Анализ коэффициента усиления и исследование люминесцентных свойств гетероструктур $Si/Si_{1-x}Ge_x$: Er/Si, полученных методом сублимационной молекулярно-лучевой эпитаксии в газовой фазе

© Л.В. Красильникова, М.В. Степихова, Ю.Н. Дроздов, М.Н. Дроздов, З.Ф. Красильник, В.Г. Шенгуров*, В.Ю. Чалков*, С.П. Светлов*, О.Б. Гусев**

Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

- * Научно-исследовательский физико-технический институт Нижегородского государственного университета, 603950 Нижний Новгород, Россия
- ** Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: luda@ipm.sci-nnov.ru

Приводятся результаты исследований структур $Si/Si_{1-x}Ge_x$: Er/Si, выращенных методом сублимационной молекулярно-лучевой эпитаксии (МЛЭ) в газовой фазе. Исследуемые структуры рассматриваются в качестве одного из вариантов структур для реализации лазера на Si/Er. Показано, что методом сублимационной МЛЭ в газовой фазе можно создавать эффективные светоизлучающие структуры, обнаруживающие интенсивный сигнал люминесценции на длине волны $1.54\,\mu$ m. Для структур $Si/Si_{1-x}Ge_x$: Er/Si с параметрами, близкими к рассчитанным для создания структур лазерного типа, проведены структурный и элементный анализ, исследованы спектральные и кинетические особенности фотолюминесценции при температурах 4.2 и 77 К. Показано, что в слоях $Si_{1-x}Ge_x$: Er, выращенных этим методом, доля оптически активных ионов Er^{3+} достигает $\sim 10\%$ от полного содержания эрбиевой примеси. Согласно проведенным оценкам, значения коэффициентов оптического усиления в активных слоях $Si_{1-x}Ge_x$: Er (x=0.1 и 0.02) составили ~ 0.03 и $\sim 0.2\,\mathrm{cm}^{-1}$. Значительное увеличение коэффициента усиления в структурах этого типа возможно за счет направленного формирования изолированных оптически активных центров иона Er^{3+} с характерной тонкой структурой спектра люминесценции.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 02-02-16773, 04-02-17120) и INTAS (проекты N NANO-01-0444, 03-51-6486).

1. Введение

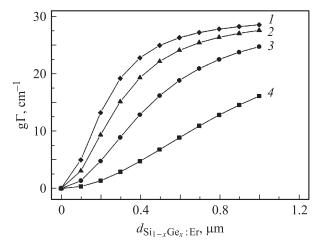
Структуры на основе кремния, легированного эрбием, вызывают значительный интерес исследователей, обусловенный прежде всего возможностью создания на их основе оптоэлектронных устрйств для оптического диапазона $1.54\,\mu\mathrm{m}$ [1]. Излучательный переход редкоземельного иона Er^{3+} на этой длине волны совпадает с окном прозрачности кварцевого волокна, что открывает широкие препективы для использования структур Si: Ег в современных системах волоконно-оптической связи. Особое значение злесь приобретают поиск условий и разработка технологии создания структур лазерного типа.

Ранее нами демонстрировались преимущества методики сублимационной молекулярно-лучевой эпитаксии (СМЛЭ) для выращивания высокоэффективных светоизлучающих структур на основе кремния, легированного эрбием [2,3]. В структурах Si/Si:Er, полученных этим методом, удается добиться рекордно узких спектральных линий люминесценции, что позволяет ожидать высокие значения коэффициента оптического усиления. Показано, что в слоях Si:Er с преобладанием в спектральном отклике фотолюминесценции (ФЛ) изолированных центров редкоземельного иона с полушириной спектральной линии $0.1\,\mathrm{cm}^{-1}$ ($10\,\mu\mathrm{eV}$ [4]) коэффициент оптического усиления должен достигать $30\,\mathrm{cm}^{-1}$ [2].

Необходимым условием для создания лазера на Si:Er является разработка эффективных волноводных структур, обеспечивающих локализацию излучения в активном слое. Одним из возможных вариантов структур этого типа являются гетероструктуры $\mathrm{Si}/\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er/Si с активным волноведущим слоем $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er . Для оценки оптимальных параметров слоев $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er приведем результаты расчета полных коэффициентов усиления в структурах $\mathrm{Si}/\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er/Si в зависимости от толщины $d_{\mathrm{Si}_{1-x}\mathrm{Ge}_x}$: Er и содержания германия x в слое $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er (рис. 1). При расчетах предполагалось, что коэффициент усиления g в активных слоях $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er , так же как и для Si : Er , составляет $\sim 30\,\mathrm{cm}^{-1}$. Коэффициент оптического ограничения электромагнитной волны Fi рассчитывался по формуле

$$\Gamma = \frac{(n_1^2 - n_2^2)d^2k_0^2}{2 + (n_1^2 - n_2^2)d^2k_0^2}.$$
 (1)

Здесь n_1 и n_2 — показатели преломления активного слоя $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Ег и ограничивающих слоев Si соответственно, d — толщина активного слоя $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Ег, $k_0=2\pi/\lambda,\ \lambda$ — длина волны излучения. Как видно из результата расчета (рис. 1), максимальные значения полных коэффициентов усиления в структурах этого типа достигаются при достаточно больших толщинах


Номер образца	Подложка	<i>T</i> _{gr} , °C	<i>x</i> ,%	d _{SiGe : Er} , nm	RES,%	Источник Er	$[\mathrm{Er}],\mathrm{cm}^{-3}$	d_{Si} , nm
10-110	КДБ-02 (100)	500	9.74	500	57	poly-Si:Er	$2 \cdot 10^{18}$	210
10-90	КДБ-02 (100)	500	8.73	500	100	>>	$3 \cdot 10^{18}$	520
10-71	КЭС-0.01 (111)	500	1.9	150	_	Металлич. $\mathrm{Er}/\mathrm{импл.}\mathrm{O}_2^+$	$2.2 \cdot 10^{17}$	350
37	КДБ-10 (100)	560	0	0	_	poly-Si : Er	$5 \cdot 10^{18}$	1800

Условия роста и параметры структур $Si/Si_{1-x}Ge_x$: Er/Si

Примечание. $T_{\rm gr}$ — температура роста, $d_{\rm SiGe:Er}$ — толщина слоев ${\rm Si}_{1-x}{\rm Ge}_x$: Er, RES — величины остаточных упругих напряжений, определяемые методом рентгеновской дифракции, $d_{\rm Si}$ — толщина покровного слоя Si. Для образца № 37 толщина $d_{\rm Si}$ соответствует толщине слоя Si: Er (структура Si/Si:Er). Образец № 10-71 дополнительно подвергался имплантации ионами кислорода.

слоев $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: $\mathrm{Er}\ (>0.5\,\mu\mathrm{m})$ и содержания германия в них, что, очевидно, может быть препятствием для роста совершенных структур. При больших толщинах и содержании Ge рост гетероэпитаксиальных слоев $\mathrm{Si}_{1-x}\mathrm{Ge}_x$, как правило, носит метастабильный характер, происходит релаксация упругих напряжений в слоях $\mathrm{Si}_{1-x}\mathrm{Ge}_x$ на кремнии, имеющих разные параметры решетки. Однако неясным остается вопрос о влиянии этих процессов на люминесцентные свойства редкоземельных ионов эрбия.

Целью данной работы является исследование люминесцентных свойств структур $\mathrm{Si}/\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er/Si , разрабатываемых для реализации лазера на кремнии. Структуры выращивались методом СМЛЭ в газовой фазе, специально предложенным для роста слоев твердого раствора SiGe : Er и представляющим собой модификацию СМЛЭ. В работе приводятся оценки концентрации оптически активных центров иона эрбия и коэффициентов усиления в этих структурах.

Рис. 1. Зависимость полного коэффициента усиления $(g\Gamma)$ в структурах $\mathrm{Si}/\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er/Si от толщины активного слоя $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er $(d_{\mathrm{Si}_{1-x}\mathrm{Ge}_x:\mathrm{Er}})$ и содержания Ge (x). x=0.6 (1), 0.4 (2), 0.2 (3), 0.08 (4). При расчете полагалось, что значение оптического коэффициента усиления (g) в активном слое $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er составляет $30\,\mathrm{cm}^{-1}$.

2. Методика эксперимента

Исследованные структуры $Si/Si_{1-x}Ge_x$: Er/Si выращивались методом СМЛЭ в атмосфере германа (GeH₄). Спецификой метода является поступление германия в растущий слой за счет пиролиза GeH4 на поверхности разогреваемой током кремниевой подложки (детально метод описан в работе [5]). Как и в случае стандартной методики СМЛЭ, для легирования слоев редкоземельной примесью использовались два типа источников: поликристаллический кремний, легированный эрбием, и металлические пластины Ег. Условия роста и параметры наиболее характерных структур $Si/Si_{1-r}Ge_r$: Er/Si, обсуждаемых далее, приведены в таблице. Для анализа структурных параметров и элементного состава выращенных эпитаксиальных слоев $Si_{1-x}Ge_x$: Ег использовались методики рентгеновской дифракции и вторичной ионной масс-спектрометрии. Фотолюминесцентные измерения структур проводились при температуре 4.2 К на Фурье-спектрометре BOMEM DA3 со спектральным разрешением $\geq 0.5\,\mathrm{cm}^{-1}$. Сигнал ФЛ возбуждался ${\rm Ar}^+$ -лазером с длиной волны излучения 514.5 nm и регистрировался охлаждаемым германиевым фотодетектором марки "North-Coast EO-817A". Мощность возбуждающего излучения варьировалась от 2 до 380 mW. Временные зависимости ФЛ измерялись с помощью импульсного полупроводникового лазера, излучающего на длине волны 659 nm, и германиевого фотодетектора, используемого для регистрации сигнала. Измерения кинетики $\Phi \Pi$ проводились при $T = 77 \, \mathrm{K}$ на выделенной длине волны, соответствующей максимуму сигнала эрбиевой люминесценции, временное разрешение схемы регистрации 5μ s.

Экспериментальные результаты и обсуждение

При оптическом возбуждении в эпитаксиальных структурах $Si/Si_{1-x}Ge_x$: Er/Si наблюдается эффективный сигнал $\Phi\Pi$ на длине волны $1.54\,\mu\mathrm{m}$, связанный с внутрицентровыми переходами в 4f-оболочке

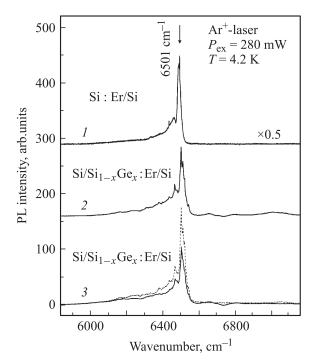
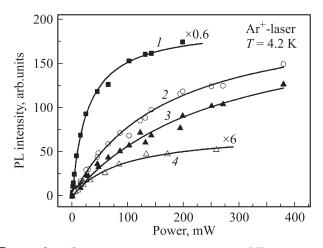
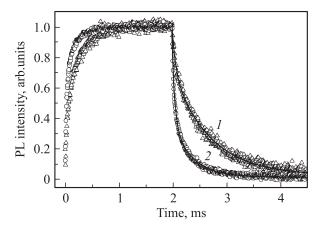
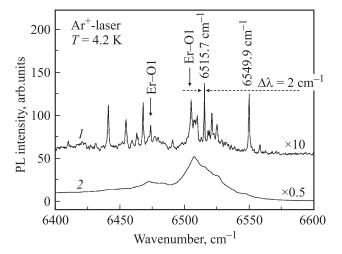



Рис. 2. Спектры ФЛ, полученные при идентичных условиях измерения в структурах Si: Er/Si и Si/Si_{1-x}Ge_x: Er/Si. I — структура № 37, 2 — структура № 10-110, 3 — структура № 10-90. Пунктиром показан спектр ФЛ структуры № 10-90, отожженной при $T=800^{\circ}$ С в течение 30 min. Отжиг приводит к релаксации напряжений в слое Si_{1-x}Ge_x: Er (по данным рентгеновской дифракции значение RES после отжига составило 50%), что проявляется в увеличении сигнала ФЛ.

Рис. 3. Зависимости интенсивности ФЛ структур $Si/Si_{1-x}Ge_x$: Er/Si и Si: Er/Si от мощности возбуждающего излучения. *I* — структура № 37, *2* — структура № 10–110, *3* — структура № 10-90, *4* — структура № 10-71.


редкоземельного иона ${\rm Er}^{3+}$ (переходы $^4I_{13/2} \to ^4I_{15/2}$). Фотолюминесцентный отклик исследованных структур при температуре 4.2 К приведен на рис. 2. Интенсивность сигнала ФЛ наиболее эффективных структур ${\rm Si}/{\rm Si}_{1-x}{\rm Ge}_x$: ${\rm Er}/{\rm Si}$ оказывается сравнимой с интенсивно-

стью ФЛ однородно легированных слоев Si: Er. Для сравнения на этом рисунке приведен измеренный в идентичных условиях спектр ФЛ структуры Si/Si:Er (образец № 37), для которой оцениваемое значение внутренней квантовой эффективности составляет $\sim 20\%$ [2]. Как видно из рисунка, в сигнале ФЛ слоев $Si_{1-x}Ge_x$: Ег доминирует пик с максимумом на длине волны 6507 cm⁻¹ и шириной спектральной линии $\sim 30\,{\rm cm}^{-1}$. Судя по форме и ширине линии, этот пик может быть обусловлен оптически активными центрами иона эрбия в SiO₂-подобных преципитатах, формирование которых также наблюдалось при определенных условиях роста в исследованных нами ранее слоях Si: Er [2]. Заметим, что для изученных в данной работе структур, несмотря на большие толщины слоя $Si_{1-x}Ge_x$: Ег и достаточно высокую концентрацию Ge в них, не наблюдалось заметного влияния релаксации упругих напряжений на люминесцентные свойства (рис. 2). Более того, сигнал $\Phi\Pi$ в частично отрелаксированных слоях $Si_{1-x}Ge_x$: Er превышал по интенсивности сигнал в полностью напряженной структуре (величины остаточных упругих напряжений приведены в таблице).


Оценим концентрацию оптически активных центров иона ${\rm Er}^{3+}$ в исследуемых гетероструктурах. Это можно сделать с помощью анализа зависимости интенсивности эрбиевой ФЛ от мощности возбуждающего излучения. Как правило, в структурах ${\rm Si:Er}$ происходит насыщение интенсивности ФЛ при больших мощностях накачки. На рис. 3 представлены зависимости интенсивности ФЛ структур ${\rm Si/Si}_{1-x}{\rm Ge}_x$: ${\rm Er/Si}$ от мощности возбуждающего излучения. Полученные зависимости $I_{\rm PL}(P)$ хорошо описываются известным выражением [6]

$$I_{\rm PL} \propto a \, b \, P/(1+b \, P),$$
 (2)

где Р — мощность возбуждающего излучения. Параметр а определяет уровень насыщения интенсивности $\Phi \Pi$ при больших мощностях накачки ($I_{\rm PL} \propto a$ при $bP\gg 1)$ и непосредственно зависит от концентрации оптически активных центров иона Er³⁺. Величина в характеризует рост интенсивности сигнала $\Phi\Pi$ в области слабого возбуждения ($I_{\rm PL} \propto a \ b \ P$ при $b\,P\ll 1$). Сплошными линиями на рис. 3 показаны аппроксимирующие зависимости, рассчитанные по формуле (2) со следующими значениями коэффициентов: $a = 32.2 \cdot 10^4$ arb. units, $b = 0.036 \,\mathrm{mW}^{-1}$ для зависимости 1; $a=21.2\cdot 10^4$ arb. units, $b=0.006\,\mathrm{mW^{-1}}$ для зависимости 2; $a = 20.9 \cdot 10^4$ arb. units, $b = 0.004 \,\mathrm{mW^{-1}}$ для зависимости 3; $a = 1.22 \cdot 10^4$ arb. units, $b = 0.011 \,\mathrm{mW}^{-1}$ для зависимости 4. Полученные по результатам аппроксимации величины коэффициентов b на порядок меньше значений, определенных для слоев Si:Er [7]. Действительно, как видно из рис. 3, в исследованных структурах интенсивность сигнала ФЛ довольно слабо насыщается с увеличением мощности возбуждения. В приближении экситонного механизма возбуждения ионов Er^{3+} наблюдаемый слабый рост $I_{\mathrm{PL}}(P)$ в структурах $Si/Si_{1-x}Ge_x$: Er/Si, очевидно, можно объяснить

Рис. 4. Осциллогарммы сигнала эрбиевой ФЛ, измеренные для структур № 10-90 (I) и 10-110 (Z).

Рис. 5. Спектры ФЛ эпитаксиальных структур $\operatorname{Si}/\operatorname{Si}_{1-x}\operatorname{Ge}_x$: $Er/\operatorname{Si}.\ I$ — структура № 10-71, 2 — структура № 10-90. Стрелками показаны линии основных оптически активных центров иона Er, идентифицируемых в тонкой структуре спектра ФЛ образца № 10-71.

значительным вкладом в процессы возбуждения и девозбуждения редкоземельных ионов Ег альтернативных каналов рекомбинации. Последние могут проявляться как безызлучательные каналы рекомбинации, приводящие к уменьшению полного времени жизни ионов эрбия в возбужденном состоянии, а также выступать в качестве конкурирующих каналов в процессе возбуждения редкоземельных ионов. При медленном росте сигнала ФЛ с увеличением мощности возбуждения и отсутствии насыщения, что наблюдается для исследованных структур $Si/Si_{1-x}Ge_x$: Er/Si, величина коэффициента bв выражении (2) не зависит от концентрации оптически активных центров иона эрбия (N_0^E) и определяется концентрацией альтернативных каналов. Отсюда, используя модель, описанную в [7], можно определить значение концентрации альтернативных каналов рекомбинации (N_0^A) , участвующих в процессе возбуждения ионов Er^{3+} в

структурах ${
m Si\,/\,Si_{1-x}Ge_x:Er/Si.}$ Для наиболее эффективной с точки зрения интенсивности ФЛ структуры (образец № 10-110) эта величина составляет $3\cdot 10^{18}\,{
m cm^{-3}}.$ Исходя из изложенного при условии $N_0^A\gg N_0^E$ значение концентрации оптически активных ионов ${
m Er}^{3+}$ в исследуемых структурах может быть оценено величиной $\sim 3\cdot 10^{17}\,{
m cm^{-3}},$ что составляет $\sim 10\%$ от полной концентрации примеси эрбия.

безызлучательной рекомбниации структурах $Si/Si_{1-x}Ge_x$: Er/Si проявляются в виде особенностей на временных зависимостях ФЛ (рис. 4). Сплошными линиями на рисунке показаны аппроксимирующие функции, описываемые выражением $I_{\rm PL}=$ $= I_{\rm PL}(0) + A_1 \exp \left(-(t-t_0)/\tau_1\right) + A_2 \exp \left(-(t-t_0)/\tau_2\right).$ Для каждой из исследованных структур в осциллограммах сигнала эрбиевой ФЛ присутствует быстрая компонента с постоянной времени $\tau_1 = 0.06 \,\mathrm{ms}$, вклад которой зависит от кристаллического совершенства структур и, очевидно, связан с участием в процессах девозбуждения ионов Ег безызлучательных каналов. Постоянные времени τ_2 для структур $Si/Si_{1-x}Ge_x$: Er/Si близки по величине к характерным значениям излучательного времени жизни иона Er³⁺ возужденном состоянии, составляющим большинства полупроводников $\sim 1 \, \text{ms}$ [8]. Полное время жизни иона эрбия в возбужденном состоянии определяется величиной вклада экспоненциальных компонент (коэффициенты A_1 и A_2) в кинетику ФЛ. Для отрелаксированной (образец № 10-110) полное время жизни иона эрбия определяется постоянной времени τ_1 и составляет 0.06 ms. В кинетике ФЛ структуры с напряженным слоем $Si_{1-x}Ge_x$: Er (образец № 10-90) доминирует медленная компонента au_2 , полное время жизни иона эрбия в этом случае составляет $\sim 0.7 \, \text{ms}$.

Оценим коэффициент оптического усиления в исследованных структурах так же, как это было проделано авторами работы [9] для слоев Si:Er. Коэффициент усиления g может быть рассчитан по формуле

$$g = N_0^E \frac{\lambda^4}{4\pi n^2 c \tau_r \Delta \lambda},\tag{3}$$

где $\lambda=1.54\,\mu\mathrm{m}$, τ_r — излучательное время жизни иона эрбия в возбужденном состоянии, n — показатель преломления среды, c — скорость света в вакууме, $\Delta\lambda$ — ширина линии излучения на полувысоте, N_0^E — концентрация оптически активных ионов Er^{3+} . Используя полученные значения для концентрации оптически активных ионов Er^{3+} ($N_0^E\sim 3\cdot 10^{17}\,\mathrm{cm}^{-3}$), времени жизни ($\tau_r\sim 1\,\mathrm{ms}$) и ширины спектральной линии $\sim 30\,\mathrm{cm}^{-1}$ ($\Delta\lambda\sim 7.5\,\mathrm{nm}$), находим, что для образца с максимальной интенсивностью сигнала $\Phi\Pi$ (образец N_2 10-110) коэффициент усиления равен $0.03\,\mathrm{cm}^{-1}$.

Как видно из выражения (3), увеличение коэффициента усиления в разрабатываемых лазерных структурах может быть достигнуто за счет уменьшения ширины линии ФЛ. Известно, что в слоях Si:Er, выращенных

по методике СМЛЭ, формирование эрбиевых центров с узкими линиями люминесценции происходит при высоких температурах роста ($\sim 560-580^{\circ}{\rm C}$) либо в результате послеростового отжига слоев [2]. Для слоев $Si_{1-x}Ge_x$: Ег эти процессы могут носить другой характер, возможно также рассмотрение дополнительного солегирования (например, ионами кислорода). На рис. 5 представлен спектр $\Phi \Pi$ структуры $Si/Si_{1-r}Ge_r:Er/Si$, выращенной из металлического источника эрбия (образец № 10-71). Структура подвергалась дополнительной имплантации ионами кислорда с энергией 150 keV и дозой $5 \cdot 10^{15} \, \text{cm}^{-2}$ и отжигалась в вакууме при температуре 800°C в течение 30 min. Проведенные исследования ФЛ описанной выше структуры позволили выявить оптически активные центры иона Er³⁺ с характерной тонкой структурой спектра, среди которых можно идентифицировать известный кислородсодержащий центр Er-O1 [10]. Наиболее интенсивные линии люминесценции эрбиевых центров в этом образце соответствуют положению 6515.7 и 6549.9 cm $^{-1}$. Ширина поминирующих в спектре линий $\Phi \Pi \Delta \lambda \sim 2 \, \text{cm}^{-1}$. В этом случае существенное сужение линии приводит к увеличению на порядок коэффициента усиления д, оцениваемого величиной $\sim 0.2\,\mathrm{cm}^{-1}$.

4. Заключение

Таким образом, в данной работе показано, что, используя методику СМЛЭ в атмосфере германа, можно создавать достаточно эффективные светоизлучающие эпитаксиальные структуры $\mathrm{Si}/\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er/Si . Интенсивность ФЛ таких структур сравнима с интенсивностью ФЛ однородно легированных слоев Si : Er , для которых значение внутренней квантовой эффективности достигает $\sim 20\%$. Согласно проведенным оценкам, концентрация оптически активных центров иона Er^{3+} в исследованных слоях $\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er составляет $\sim 10\%$ от полной концентрации эрбиевой примеси. Коэффициент оптического усиления в полученных структурах составляет $0.03-0.2\,\mathrm{cm}^{-1}$, максимальное значение g достигается в образцах $\mathrm{Si}/\mathrm{Si}_{1-x}\mathrm{Ge}_x$: Er/Si с тонкой структурой спектра ФЛ.

Список литературы

- Silicon-Based Optoelectronics / Ed. S. Coffa, L. Tsybeskov. MRS Bull. 23, 4, 16 (1998).
- [2] Z.F. Krasilnik, V.Ya. Aleshkin, B.A. Andreev, O.B. Gusev, W. Jantsch, L.V. Krasilnikova, D.I. Kryzhkov, V.P. Kuznetsov, V.G. Shengurov, V.B. Shmagin, N.A. Sobolev, M.V. Stepikhova, A.N. Yablonsky. Towards the First Silicon Laser / Ed. L. Pavesi, S. Gaponenko, L. Dal Negro. NATO Sci. Ser. II. Mathematics, Physics and Chemistry. Kluwer Academic Publ., Dordrecht (2003). Vol. 93. P. 445.
- [3] B. Andreev, V. Chalkov, O. Gusev, A. Emel'yanov, Z. Krasil'nik, V. Kuznetsov, P. Pak, V. Shabanov, V. Shengurov, V. Shmagin, N. Sobolev, M. Stepikhova, S. Svetlov. Nanotechnology 13, 97 (2002).

- [4] N.Q. Vinh, H. Przybylinska, Z.F. Krasil'nik, T. Gregorkiewicz. Phys. Rev. Lett. 90, 6, 0 664 011 (2003).
- [5] С.П. Светлов, В.Г. Шенгуров, В.Ю. Чалков, З.Ф. Красильник, Б.А. Андреев, Ю.Н. Дроздов. Изв. РАН. Сер. физ. **65**, *2*, 203 (2001).
- [6] R. Serna, Jung H. Shin, M. Lohmeier, E. Vlieg, A. Polman, P.F.A. Alkemade. J. Appl. Phys. 79, 5, 2658 (1996).
- [7] Б.А. Андреев, З.Ф. Красильник, В.П. Кузнецов, А.О. Солдаткин, М.С. Бреслер, О.Б. Гусев, И.Н. Яссиевич. ФТТ 43, 6, 979 (2001).
- [8] P.B. Klein, G.S. Pomrenke. Electron. Lett. 24, 24, 1502 (1988).
- [9] В.Я. Алешкин, Б.А. Андреев, З.Ф. Красильник. В сб. тр. совещ. "Нанофотоника-2002". Н. Новгород (2002). С. 289.
- [10] H. Przybylinska, W. Jantsch, Yu. Suprun-Belevitch, M. Stepikhova, L. Palmetshofer, G. Hendorfer, A.Kozanecki, R.J. Wilson, B.J. Sealy. Phys. Rev. B 54, 4, 2532 (1996).