Период идентичности и коэффициент термического расширения гексаборидов редкоземельных элементов при температурах 5—320 К

© Н.Н. Сирота, В.В. Новиков*, А.В. Новиков**

Московский государственный университет природообустройства, Москва. Россия

* Брянский государственный педагогический университет,

241036 Брянск, Россия

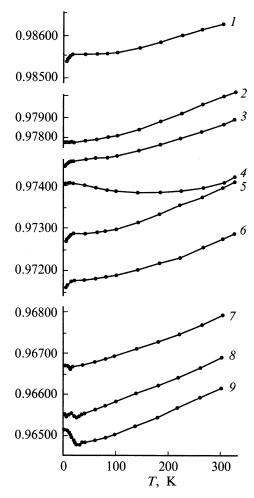
* * Технологический университет Подолья,

Хмельницкий, Украина

(Поступила в Редакцию 24 января 2000 г.)

Для пяти соединений гексаборидов MB_6 (M = Ce, Pr, Nd, Gd, Tb) экспериментально исследованы температурные зависимости периода кристаллической решетки и коэффициента линейного термического расширения.

Изучению свойств гексаборидов лантаноидов при низких температурах в последние годы уделяется достаточно большое внимание. Это обусловлено уникальным набором физических и физико-химических свойств, присущих соединениям этого ряда. Большой интерес вызывают магнитные превращения, происходящие в большинстве гексаборидов РЗЭ при гелиевых температурах [1–6]. Вместе с тем изучению свойств кристаллической решетки в широком интервале низких температур посвящено сравнительно немного работ [7–13].


В настоящей статье приводятся результаты экспериментального изучения периода кристаллической решетки пяти образцов гексаборидов MB_6 (M=Ce, Pr, Nd, Gd, Tb) вместе с данными о LaB₆, SmB₆, EuB₆ и DyB₆, рассмотренными нами ранее [14–16].

Методика приготовления образцов и проведения рентгеновского эксперимента аналогична описанным ранее [14]. Температурные изменения межплоскостного расстояния $d_{411}(T)$ изученных гексаборидов представлены на рис. 1. Значения периода кристаллической решетки приведены в таблице и работе [14].

Период кристаллической решетки а гексаборидов РЗЭ

T,K	a, Å						
	CeB ₆	PrB ₆	NdB ₆	EuB ₆	GdB_6	TbB ₆	DyB ₆
4.2	4.13482	4.12727	4.12232	4.18061	4.00163	4.09646	4.09513
6	4.13491	4.12730	4.12240	4.18068	4.10162	4.09645	4.09505
8	4.13492	4.12735	4.12245	4.18075	4.10161	4.09644	4.09501
10	4.13493	4.12739	4.12249	4.18091	4.10160	4.09643	4.09499
12	4.13493	4.12741	4.12253	4.18105	4.10155	4.09641	4.09494
14	4.13493	4.12743	4.12253	4.18109	4.10148	4.09639	4.09491
16	4.13493	4.12744	4.12253	4.18113	4.10151	4.09641	4.09489
18	4.13493	4.12745	4.12255	4.1814	4.10156	4.09643	4.09489
20	4.13493	4.12746	4.12257	4.18116	4.10162	4.0946	4.09477
22						4.09644	4.09429
24						4.09642	4.09411
26						4.09640	4.09372
28						4.09640	4.09296
30	4.13499	4.12750	4.12260	4.181119	4.10171	4.09643	4.09290
32						4.09648	4.09290
34						4.09655	4.09320
40	4.13505	4.12756	4.12262	4.18125	4.10181	4.09676	4.09332
60	4.13522	4.12771	4.12283	4.18139	4.10210	4.09707	4.09374
80	4.13542	4.12786	4.12308	4.18148	4.10240	4.09756	4.09423
100	4.13562	4.12809	4.12334	4.18167	4.10276	4.09798	4.09453
140	4.13608	4.12875	4.12397	4.18212	4.10352	4.09882	4.09561
180	4.13671	4.12955	4.12465	4.18266	4.10430	4.09993	4.09646
220	4.13740	4.13039	4.12537	4.18325	4.10524	4.10060	4.09743
260	4.13817	4.13127	4.12610	4.18389	4.10625	4.10170	4.09840
300	4.13899	4.13220	4.13299	4.18456	4.10724	4.10274	4.09938
320	4.13943	4.13267	4.12754	4.18490	4.10789	4.10323	4.09992

8 2033

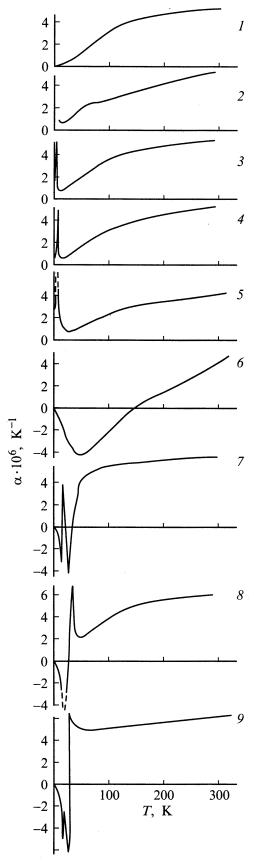
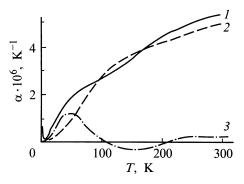


Рис. 1. Межплоскостное расстояние $d_{411}(T)$ европия (I), лантана (2), церия (3), самария (4), празеодима (5), неодима (6), гадолиния (7), тербия (8), диспрозия (9).


Дифференцированием графически сглаженных кривых $d_{411}(T)$ определены температурные изменения коэффициентов линейного термического расширения α гексаборидов (рис. 2).

Как было отмечено ранее [14–16], зависимости $\alpha(T)$ редкоземельных гексаборидов имеют ряд характерных особенностей. Процессы магнитного упорядочения, проходящие в большинстве изученных гексаборидов, приводят к появлению резких аномалий на кривых $\alpha(T)$. При повышенных температурах зависимости $\alpha(T)$ выходят на относительно пологий участок. Величина коэффициента термического расширения гексаборидов при $T=300\,\mathrm{K}$ с ростом порядкового номера металла незначительно увеличивается. Природа отрицательного коэффициента термического расширения SmB₆, рассматриваемая в работе [10], требует дальнейшего анализа.

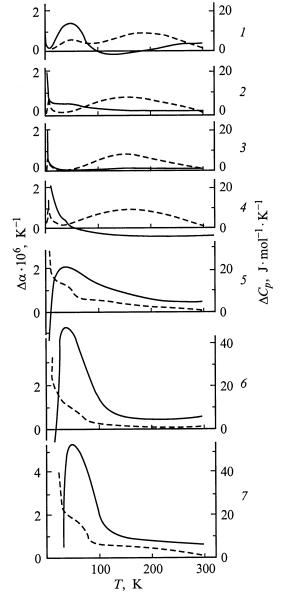

После отделения собственного решеточного вклада в величину коэффициента термического расширения отчетливее выделяются отклонения от него. Поскольку кристаллическая структура гексаборидов лантана и РЗЭ одинакова, можно считать, что их решеточные вклады в величину $\alpha(T)$ относятся, как соответствую-

Рис. 2. Коэффициент линейного термического расширения $\alpha(T)$ LaB₆ (*I*), CeB₆ (*2*), PrB₆ (*3*), NdB₆ (*4*), SmB₆ (*5*), EuB₆ (*6*), GdB₆ (*7*), TbB₆ (*8*), DyB₆ (*9*).

Рис. 3. Коэффициент термического расширения $\alpha(T)$ гексаборида церия (I), его регулярная (решеточная) составляющая $\alpha_L(T)$ (2) и избыточная величина $\Delta\alpha(T)=\alpha(T)-\alpha_L(T)$ (3).

Рис. 4. Избыточные величины коэффициента термического расширения $\Delta\alpha(T)$ (сплошные линии) и теплоемкости $\Delta C_p(T)$ (штриховые линии) гексаборидов церия (1), празеодима (2), неодима (3), европия (4), гадолиния (5), тербия (6), диспрозия (7).

щие значения решеточных составляющих теплоемкости: $\alpha_L (\text{LaB}_6)/\alpha_L (M\text{B}_6) = c_L (\text{LaB}_6)/c_L (M\text{B}_6)$ [17]. Считая коэффициент термического расширения LaB₆ чисто решеточным, $\alpha_L (\text{LaB}_6) = \alpha (\text{LaB}_6)$ и используя температурные зависимости решеточных составляющих теплоемкости [18], мы определили решеточные составляющие $\alpha_L(MB_6)$ коэффициента термического расширения гексаборидов и избыточную часть по отношению к решеточной: $\Delta \alpha(T) = \alpha(T) - \alpha_L(T)$. В качестве примера на рис. 3 приведены зависимости $\alpha(T)$, $\alpha_I(T)$, $\Delta \alpha(T)$ для гексаборидов церия. Кривые $\Delta \alpha(T)$ для всех изученных гексаборидов приведены на рис. 4. Там же для сопоставления приведены температурные зависимости избыточной теплоемкости $\Delta c(T) = c(T) - c_L(T)$ изучаемых гексаборидов [18]. Судя по кривым $\Delta \alpha(T)$ и $\Delta c(T)$ процессы расщепления энергетических уровней, обусловливающие вклад Шоттки в теплоемкость, практически не сказываются на термическом расширении гексаборидов. Заметная величина $\Delta \alpha(T)$ вблизи $T=40\,\mathrm{K}$ для СеВ₆, слабый максимум для РгВ₆ и явно выраженные максимумы для GdB₆, TbB₆, DyB₆ коррелируют с аномалиями теплоемкости и обусловлены, по-видимому, эффектом Яна-Теллера [11].

Список литературы

- Y. Peysson, C. Ayache, J. Rossat-Mignod, S. Kunii, T. Kasuya.
 J. Physique 47, 1, 113 (1986).
- [2] K. Segawa, A. Tomita, K. Iwashita, M. Kasaya, T. Suzuki, T. Kunii. J. Magn. Magn. Mater. 104–107, 1233 (1992).
- [3] K. Iwashita, T. Matsumura, K. Segawa, S. Kunii. Phys. B186– 188, 636 (1993).
- [4] M. Sera, S. Kobayashi, M. Hiroi, N. Kobayashi, S. Kunii. Phys. Rev. **B54**, 8, 5207 (1996).
- [5] L. Giorgi, E. Felder, H.R. Ott, J.L. Sarrao, Z. Fisk. Phys. Rev. Lett. 79, 25, 5134 (1977).
- [6] M. Sera, M. Hiroi, N. Kobayashi, S. Kunii. J. Phys. Soc. Jap. 67, 2, 629 (1998).
- [7] Н.Н. Журавлев, А.А. Степанов, Ю.Б. Падерно, Г.В. Самсонов. Кристаллография **7**, *4*, 791 (1962).
- [8] H.G. Smith, G. Dolling, T. Goto. Sol. Stat. Commun. **53**, *I*, 15 (1985).
- [9] S. Kunii. J. Phys. Soc. Jap. **57**, 1, 361 (1988).
- [10] П.А. Алексеев, Е.С. Коновалова, В.Н. Лазуков, С.И. Люкшина, Ю.Б. Падерно, И.П. Садиков, Е.В. Удовенко. ФТТ 30, 7, 2024 (1988).
- [11] S. Nakamura, T. Goto, S. Kunii. K. Iwashita, A. Tamaki. J. Phys. Soc. Jap. 63, 2, 623 (1994).
- [12] В.А. Трунов, А.Л. Малышев, Д.Ю. Чернышов, М.М. Корсукова, В.Н. Гурин. ФТТ 36, 9, 2687 (1994).
- [13] M.K. Blomberg, M.J. Merisalo, M.M. Korsukova, V.N. Gurin. J. Alloys and Compounds 217, 123 (1995).
- [14] Н.Н. Сирота, В.В. Новиков, В.А. Винокуров, Ю.Б. Падерно. ФТТ 40, 4, 91 (1998).
- [15] Н.Н. Сирота, В.В. Новиков. ФТТ 42, 2, 193 (2000).
- [16] N.N. Sirota, V.V. Novikov. J. Materials Processing & Manufacturing Science 7, 1, 111 (1998).
- [17] С.И. Новиков. Тепловое расширение твердых тел. Наука, М. (1974). 291 с.
- [18] В.В. Новиков. ФТТ **42**, *12* (2000).