорного сегнетоэлектрика ниобата бария-стронция

© В.В. Гладкий, В.А. Кириков, С.В. Нехлюдов, Т.Р. Волк, Л.И. Ивлева*

Институт кристаллографии Российской академии наук,

117333 Москва. Россия

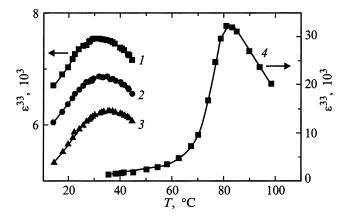
Институт общей физики Российской академии наук,

117942 Москва, Россия

(Поступила в Редакцию 15 декабря 1999 г.)

В квазистатическом и постоянном электрических полях обнаружены аномалии поляризации релаксорного сегнетоэлектрика ниобата бария-стронция: несовпадение траекторий петель гистерезиса для нескольких первых циклов переполяризации, отсутствие определенного коэрцитивного поля и др. Аномалии обусловлены существенно неоднородной структурной кристалла, являющегося ярко выраженной неэргодической системой со случайным распределением большого локального внутреннего поля. Получены спектры распределения потенциальных барьеров по энергии для поляризации и деполяризации при различных по величине электрических полях и температурах.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 99-02-17303).


Первыми материалами, названными релаксорными сегнетоэлектриками, были неоднородные по составу кристаллы со структурой перовскита [1]. Позднее появились другие соединения со структурой вольфрамовой бронзы, в частности твердые растворы $Sr_{r}Ba_{1-r}Nb_{2}O_{6}$ (SBN) $(0.75 \ge x \ge 0.25)$ [2]. Физические свойства таких соединений, представлящие большой интерес для применений в пьезотехнике, нелинейной оптике и голографии [3,4], обладают следующими особенностями. Аномалии свойств, связанные с переходом SBN из неполярной (точечная группа D_{4d} [5]) в полярную фазу $(C_{4v} [2])$, существенно размыты по температуре. Например, диэлектрическая проницаемость ε в слабом электрическом поле при некоторой температуре T_m имеет слабо выраженный широкий максимум. В области T_m в низкочастотном диапазоне наблюдается характерная дисперсия ε и диэлектрических потерь, а узкие "вытянутые" петли диэлектрического гистерезиса существуют в большом температурном интервале как ниже, так и выше T_m и медленно деградируют при нагревании [6,7]. При увеличении концентрации Sr [2] и легировании SBN примесями редкоземельных элементов [3,8] резко снижается T_m и характерные для релаксора свойства выражены более отчетливо.

Размытие фазового перехода и особенности физических свойств обусловлены структурным разупорядочением и флуктуациями состава [1,2,7], которые приводят к появлению в широком интервале температур, включающем точку T_m , локальных искажений симметрии и внутренних электрических полей. Для SBN такой беспорядок связывается с разупорядочением иона Sr по двум катионным узлам. В результате весь кристалл должен представлять собой неполярную матрицу, в которую случайно вкраплены мелкие спонтанно поляризованные области (нанодомены) [7].

Диэлектрические свойства релаксоров измерялись, как правило, в переменных электрических полях [1,2,7]. В настоящей работе приводятся результаты исследования поляризации SBN в постоянных и медленно изменяющихся (квазистатических) полях, которые позволяют учесть вклад наиболее долгоживущих центров релаксации с нижней частотной границей дисперсии поляризуемости вплоть до 10^{-5} Hz.

Методика эксперимента и аппаратура

Кристаллы SBN (x = 0.61) с редкими землями выращены методом Чохральского в НЦЛМиТ ИОФ РАН. Состав SBN-0.61 является конгруэнтным и обладает наилучшим оптическим качеством [9]. Для исследования поляризации выбран монокристалл SBN-0.61 с двойным легированием 1 вес.% La и 0.01 вес.% Се в расплаве (0.44 mol.% La и 0.023 mol.% Се в кристалле [10]). Введение малой концентрации Се требовалось для параллельных исследований фоторефрактивных эффектов в этом кристалле как наиболее перспективном материале Кристалл имеет для динамической голографии [4]. наименьшее значение температуры T_m , поэтому ожидаемое аномальное поведение поляризации вблизи T_m более доступно для регистрации методом прецизионной электрометрии, для применения которого необходимо сравнительно большое электросопротивление *R* образца, уменьшающееся с повышением температуры. По нашим оценкам, $R \sim 9.8 \times 10^{12}$ при 0° C и $\sim 22 \times 10^{12}$ Ohm при 20°С. На рис. 1 приводятся температурные зависимости диэлектрической проницаемости ε_{33} исследуемого и нелегированного кристаллов SBN-0.61 для измерительного поля $\sim 0.5 \, \text{V/cm}$. Видно, что легирование приводит к

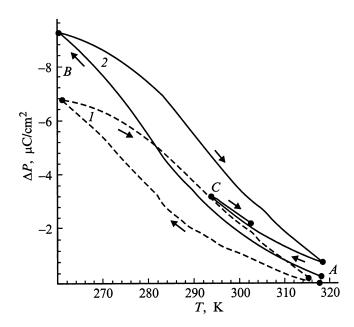
Рис. 1. Температурные зависимости диэлектрической проницаемости ε_{33} легированного (*1*–*3*) и нелегированного (*4*) кристалла SBN. I — 0.1, 2 — 1, 3 — 20 kHz.

существенному смещению T_m , размытию максимума ε_{33} и дисперсии ε_{33} .

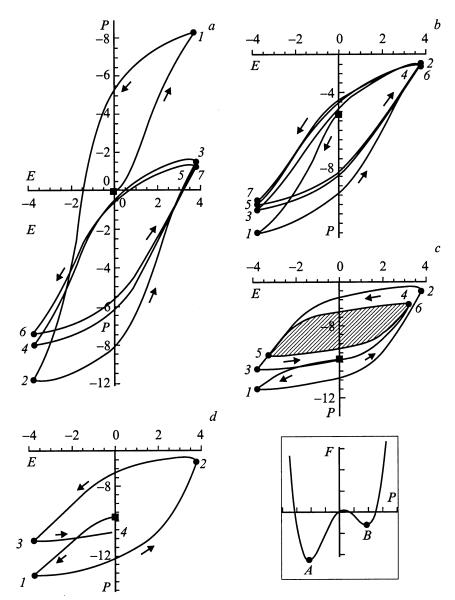
Поляризация P измерялась при следующих режимах изменения внешнего электрического поля E и температуры T: медленное ступенчатое изменение T при E=0 или $E\neq 0$ при регистрации пироэлектрического эффекта, медленное ступенчатое циклическое изменение E с периодом ~ 1 час при различных температурах T= const при регистрации петель гистерезиса, мгновенное включение или выключение постоянного E при T= const при регистрации релаксации P. Перед каждым измерением образец нагревался выше температуры T_m , а затем охлаждался до заданной температуры.

Основной элемент схемы — электрометрический равноплечий мост с нуль-индикатором электрометром В7–29. Минимальное измеряемое напряжение — $20 \,\mu\text{V}$, минимальный заряд — $4 \times 10^{-6} \, \mu$ С. Компенсация напряжения в диагонали моста осуществлялась программным способом на персональном компьютере и периферийных управляемых блоках с шагом 0.15 mV. Регистрация релаксации проводилась в режиме реального времени. Подробное описание устройства и работы схемы приведено в [11]. Для регистрации петель гистерезиса к установке добавлены управляемый источник напряжения 65-50 (0-300 V) с изменяемой полярностью выхода и программный блок, позволяющие снимать последовательно несколько циклов переполяризации с шагом напряжения, кратным 1 V, и временем шага, кратным 1 s. Максимальное количество шагов — 1200. Величину шага по напряжению, его длительность и максимальное значение напряжения можно менять в процессе эксперимента. Полярность электрического поля начального участка петли задается перед экспериментом.

При исследовании пироэлектрического эффекта к установке подключались вольтметр Щ-300, измеряющий напряжение дифференциальной термопары (тающий лед — держатель образца), и программный блок, обеспечивающий обработку значений температуры. Вы-


числение температуры в программном блоке проводилось с использованием полинома четвертой степени.

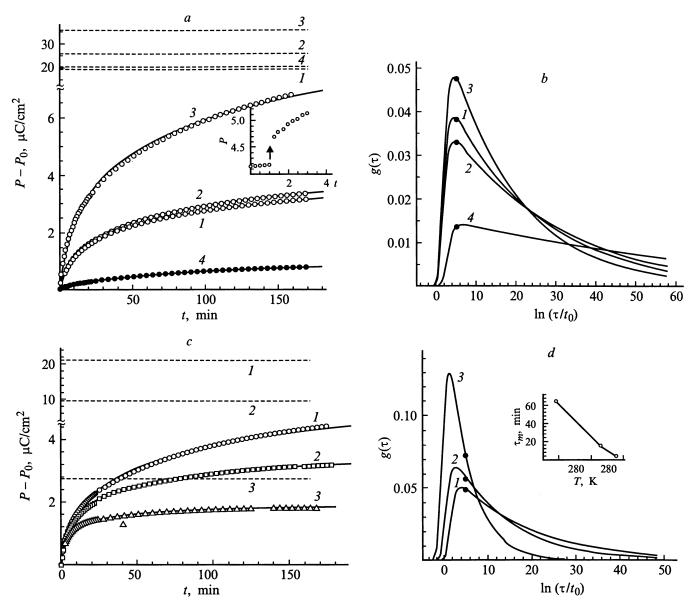
Шлифованный образец полярного среза имел форму прямоугольной пластины размером $4\times4\times0.7$ mm. Большие грани пластины покрывались электропроводящей серебряной пастой. Погрешность стабилизации температуры термостата $\sim\!0.03\,\mathrm{K}.$


2. Результаты и обсуждение

В любом кристалле изменение поляризации с температурой в отсутствие внешнего электрического поля E(пироэлектрический эффект) свидетельствует прежде всего о существовании спонтанной поляризации P_s , а в случае неоднородной структуры — о неравенстве объемов областей со взаимно противоположными направлениями P_s (униполярности). Изменение поляризации ΔP при охлаждении и нагревании образца SBN в области температур ниже T_m для E=0 и $E\neq 0$ показано на рис. 2. Направления поля Е и начальной поляризации P_0 совпадают. Время охлаждения от точки A до B или нагревания от B до $A \sim 160\,\mathrm{min}$. Температурный гистерезис свидетельствует о наличии в кристалле долгоживущих метастабильных состояний. В результате после цикла охлаждения и последующего нагревания величина поляризаци больше начальной. При охлаждении до более высокой промежуточной температуры (точка C) температурный гистерезис меньше и кривая $\Delta P(T)$ при нагревании проходит ниже.

Своеобразную форму имеют петли диэлектрического гистерезиса зависимости P от E. На рис. 3 приводятся петли для случаев, когда в первой четверти периода направления индуцируемой полем E поляризации P и

Рис. 2. Изменение поляризации ΔP при охлаждении и нагревании кристалла SBN. I — поле E = 0, 2 — 300 V/cm.


Рис. 3. Петли диэлектрического гистерезиса зависимости $P\left(\mu \text{C/cm}^2\right)$ от $E\left(\text{kV/cm}\right)$ при различных температурах T и направлениях начального поля E для кристалла SBN. a — направления начальных E и P_0 противоположны; b, c, d — одинаковы; T=274 (a,b), 250 (c), 236 K (d). На вставке — локальная свободная энергия F как функция поляризации P.

начальной, отличной от нуля спонтанной поляризации P_0 противоположны (a) и одинаковы (b,c,d) при трех температурах 274 (a,b), 250 (c) и 236 K (d). Начало процесса переполяризации отмечено черными квадратами, а граничные значения P, соответствующие максимальным значениям E, — черными кружками и цифрами в порядке их последовательности во времени.

Общая особенность всех петель в отличие от петель обычных однородных сегнетоэлектриков — несовпадение тракторий P у предыдущих и последующих циклов изменения E. Особенно ярко это несовпадение выражено для первого цикла, у которого значения P в начале и в конце периода изменения E существенно различаются. При многократных повторяющихся циклах траектории P практически повторяют друг друга (сливаются), при

этом петли принимают привычный вид, а амплитуда изменения P по сравнению с первым циклом много меньше. Петли смещены по оси P, т.е. образец имеет начальную поляризацию $P_0 \neq 0$ (униполярность), направление которой (знак) совпадает с направлением P_0 при измерении пироэлектрического эффекта (рис. 2). При уменьшении амплитуды E петля не изменяет формы, оставаясь подобной, но с меньшей амплитудой P (заштрихована на рис. 3). При понижении температуры увеличивается униполярность (значение P_0) и уменьшается амплитуда изменения P (рис. 3, c, d).

Особенности диэлектрических свойств являются подтверждением предложенных ранее представлений о структуре релаксоров [1,2,7]. Неупорядоченное распределение ионов Sr в решетке приводит к градиенту

Рис. 4. Релаксация поляризации P(a,c,f) и спектры распределения времени релаксации $g(\tau)$ (b,d,g) при различных электрических полях E и температурах T для кристалла SBN. $a,b-T=274\,\mathrm{K};\,E=300\,(I),\,400\,(2,4),\,600\,\mathrm{V/cm}\,(3);\,$ на вставке — начало поляризации при включении E; $c,d-E=500\,\mathrm{V/cm};\,T=274\,(I),\,288\,(2),\,294\,\mathrm{K}\,(3);\,$ на вставке — зависимость τ_m от T; $f,g-T=274\,\mathrm{K};\,E=500\,(I),\,650\,(2),\,800\,\mathrm{V/cm}\,(3);\,$ на вставках — начало деполяризации при выключении E и зависимость τ_m от E. Горизонтальные штриховые линии — равновесные значения поляризации P_e , $t_0=1\,\mathrm{min}$. Скачки P при включении и выключении E отмечены на вставках стрелками.

их концентрации, локальному понижению симметрии, внутреннему электрическому полю и, как следствие, к асимметрии двухминимумной функции локальной свободной энергии F от поляризации P [7] (вставка на рис. 3). По объему кристалла глубина минимумов F_A и F_B (в точках A и B на вставке) распределена случайно. А поскольку взаимно противоположные направления равновесной P равновероятны, должны существовать области, в которых выполняется или неравенство $F_A < F_B$, или $F_A > F_B$. Объемы таких областей, вообще говоря, неодинаковы, поэтому в отсутствие электриче-

ского поля E даже в равновесных условиях могут быть и отличная от нуля суммарная по образцу поляризация, и пироэлектрический эффект (рис. 2).

Вероятность медленной термоактивационной локальной переполяризации из метастабильного в стабильное состояние определяется высотой барьера (величиной F_A или F_B). Внешнее поле E определенной ориентации и величины уменьшает барьеры и ускоряет переполяризацию. Если в поле E барьер исчезает (например, $F_A=0$), идет лавинообразный (надбарьерный) процесс с переходом в состояние с $F_B<0$. Петли гистерезиса на рис. 3

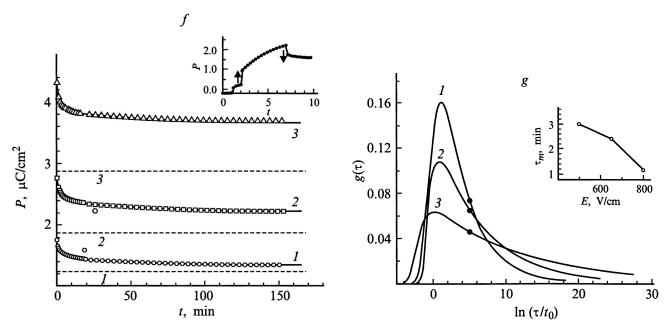


Рис. 4 (продолжение).

свидетельствуют о том, что в релаксоре SBN существуют области с большой асимметрией F(P) ($F_A\gg F_B$ или $F_B\ll F_A$), которая сохраняется и в используемых электрических полях. В результате первый цикл изменения поля переводит многие области кристалла в равновесные состояния, отвечающие глубоким минимумам F(P), и фактически лишает их возможности в дальнейшем участвовать в переполяризации. Поэтому при следующих циклах объем переполяризующихся областей и амплитуда изменения P существенно сокращаются. Несовпадение значений P в начале и в конце первого цикла дает представление об униполярности, существующей в кристалле и до приложения поля. При понижении температуры все барьеры увеличиваются, и особенности петель гистерезиса становятся менее выраженными.

Более детальные сведения о структуре потенциальных барьеров релаксора можно получить из результатов исследования кинетики поляризации и деполяризации соответственно при мгновенном включении и выключении постоянного электрического поля E. Основные результаты такого исследования следующие. При резком изменении поля любой величины (меньше и больше полуширины петли гистерезиса) поляризация P всегда сначала изменяется скачком (надбарьерный процесс), а затем медленно по термоактивационному механизму. Медленное изменение P со временем t как при поляризации, так и при деполяризации, следует эмпирическому степенному закону

$$p(t) = (P_e - P(t))/(P_e - P_0) = 1/(1 + t/a)^n,$$
 (1)

где P_0 — начальная поляризация при t=0, являющаяся суммой поляризаций за счет униполярности и скачка при

резком изменении поля E; P_e — равновесная поляризация, P_e , a, n — параметры, зависящие от T и E.

В предположении независимости центров релаксации (микродоменов) их вклад в поляризацию можно считать аддитивным. В этом случае безразмерная поляризация

$$p(t) = \int_{0}^{\infty} f(\tau) \exp(-t/\tau) d\tau.$$

Здесь $f(\tau)$ — нормированная функция распределения времен релаксации τ , $\int\limits_0^\infty f(\tau)d\tau=1$, связанная с p(t) интегральным преобразованием Лапласа. Распределение имеет вид $f(\tau)=\big\{a^n/\Gamma(n)\big\}(1/\tau)^{n+1}\exp(-a/\tau)$, где $\Gamma(n)$ — гамма-функция. Чаще удобнее пользоваться безразмерной функцией

$$g(\tau) = \tau f(\tau) = (1/\Gamma(n))(a/\tau)^n \exp(-a/\tau), \tag{2}$$

которая характеризует плотность распределения $\ln \tau$ или распределение энергий барьеров U в образце, связанных с $\ln \tau$ законом Аррениуса $\ln(\tau/\tau_0) = U/kT$ (τ_0 — кинетический коэффициент). Функция $g(\tau)$ имеет максимум при $\tau_m = a/n$ [12].

Аппроксимация данных измерения P(t) степенной функцией (1) проводилась методом наименьших квадратов по стандартной программе с тремя свободными параметрами P_e , a, n. На рис. 4 экспериментальные данные показаны различными значками, а расчетные — сплошными линиями. Равновесные значения P_e или $P_e - P_0$, к которым асимптотически приближаются измеряемые величины, проведены горизонтальными штриховыми линиями. На вставках рис. 4, a, f показаны

Процесс	<i>T</i> , K	E, V/cm	P_0 , μ C/cm ²	$P_e, \ \mu \text{C/cm}^2$	a, min	n	$ au_m$, min	S
Поляризация	274	300 400 600	4.69 0.98 2.69	$4.5 \pm 0.016 \\ 6.97 \pm 0.019 \\ 8.41 \pm 0.013$	3.724 ± 0.012 4.35 ± 0.013 4.799 ± 0.007	$\begin{array}{c} 0.045 \pm 0.001 \\ 0.038 \pm 0.001 \\ 0.058 \pm 0.001 \end{array}$	82.2 ± 0.3 114.5 ± 0.4 82.74 ± 0.2	0.14 0.11 0.16
	274*	400	6.809	7.09 ± 0.065	11.75 ± 0.11	0.0149 ± 0.0001	788 ± 10	0.03
	274 288 293	500	1.0767 2.3486 1.7522	$\begin{array}{c} 2.18 \pm 0.01 \\ 1.97 \pm 0.008 \\ .522 \pm 0.005 \end{array}$	3.942 ± 0.011 1.207 ± 0.006 0.679 ± 0.01	$\begin{array}{c} 0.061 \pm 0.001 \\ 0.081 \pm 0.001 \\ 0.201 \pm 0.001 \end{array}$	$64.7 \pm 0.2 14.8 \pm 0.09 3.38 \pm 0.06$	0.18 0.29 0.56
Деполяризация	274	500 650 800	1.75 2.77 4.328	$.217 \pm 0.003$ $.874 \pm 0.004$ $.866 \pm 0.006$	0.82 ± 0.06 0.38 ± 0.02 0.094 ± 0.004	$\begin{array}{c} 0.273 \pm 0.004 \\ 0.157 \pm 0.001 \\ 0.081 \pm 0.001 \end{array}$	2.98 ± 0.26 2.40 ± 0.14 1.16 ± 0.06	0.65 0.47 0.29

Параметры релаксации и спектров распределения $g(\tau)$ для кристалла SBN

Примечание. Температура стабилизировалась после охлаждения или нагревания (*) кристалла.

начальные изменения P со временем при резком включении и выключении поля Е, предшествующие медленной термоактивационной релаксации. Видны скачки Р, соответствующие надбарьерному процессу. На кривых функции распределения $g(\tau)$, определяемой формулой (2), поставлены точки, для которых au равны максимальной продолжительности измерений $t_{\rm max}$. Очевидно, что доля процессов, непосредственно регистрируемых в эксперименте, равная площади S под кривой $g(\tau)$, ограниченной малым временем $\tau = \tau_0$ и $t_{\rm max}$, невелика. Поэтому представление о дальнейшем изменении $g(\tau)$ является практически экстраполяцией экспериментальных данных на большие времена релаксации τ . Значения параметров релаксации P_e, a, n, τ_m и площадей S для всех случаев приводятся в таблице. Зависящие от продолжительности регистрации релаксации ошибки определения параметров оценивались так же, как в [12].

Отметим основные особенности спектров распределения потенциальных барьеров для центров релаксации в кристалле SBN. В диапазоне полей E, не превышающих полуширины петли гистерезиса, спектры почти не изменяются, но при возрастании E растут равновесные P_e (рис. 4, b). Однако в случае стабилизации заданной температуры после нагревания (а не охлаждения) образца изменения спектра существенны: скорость релаксации dP/dt уменьшается, так как в релаксации принимают участие процессы переключения через более высокие барьеры (кривая 4 на рис. 4, a, b). При повышении температуры образца скорость релаксации dP/dt и равновесное значение P_e уменьшаются (рис. 4, c), тем не менее в спектре начинают преобладать процессы с менее глубокими барьерами (рис. 4, d). Начало деполяризации проходит относительно быстро (см. таблицу и рис. 4, f). Однако чем больше поле E предварительной поляризации кристалла, тем больше равновесное P_e и уширение спектра, в котором основную роль уже играют гигантские времена релаксации au и большие барьеры (см. таблицу и рис. 4, f, g), т.е. кристалл практически никогда не подойдет близко к своему равновесному состоянию с высоким значением P_e .

Результаты исследования релаксации поляризации, так же как и особенности петель гистерезиса SBN, согласуются с представлением о локальных понижении симметрии, внутреннем электрическом поле и асимметричной форме двухминимумной функции свободной энергии F [7] (вставка на рис. 3). Соотношение минимумов изменяется в широких пределах по объему кристалла. При охлаждении до заданной температуры одна часть кристалла оказывается в стабильном состоянии с глубоким минимумом, другая — в метастабильном с мелким минимумом F. Приложение внешнего поля Eспособствует надбарьерному или термоактивационному переходу одних областей в стабильные состояния, вероятность выхода из которых практически равна нулю, а других — в метастабильные, которые переходят в стабильные при снятии поля (при деполяризации). При увеличении поля Е и последующем его снятии растут число областей с такими долгоживущими состояниями (память кристалла) и средняя по образцу равновесная поляризация (рис. 4, a, f). Форму распределения барьеров по энергии и их количественные оценки при поляризации в различных по величине полях E и при деполяризации можно получить с помощью приведенного выше феноменологического анализа кинетики этих процессов (см. таблицу и рис. 4). Метастабильное состояние кристалла в целом, конечно, изменяется и практически восстанавливается при повторном нагревании (отжиге) и последующем охлаждении кристалла, о чем свидетельствует понижение барьеров при повышении температуры (рис. 4, d), а также удовлетворительная воспроизводимость данных измерения пироэлектрического эффекта.

Результаты исследования поляризации SBN свидетельствуют прежде всего о том, что кристалл SBN и, повидимому, другие релаксоры в широком интервале температур, строго говоря, не являются сегнетоэлектриками, поскольку у них нет ни определенного коэрцитивного поля E_c , ни обычной макроскопической доменной структуры. Особенности поляризации и неоднородной макроскопической структуры релаксоров являются примером аномальных свойств ярко выраженной неэргодической

системы, у которой пространство всех возможных состояний распадается на непересекающиеся подпространства с соотношением объемов, зависящим от электрического поля. В связи с этим представляет интерес исследование поляризации релаксоров в больших электрических полях.

Список литературы

- [1] Г.А. Смоленский, В.А. Исупов, А.И. Аграновская. ФТТ 1, *1*, 167 (1959).
- [2] М. Лайнс, А. Гласс. Сегнетоэлектрики и родственные им материалы. Мир, М. (1981). С. 736.
- [3] R.R. Neurgaonkar, J.R. Oliver, W.K. Cory, L.E. Cross, D. Viehland. Ferroelectrics 160, 265 (1994).
- [4] R.R. Neurgaonkar, W.K. Cory, M.D. Ewbank, W.F. Hall. Opt. Eng. 26, 2, 392 (1987).
- [5] A.S. Bhalla, R. Guo, L.E. Cross, G. Burus, F.H. Dacol, R.R. Neurgaonkar. Phys. Rev. B36, 4, 2030 (1987).
- [6] W.H. Huang, D. Viehland, R.R. Neurgaonkar. J. Appl. Phys. 76, 480 (1994).
- [7] L.E. Cross. Ferroelectrics 76, 241 (1987).
- [8] T. Volk, Th. Woike, U. Doerfler, R. Pankrath, L. Ivleva, M. Woehlecke. Ferroelectrics 203, 457 (1997).
- [9] Ю.С. Кузьминов. Сегнетоэлектрические кристаллы для управления лазерным излучением. Наука, М. (1982).
- [10] L.I. Ivleva, N.V. Bogodaev, N.M. Polozko, V.V. Osiko. Optical Materials 4, 168 (1995).
- [11] В.В. Гладкий, В.А. Кириков, С.В. Нехлюдов, Е.С. Иванова. ФТТ **39**, *11*, 2046 (1997).
- [12] В.В. Гладкий, В.А. Кириков, Е.С. Иванова, С.В. Нехлюдов. ФТТ **41**, *3*, 499 (1999).