Замещения в катионной подсистеме Nd/Ba в тонких пленках высокотемпературного сверхпроводника NdBa₂Cu₃O_y

© П.Б. Можаев*,**, Ф.В. Комиссинский*,**, З.Г. Иванов*, Г.А. Овсянников**

*Чалмерский технологический университет,

S-41296 Гётеборг, Швеция

** Институт радиотехники и электроники Российской академии наук,

103907 Москва, Россия

E-mail: pbmozh@hitech.cplire.ru

(Поступила в Редакцию 28 февраля 2000 г.)

Тонкие пленки высокотемпературного сверхпроводника $\mathrm{Nd}_{1+x}\mathrm{Ba}_{2-x}\mathrm{Cu}_3\mathrm{O}_y$ (NBCO) с разным соотношением атомов неодима и бария были получены методом совместного лазерного распыления мишеней с различным элементным составом. Пленки с избытком неодима (x>0) имели низкую плотность частиц на поверхности и шероховатость, однако критическая температура пленок понижалась с ростом x. Пленки с избыточным барием (x<0) напротив демонстрировали независимость сверхпроводниковых свойств от состава осаждаемой пленки, а на поверхности пленок наблюдалось значительное количество частиц. По-видимому, замещение Nd на Ba в тонких пленках NbCO затруднено и избыточный Ba выделяется в частицы (Ba,Cu) O_z . Структура и сверхпроводниковые свойства NbCO демонстрируют сильную зависимость от условий насыщения пленок кислородом.

Работа частично поддержана программой ESPRIT (контракт 23429 HTS-RSFQ), Шведским консорциумом материалов, Государственной программой РФ "Современные проблемы физики конденсированного состояния", отделение "Сверхпроводимость", Российским фондом фундаментальных исследований и программой ИНТАС Европейского Союза.

 $NdBa_2Cu_3O_x$ (NBCO) представляет собой высокотемпературный металлооксидный сверхпроводник (ВТСП) структуры $ReBa_2Cu_3O_x$ (ReBCO), где Re — редкоземельный элемент. В настоящее время этот материал интенсивно исследуется как заменитель наиболее распространенного материала этой структуры $YBa_2Cu_3O_x$ (YBCO). Критическая температура NBCO является нивысшей зарегистрированной в материалах структуры ReBCO и составляет $98 \, K$ [1], в тонких пленках была достигнута критическая температура $94 \, K$ [2].

При формировании структуры материала группы ReBCO существенную роль играет ионный радиус редкоземельного элемента, величина которого определяет вероятность замещения Ba (ионный радиус $0.142\,\mathrm{nm}$) на редкоземельный элемент с образованием твердого раствора $\mathrm{Re}_{1+x}\mathrm{Ba}_{2-x}\mathrm{Cu}_3\mathrm{O}_y$ или обмен атомов Ba и Re с формированием беспорядка в катионной подсистеме Re/Ba [3]. Ион иттрия, имеющий относительно небольшой ионный радиус ($0.089\,\mathrm{nm}$), не формирует твердый раствор, а беспорядок в катионной подсистеме проявляется лишь при высоких температурах [4]. Ион неодима имеет наибольший ионный радиус из редкоземельных элементов, образующих сверхпроводящие соединения ReBCO ($0.0995\,\mathrm{nm}$), что обеспечивает формирование твердого раствора вплоть до $x=0.7\,$ [3].

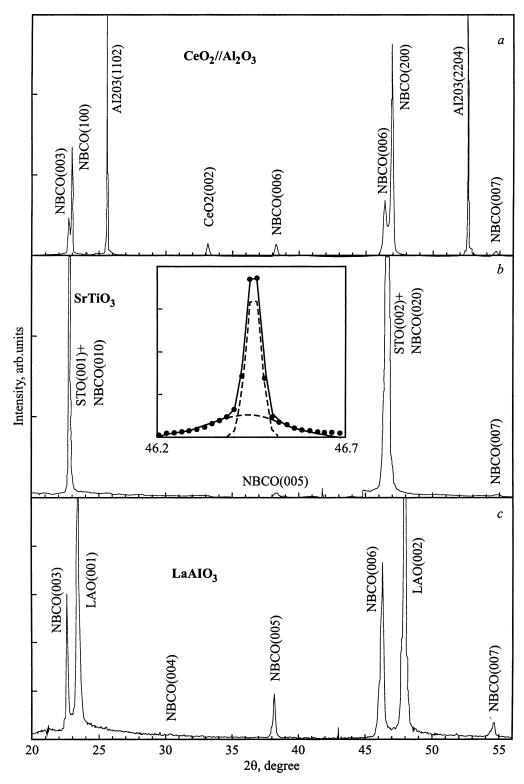
Замещения в катионной подсистеме Nd/Ba интенсивно исследовались с момента синтеза NBCO [5–10]. Внедрение иона Nd^{3+} на позицию Ba^{2+} приводит к включению в цепочечную плоскость Cu-O дополнительного иона кислорода, разрушению в его окрестности

цепочечной упорядоченности и образованию тетрагональной модификации с ростом постоянной решетки с. Увеличение числа ионов кислорода на элементарную ячейку уменьшает концентрацию дырок и понижает критическую температуру. Эти явления наблюдались как при замещении Ва на Nd [5-8], так и при взаимных перестановках (беспорядке) в катионной подсистеме Nd/Ba [8-10]. В работе [11] однако оптимизация условий получения пленок с избыточным содержанием Nd (x > 0) позволила добиться критической температуры, близкой к полученной в пленках с x = 0. Пленки NBCO обладали исключительно гладкой поверхностью, что объясняется меньшим влиянием отклонений от стехиометрии: избыточный материал не выделяется в отдельные частицы побочных фаз, а включается в твердый раствор. Кристаллическая структура полученных пленок также демонстрировала исключительно высокое качество, что связано с сохранением послойного механизма роста вплоть до толщин более 200 nm [11]. Исследования влияния роста содержания Ва в тонких пленках NBCO проводились в [6-8], однако полученные результаты были противоречивы. Причиной, по-видимому, является недостаточно систематические исследования; в частности, для пленок различного элементного состава не проводилась независимая оптимизация параметров осаждения.

Задачей данной работы являлось изучение влияния замещений в катионной подсистеме Nd/Ba на свойства пленок с различным содержанием неодима и бария, полученных методом лазерного распыления.

1. Методика

тонких Осаждение пленок $Nd_{1+x}Ba_{2-x}Cu_3O_v$ (x = -0.15...0.15) производилось совместным импульсным лазерным распылением (эксимерный лазер KrF, плотность энергии на мишени 1.7 J/cm²) двух керамических мишеней различного элементного состава [12]. Распыляемые мишени размещались на вращающемся держателе; лазерный импульс направлялся на распыляемую мишень системой синхронизации, управляемой компьютером. Совместное распыление мишеней осуществлялось с целочисленным соотношением импульсов, направляемых на распыляемые мишени. Соотношение элементов в получаемых пленках определялось по составу распыляемых мишеней с использованием результатов измерений методом рентгеновского микроанализа.


Осаждение распыленного материала производилось на нагретые до высокой температуры T_D (около 800° C) подложки LaAlO₃ (001), SrTiO₃ (001) и сапфира (1102) с буферным слоем CeO_2 (001) толщиной 250° [13]. Для улучшения термического контакта подложки с нагревателем использовалась серебряная паста. Давление при осаждении составляло 0.3-1.0 mbar. По окончании осаждения проводилась процедура насыщения пленок кислородом, включавшая быстрое охлаждение до температуры T_a , напуск кислорода до атмосферного давления и охлаждение со скоростью r_a в течение времени t_a (вставка на рис. 2). Для некоторых образцов по окончании напыления выполнялась выдержка при температуре и давлении осаждения в течение времени t_h . Стандартная процедура насыщения кислородом имела параметры $t_h = 0 \, \mathrm{min}, \, T_a = 450 \, ^{\circ}\mathrm{C}, \, r_a = 0 \, ^{\circ}\mathrm{C/min}$ и $t_a = 1 \, \mathrm{vac}$.

Сверхпроводниковые свойства (критическая температура перехода в сверхпроводящее состояние T_c и его ширина ΔT_c) измерялись по зависимостям магнитной восприимчивости пленок от температуры. Для определения параметров кристаллической структуры пленок использовалось рентгеновское дифракционное $\theta/2\theta$ -сканирование. Параметры решетки при этом рассчитывались с учетом положения всех наблюдаемых дифракционных пиков семейств (h00), (0k0) и (00l) [14]; по зависимости уширения пиков от угла дифракции оценивались напряжения в пленках [15]. Соотношение объема доменов а-, b- и с-ориентаций оценивалось по отношению интегральных интенсивностей пиков (200), (020) и (006) соответственно с учетом стандартных интенсивностей, полученных $\theta/2\theta$ -сканированием порошкообразных образцов и доступных из литературы. Плотность частиц на поверхности определялась по микрофотографиям, выполненным на оптическом микроскопе, что позволяло учитывать частицы размера более $0.3 \, \mu$ m. Шероховатость поверхности R_a рассчитывалась автоматически во время измерения рельефа поверхности на профилометре AlfaStep как среднее арифметическое отклонение от среднеарифметической высоты рельефа. Скорость движения иглы составляла 2 µm/s, частота измерения 50 Hz, разрешение по вертикали лучше 5 Å, длина прописываемой дорожки $50\,\mu\text{m}$. Измеренная при этих условиях шероховатость поверхности подложек до напыления пленок составляет $10\text{--}15\,\text{Å}$.

2. Результаты и обсуждение

Сверхпроводниковые свойства пленок NBCO с $x \approx 0$ сильно зависели от режима осаждения и для лучших пленок, полученных на подложках LaAlO₃, составляли $T_c = 85 - 86 \, \mathrm{K}$ и ΔT_c менее 2 К. Такие пленки были ориентированы осью с перпендикулярно плоскости подложки (c-ориентированные пленки), параметр решетки cсоставлял 11.74–11.755 Å, напряжения в пленках не превышали 0.15%. Параметры кристаллических решеток пленок, прошедших стандартную процедуру насыщения кислородом, приведены в табл. 1; типичные дифрактограммы пленок NBCO приведены на рис. 1. В ряде пленок, помимо с-ориентированных доменов, присутствовали a- и b-ориентированные домены (рис. 1, a, b). Постоянные решетки a, b, оцененные по рентгенограммам $\theta/2\theta$ -сканирования таких пленок, составляли 3.864-3.876 и 3.905-3.907 Å. Ориентация доменов осью а или в перпендикулярно плоскости подложки зависела от материала использованной подложки. На LaAlO₃ и на буферном слое СеО2 наблюдалось формирование *а*-ориентированных участков пленок NBCO, однако на SrTiO₃ при всех условиях осаждения присутствовали домены, ориентированные осью в перпендикулярно плоскости подложки. Такая ориентация нетепична для материалов семейства ReBCO, хотя в [16] при осаждении пленок NBCO методом лазерного распыления на поверхность пленки SrTiO₃ также наблюдался рост *b*-ориентированной пленки (пик 3 на вставке рис. 2 в [16]). По-видимому, сказывается близость параметра кубической решетки SrTiO₃ (3.905 Å) и параметра *b* пленок NBCO. Пики рентгеновской дифракции b-ориентированной пленки NBCO и SrTiO₃ практически совпадают, что требовало разложения наблюдаемого пика рентгеновской дифракции на составляющие пики (вставки на рис. 1, b). Понижение температуры осаждения ниже 740°C приводило к росту пленок NBCO преимущественной а-ориентации с постоянными решетки $c^*=11.83\,\mathrm{\AA},\ a^*=3.91\pm0.001\,\mathrm{\AA}.$ Такие пленки не демонстрировали сверхпроводниковых свойств, что наряду с величинами постоянных решетки указывает на формирование тетрагональной структуры NBCO.

Режим насыщения кислородом оказывал сильное влияние на структуру и свойства пленок $NdBa_2Cu_3O_y$. Увеличение T_a и t_a по сравнению со стандратной процедурой приводило к росту постоянной решетки c до 11.77-11.81 Å и понижению T_c (рис. 2). Эти явления, вероятно, связаны с беспорядком в катионной подсистеме Nd/Ba, образующимся во время насыщения кислородом при высокой температуре [9,10]. В [9,17] было показано, что выдержка NBCO при высокой ($800-900^{\circ}C$) температуре и низком давлении кислорода позволяет

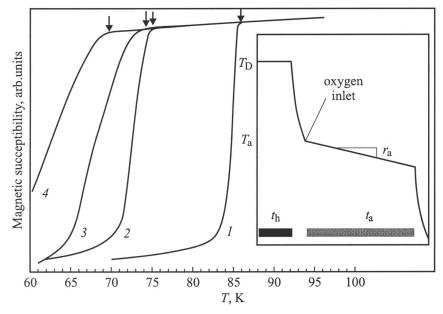
Рис. 1. Рентгеновские $\theta/2\theta$ -дифрактограммы пленок $Nd_1Ba_2Cu_3O_y$: a — смешанной (a,c)-ориентации на подложке CeO_2 (001)// Al_2O_3 $(1\underline{1}02)$; b — смешанной (b,c)-ориентации на подложке $SrTiO_3$ (001); c — ориентированная пленка на подложке $LaAlO_3$ (001). На вставке (b): разложение пика рентгеновской дифракции на составляющие его пик $SrTiO_3$ (002) $(46.467^\circ$, полуширина 0.058°) и NBCO (020) $(46.44^\circ$, полуширина 0.235°). Штриховыми линиями показаны рассчитанные пики, сплошной линией — их сумма.

	p ₀₂ , mbar	T_D , $^{\circ}\mathrm{C}$	с-ориентация			a(b)-ориентация		
Подложка			доля, %	постоянная решетки, Å	напряжения, %	доля, %	постоянная решетки, Å	напряжения, %
LaAlO ₃ CeO ₂ //Al ₂ O ₃	0.6-1.0	770–790	100	c = 11.74 - 11.755	0.13-0.5	0	Не определена	Не определены
SrTiO ₃	0.75-1.0	760–830	37–54	c = 11.74 - 11.77	0.11-0.17	46–63	b = 3.906	То же
CeO ₂ //Al ₂ O ₃	0.4-0.6	780	17–50	c = 11.725 - 11.76	0.4-0.9	50-83	a = 3.867 - 3.876	0.5–1.0
SrTiO ₃	0.3-0.6	750–770	2–6	c = 11.76 - 11.765	Не определены	94–98	b = 3.906	0.34-0.74
LaAlO ₃ , SrTiO ₃	0.4-0.75	680–730	< 1	c = 11.83 - 11.85	То же	100	a = 3.91	0.36-0.42
LaAlO ₃ *	1.0	750–790	65–100	c = 11.77 - 11.78	0.47-0.6	0-35	a = 3.872; b = 3.907	2.7–3.0
LaAlO ₃ **	0.3-1.0	780	1–2	c = 11.80 - 11.805	0.8	98–99	a = 3.89 - 3.91	0.55

Таблица 1. Параметры кристаллической решетки пленок $NdBa_2Cu_3O_v$, осажденных методом лазерного распыления

Таблица 2. Свойства пленок $Nd_{1+x}Ba_{2-x}Cu_3O_y$ с разным элементным составом, осажденных на подложки $LaAlO_3$ (001) при давлении 0.3 mbar

x	Температура осаждения, обеспечивающая наибольшую T_c , °C	Критическая температура T_c , K	Шероховатость поверхности, Å	Плотность частиц на поверхности, $\times 10^6 \mathrm{cm}^{-2}$	
0.14 0.06 0	795 800 810	73 81 85.95	14 12 11	2 3 2	
-0.06	Оптимизация не г	проводилась	16	2.5	
-0.08 -0.13	810 810	85.5 86.2	52 360	20 30	
-0.14	Оптимизация не г	проводилась	600	70	


упорядочить подсистему Nd/Ba. Последующее насыщение кислородом при низкой (340°С) температуре не приводит к существенному беспорядку и ухудшению сверхпроводниковых свойств [17]. Проведенное нами насыщение пленок NBCO кислородом в соответствии с этими рекомендациями обеспечило T_c и ΔT_c на уровне наилучших параметров, достигнутых при стандартной процедуре насыщения кислородом (кривая I на рис. 2).

Для систематического исследования влияния состава пленок на их свойства давление кислорода при распылении было выбрано равным 0.3 mbar в соответствии с литературными данными [2]; пленки осаждались на подложки LaAlO₃ (001). Для каждого элементарного состава пленок NBCO определялась температура осаждения, обеспечивающая наибольшую T_c . Параметры получен-

ных при этих температурах пленок приведены в табл. 2. Зависимость T_c от соотношения бария и неодима в осаждаемой пленке показана на рис. 3. Понижение содержания бария ниже двух атомов на элементарную ячейку уменьшает достижимую критическую температуру, что соответствует литературным данным. Однако повышение содержания бария не приводит к дальнейшему росту или понижению T_c в исследованном диапазоне. Морфология поверхности пленок также претерпевала изменения при переходе от пленок с недостатком к пленкам с избытком бария (рис. 3). Первые имели гладкую поверхность с низкой плотностью частиц (менее $10^6 \, \mathrm{cm}^{-2}$) и шероховатостью, сопоставимой с шероховатостью исходных подложек (10– $20 \, \text{Å}$). Повышение содержания бария в пленках сверх стехиометрического приводило к быстро-

^{* —} напуск кислорода при высокой температуре.

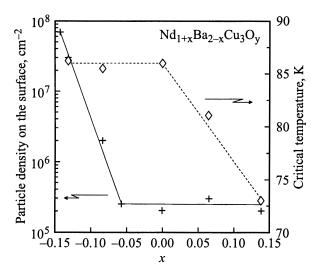

 ^{** —} длительное окисление.

Рис. 2. Зависимости магнитной восприимчивости от температуры пленок $NdBa_2Cu_3O_y$, осажденных на подложку $LaAlO_3$ (001) при 780° С и прошедших различные процедуры насыщения кислородом: $I - t_h = 15$ min, $T_a = 350^{\circ}$ С, $r_a = 0$, $t_a = 1h$; $t_a = 2.5h$. Критические температуры показаны стрелками. На вставке: схема процедуры насыщения кислородом. Обозначения приведены в тексте.

му росту как плотности частиц на поверхности пленки, так и шероховатости пленки (табл. 2). Аналогичный эффект наблюдался в работах [6–8] при x<-0.10. Данные рентгеновского дифрактометрического анализа позволили определить образующиеся частицы как BaO, Ba₂CuO₃ [6,7]. В отличие от полученных нами зависимостей T_c от состава изучаемых пленок в [6–8] наблюдался максимум T_c при x=-0.03 [6,7] или 0 [8]. Возможно, это связано с тем фактом, что ни в одной из упомянутых работ не проводилось оптимизация условий осаждения для каждого исследованного элементного состава.

Наблюдаемое поведение T_c и морфологии пленок при изменении элементного состава может объясняться различным характером замещений в подсистеме Ba/Nd. Ион неодима, по-видимому, легко встраивается на позицию бария, и недостаток бария в пленке компенсируется неодимом. При этом формируется гладкая пленка с высоким качеством кристаллической решетки, но T_c полученной пленки понижается с ростом содержания Nd. Соответствующая химическая реакция образования NBCO может быть записана в виде $(1+x)NdO_{1.5} + (2-x)BaO + 3CuO \rightarrow Nd_{1+x}Ba_{2-x}Cu_3O_y$ при x > 0. Избыточный барий, напротив, лишь в небольших количествах встраивается в решетку, выделяясь в виде побочных фаз. Пленка NBCO поэтому имеет состав, близкий к стехиометрическому (x = 0), и демонстрирует соответствующие сверхпроводниковые свойства, однако на поверхности ее появляются частицы. Уравнение реакции формирования NBCO приобретает вид $(1 + x)NdO_{1.5} + (2 - x)BaO + 3CuO$ $\rightarrow (1+x) \text{Nd}_1 \text{Ba}_2 \text{Cu}_3 \text{Cu}_3 \text{O}_v + (-3x) (\text{Ba},\text{Cu}) \text{O}_z$ при x < 0. Предлагаемый механизм подтверждается тем фактом, что оптимальная температура осаждения пленок при повышении содержания бария остается неизменной, в то время как при уменьшении x оптимальная температура осаждения понижается (табл. 2). Известно, что оптимальные температуры формирования фаз с избыточным неодимом уменьшаются с ростом содержания Nd [11].

Рис. 3. Зависимости критической температуры и плотности частиц на поверхности пленок $Nd_{1+x}Ba_{2-x}Cu_3O_y$ на подложке LaAlO₃ (001) от их элементного состава. Для каждого элементного состава проведена оптимизация температуры осаждения (табл. 2). Линии проведены для наглядности.

Относительно низкая критическая температура 86 К, достигнутая в результате оптимизации процесса осаждения, может объясняться одной из двух возможных причин. Во-первых, критическая температура получаемых пленок может уменьшаться в результате разрушения цепочечной упорядоченности в плоскостях Си—О из-за беспорядка в подсистеме Nd/Ba. Однако рост беспорядка приводит к росту параметра c кристаллической решетки, а измеренные нами значения соответствуют стандартным для пленок с $T_c > 90$ К. Более вероятной причиной является наличие примесей в распыляемой мишени: высокая чувствительность NBCO к примесям [18,19] может приводить к резкому падению T_c даже при незначительном содержании примесей.

Следует отметить, что в ряде работ ([16,20-23]), несмотря на проведенную экстенсивную оптимизацию условий осаждения, не удалось добиться критических температур в пленках NBCO выше $86-88.5 \, \mathrm{K}$, в то время как в других ([6-8,11]) сообщается об уверенном получении критических температур выше $91 \, \mathrm{K}$. В обеих группах использовались одинаковые методики и близкие параметры осаждения. Такое несоответствие позволяет предположить наличие некоторого не учитываемого фактора, приводящего к скачкообразному понижению T_c на $5-8 \, \mathrm{K}$. В [20], например, указывается на образование "высокотемпературной" фазы NBCO с $T_c = 95 \, \mathrm{K}$, которую, однако, авторам не удалось получить отдельно от "низкотемпературной" ($T_c < 90 \, \mathrm{K}$).

Таким образом, исследование влияния замещений в катионной подсистеме Nd/Ba на свойства пленок Nd_{1+x}Ba_{2-x}Cu₃O_y позволило получить следующие результаты. В пленках NBCO, осажденных на подложки SrTiO₃ (001), наблюдалась ориентация значительной части пленки осью b перпендикулярно плоскости подложки. Структура и сверхпроводниковые свойства $Nd_{1+x}Ba_{2-x}Cu_3O_y$ демонстрируют сильную зависимость от условий насыщения пленок кислородом, что, вероятно, связано с образованием беспорядка в подсистеме Nd/Ba на этапе насыщения пленок кислородом. Исследование осаждения пленок NbCO с различным содержанием бария и неодима указывает на включение избыточного неодима в решетку сверхпроводника на позиции бария, в то время как избыточный барий выделяется в частицы, наблюдаемые на поверхности пленки.

Авторы выражают благодарность проф. Т. Клаесону и В.Б. Кравченко за полезное обсуждение.

Список литературы

- J.G. Lin, C.Y. Huang, Y.Y. Xue, C.W. Chu, X.W. Cao, J.C. Ho. Phys. Rev. **B51**, 12 900 (1995).
- [2] M. Badaye, J.G. Wen, K. Fukushima, N. Koshizuka, T. Morishita, T. Nishimura, Y. Kido. Supercond. Sci. Technol. 10, 11, 825 (1997).
- [3] H. Wu, M.J. Kramer, K.W. Dennis, R.W. McCallum. Physica C290, 252 (1997).

- [4] J. Ye, K. Nakamura. Phys. Rev. **B50**, 10, 7099 (1994).
- [5] C. Le Paver-Thivet, B. Leibold, H.-U. Habermeier. IOP Conf. Ser.: EUCAS'95. 148, 863 (1995).
- [6] Y. Li, K. Tanabe. J. Appl. Phys. 83, 12, 7744 (1998).
- [7] Y. Li, K. Tanabe. IEEE Trans. on Appl. Supercond. 9, 2, 1586 (1999).
- [8] Z. Mori, T. Inoue, N. Yokoyama, S. Koba, T. Doi, Y. Hakuraku. LT22 CDROM (1999).
- [9] T. Puig, X. Obradors, B. Martinez, F. Sandiumenge, V. Gomis, J.A. Alonso. IEEE Trans. on Appl. Supercond. 9, 2, 2054 (1999).
- [10] I. Zelenay, A. Nafidi, C. Greaves, R. Suryanarayanan. Physica C231, 207 (1994).
- [11] M. Saluzzo, I. Maggio-Aprile, O. Fischer. Appl. Phys. Lett. 73, 5, 683 (1998).
- [12] P.B. Mozhaev, F. Rönnung, P.V. Komissinskii, Z.G. Ivanov, G.A. Ovsyannikov. Phys. C (2000), in press.
- [13] П.Б. Можаев, Г.А. Овсянников, Й.Л. Сков. ЖТФ 44, 2, 242 (1999).
- [14] M.S. Raven, E.E. Inametti, Y.M. Wan, B.G. Murray. Supercond. Sci. Technol. 7, 462 (1994).
- [15] J.P. Gong, M. Kawasaki, K. Fujito, R. Tsuchiya, M. Yoshimoto, H. Koinuma. Phys. Rev. **B50**, *5*, 3280 (1994).
- [16] Ю.А. Бойков, В.А. Данилов, Т. Клаесон, Д. Эртс. ФТТ 41, 3, 395 (1999).
- [17] T. Kimura, T. Goto, K. Watanabe. IEEE Trans. on Appl. Supercond. 9, 2, 2101 (1999).
- [18] Y. Xu, W. Guan, Y.F. Chen, S.R. Sheen, M.K. Wu. Phys. Rev. B50, 2, 1223 (1994).
- [19] S.S. Ata-Allah, Y. Xu, Ch. Heiden. Physica C221, 39 (1994).
- [20] W.H. Tang, J. Gao. Physica C313, 115 (1999).
- [21] A. Eulenberg, E.J. Romans, Y.C. Fan, C.M. Pegrum. Physica C312, 91 (1999).
- [22] I.S. Kim, k.W. Lee, Y.K. Park, J.Ch. Park. Appl. Phys. Lett. 68, 13, 1859 (1996).
- [23] Y. Hakuraku, S. Miyata, T. Inoue, S. Nozoe. Supercond. Sci. Technol. 11, 2, 179 (1998).