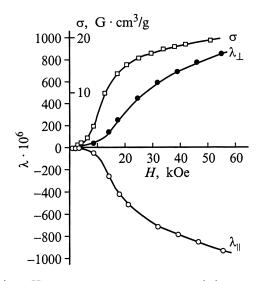
Влияние спин-орбитального взаимодействия ионов Ni^{2+} с основным состоянием орбитальный триплет на магнитострикцию феррита $NiFe_{0.5}Cr_{1.5}O_4$

© Л.Г. Антошина, А.Н. Горяга, Р.Р. Аннаев

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

(Поступила в Редакцию 10 марта 2000 г.)

Впервые при температуре 4.2 К в полях до 55 kOe исследовано поведение намагниченности σ , продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций феррита NiFe $_{0.5}$ Cr $_{1.5}$ O4, содержащего тетраэдрические ионы Ni $^{2+}$ с основным состоянием орбитальный триплет. Обнаружено, что феррит NiFe $_{0.5}$ Cr $_{1.5}$ O4 обладает аномально большой магнитной анизотропией ($H_c=12.5\,\mathrm{kOe}$) и магнитострикциями ($\lambda_{\parallel}\approx-870\cdot10^{-6},\,\lambda_{\perp}\approx800\cdot10^{-6}$). Найдено, что в больших полях магнитострикции λ_{\parallel} и λ_{\perp} носят анизотропный характер, т. е. восприимчивость $\Delta\lambda_{\parallel p}<0$, а $\Delta\lambda_{\perp p}>0$. Сделан вывод, что у данного образца имеют место два парапроцесса, один из которых в B-подрешетке имеет обменную природу, тогда как второй — в A-подрешетке обусловлен спин-орбитальным взаимодействием ионов Ni $_A^{2+}$.


Известно, что из 3d-ионов сильным спин-орбитальным взаимодействием обладают только те ионы, у которых в кристаллическом поле кубической симметрии основным состоянием является орбитальный триплет (эффективный орбитальный момент l = 1). В этом случае кристаллическое поле не полностью "замораживает" орбитальный момент у 3*d*-ионов и магнитные свойства этих ионов будут определяться полным моментом ${f J}$. Поэтому вследствие спин-орбитального взаимодействия в магнитных соединениях, содержащих такие 3d-ионы, при $T < T_C \ (T_C -$ температура Кюри) будет иметь место упорядочение орбитальных моментов относительно упорядоченных спиновых моментов. В случае ферритовшпинелей это приведет к возникновению неколлинеарного магнитного упорядочения в той магнитной подрешетке, где находятся такие 3d-ионы.

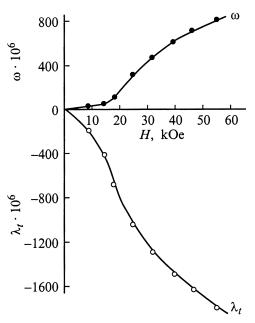
Следовательно, в ферритах-шпинелях независимо от того, в какой подрешетке находятся 3*d*-ионы, основным состоянием которых является орбитальный триплет, наложение магнитного поля должно приводить к значительному парапроцессу (истинному намагничиванию). Если в ферритах-шпинелях такие 3d-ионы находятся в подрешетке, ответственной за магнитный момент феррита, то наложение магнитного поля Н должно приводить к увеличению суммарного магнитного момента феррита \mathbf{M}_{Σ} вследствие увеличения проекции $\mathbf{M}_{\mathbf{J}}$ на направление поля. В случае, если эти 3d-ионы находятся в подрешетке, не ответственной за магнитный момент феррита, то увеличение суммарного магнитного момента феррита \mathbf{M}_{Σ} будет происходить за счет уменьшения проекции $\mathbf{M}_{\mathbf{J}}$ на направление поля Н. Мы предполагаем, что этот парапроцесс также должен сопровождаться изменением размеров кристаллической решетки шпинели, т. е. значительной магнитострикцией парапроцесса λ_p . В литературе сведений о характере поведения магнитострикций такого парапроцесса у ферритов-шпинелей, содержащих указанные 3d-ионы, не имеется. Поэтому представляло интерес провести экспериментальные исследования, которые могли бы дать ответ на данный вопрос. Однако только комплексное исследование поведения продольной и поперечной магнитострикций и намагниченности может решить данную проблему.

В этой работе приведены результаты исследования намагниченности и магнитострикции феррита $NiFe_{0.5}Cr_{1.5}O_4$, у которого 3d-ионы (Ni_A^{2+}) с основным состоянием орбитальный триплет находятся в тетраэдрической подрешетке, которая не ответственна за магнитный момент феррита. С учетом энергии предпочтения ионов к определенным кристаллографическим узлам, катионное распределение данного феррита имеет вид: $Ni_{0.5}^{2+}Fe_{0.5}^{3+}[Ni_{0.5}^{2+}Cr_{1.5}^{3+}]O_4$. Предполагаем, что у данного феррита магнитная структура должна быть неколлинеарной не только в B-подрешетке за счет прямого отрицательного обмена между ионами $Cr_B^{3+}-Cr_B^{3+}$, но и в A-подрешетке за счет спин-орбитального взаимодействия ионов Ni_A^{2+} .

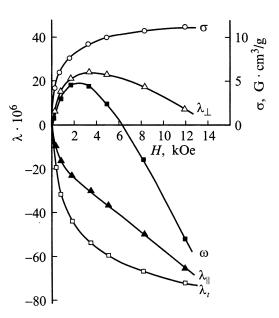
Образец феррита NiFe $_{0.5}$ Cr $_{1.5}$ O4 был приготовлен по керамической технологии. Первый отжиг проводился при температуре 1000° C течение 5 часов, а второй — при температуре 1350° C в течение 6 часов с последующим медленным охлажеднием. Оба отжига были проведены на воздухе. Рентгеноструктурный анализ, проведенный при комнатной температуре, показал, что приготовленный образец является однофазным, параметр решетки $a=8.32\,\text{Å}$. Намагниченность измерялась баллистическим методом, а магнитострикция — тензометрическим методом. Измерения проводились в сверхпроводящем соленоиде в магнитных полях до $55\,\text{kOe}$ при температуре $4.2\,\text{K}$.

Было обнаружено, что при температуре $4.2\,\mathrm{K}$ феррит NiFe_{0.5}Cr_{1.5}O₄ имеет большую коэрцитивную силу ($H_c=12.5\,\mathrm{kOe}$). На основании этого можно сделать вывод, что феррит, имеющий в своем составе 3d-ионы, основным состоянием которых является орбитальный триплет, обладает большой магнитной анизотропией.

Рис. 1. Изотермы намагниченности $\sigma(H)$, продольной $\lambda_{\parallel}(H)$ и поперечной $\lambda_{\perp}(H)$ магнитострикций для феррита NiFe_{0.5}Cr_{1.5}O₄, полученные при $T=4.2\,\mathrm{K}$.


На рис. 1 приведены изотермы $\sigma(H)$, $\lambda_{\parallel}(H)$ и $\lambda_{\perp}(H)$. Видно, что на всех изотермах отсутствует насыщение. Оказалось, что данный феррит обладает аномально большой величиной магнитострикции. Например, при $4.2\,\mathrm{K}$ в поле $H=50\,\mathrm{kOe}$ продольная магнитострикция $\lambda_{\parallel}\approx-870\cdot10^{-6}$, а поперечная $\lambda_{\perp}\approx800\cdot10^{-6}$. При этом в больших полях магнитострикции λ_{\parallel} и λ_{\perp} носят анизотропный характер, т. е. восприимчивость магнитострикций $\Delta\lambda_{\parallel p}<0$, а $\Delta\lambda_{\perp p}>0$. Тогда, как обычно, у ферритов-хромитов со структурой шпинели, не содержащих 3d-ионов, основным состоянием которых является орбитальный триплет, магнитострикция значительно меньше, а восприимчивости магнитострикций $\Delta\lambda_{\parallel}$ и $\Delta\lambda_{\perp}$ в сильных полях носят изотропный характер.

Исходя из нашего предположения о наличии неколлинеарной магнитной структуры в A-подрешетке вследствие спин-орбитального взаимодействия ионов Ni_A^{2+} , у данного феррита должно быть два парапроцесса. Первый парапроцесс обусловлен увеличением проекции магнитного момента B-подрешетки \mathbf{M}_B за счет уменьшения угла между магнитными моментами ионов Cr_B^{3+} , а другой парапроцесс связан с уменьшением проекции магнитного момента A-подрешетки \mathbf{M}_A ионов Ni_A^{2+} на направление поля \mathbf{H} . Первый парапроцесс будет иметь обменную природу, а второй — спин-орбитальную.


Используя формулы для вычисления объемной $\omega=\lambda_{\parallel+2\lambda_{\perp}}$ и анизотропной $\lambda_t=\lambda_{\parallel-\lambda_{\perp}}$ магнитострикций, мы построили изотермы $\omega(H)$ и $\lambda_t(H)$ при $T=4.2\,\mathrm{K}$ (рис. 2). Оказалось, что анизотропная магнитострикция λ_t резко возрастает, уже начиная со слабых магнитных полей, тогда как объемная магнитострикция ω в полях до 20 kOe практически отсутствует, а рост ее величины начинается с $H=20\,\mathrm{kOe}$ (при $H=55\,\mathrm{kOe},\,\omega\approx820\cdot10^{-6}$). Обнаружено, что наряду с большой магнитной анизотропией ферритышпинели, содержание 3d-ионы, основным состоянием

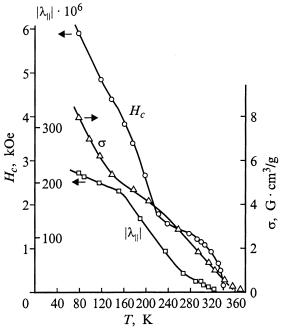
которых является орбитальный триплет, обладают и аномально большой анизотропной магнитострикцией λ_t , так при $H=50\,\mathrm{kOe}~\lambda_t=-1800\cdot 10^{-6}$.

Для сравнения на рис. 3 приведены изотермы намагниченности σ , продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций при 80 К для феррита-хромита никеля $\mathrm{Fe^{3+}[Ni^{2+}Fe_{0.1}^{3+}Cr_{0.9}^{3+}]O_4}$ (x=0.9), у которого в A-узлах отсутствуют ионы $\mathrm{Ni^{2+}}$. Поскольку данный образец при 80 К обладал коэрцитивной силой $H_c \approx 0.2\,\mathrm{kOe}$, то

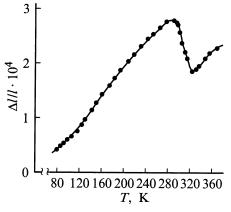
Рис. 2. Изотермы объемной $\omega(H)$ и анизотропной $\lambda_t(H)$ магнитострикций для феррита NiFe_{0.5}Cr_{1.5}O₄ ($T=4.2\,\mathrm{K}$).

Рис. 3. Изотермы намагниченности $\sigma(H)$, продольной $\lambda_{\parallel}(H)$, поперечной $\lambda_{\perp}(H)$, объемной $\omega(H)$ и анизотропной $\lambda_{\rm f}(H)$ магнитострикций для феррита NiFe $_{1.1}{\rm Cr}_{0.9}{\rm O}_4$, полученные при $T=80~{\rm K}$.

для изучения характера продольной λ_{\parallel} и поперечной λ_{\perp} магнитострикций было вполне достаточно магнитных полей до 12 kOe. Видно, что у данного образца магнитострикция λ_{\parallel} на порядок меньше, чем у образца NiFe_{0.5}Cr_{1.5}O₄, а парапроцесс сопровождается отрицательной изотропной магнитострикцией, т. е. $\Delta\lambda_{\parallel p} < 0$ и $\Delta\lambda_{\perp P} < 0$. Этот парапроцесс имеет обменную природу и обусловлен неколлинеарностью магнитной структуры в B-подрешетке, возникшей вследствие сильного отрицательного прямого обмена $\mathrm{Cr}_B^{3+}\mathrm{-Cr}_B^{3+}$. На этом рисунке приведены рассчитанные изотермы объемной $\omega(H)$ и анизотропной $\lambda_t(H)$ магнитострикций. Оказалось, что при $H=12\,\mathrm{kOe}~\omega\approx-52\cdot10^{-6}$, а $\lambda_t\approx-73\cdot10^{-6}$.


Авторы теоретической работы [1] установили, что если в ионных магнитных соединениях имеются 3*d*-ионы, связанные сверхобменом, основным состоянием которых является орбитальный триплет, то должно происходить упорядочение не только их спиновых моментов S, но и орбитальных L. Это в свою очередь приводит к возникновению новых упорядоченных магнитных фаз. Ими также показано, что фазовые переходы, обусловленные упорядочением орбитальных моментов L, должны наблюдаться при температурах, меньших, чем температура спинового упорядочения. Выводы, полученные в работе [1], можно с успехом применить для объяснения аномального поведения магнитных и магнитострикционных свойств данного феррита NiFe_{0.5}Cr_{1.5}O₄, так как в его состав входят магнитные ионы ${\rm Ni}_A^{2+}$, участвующие в сверхобмене и имеющие в кристаллическом поле кубической симметрии основным состоянием орбитальный триплет.

Парапроцесс в ферритах-хромитах со структурой шпинели за счет изменения степени неколлинеарности в подрешетках феррита в больших полях должен сопровождаться изотропными восприимчивостями парапроцесса $\Delta\lambda_{\parallel}$ и $\Delta\lambda_{\perp}$. Поэтому представляло интерес выяснить, чем обусловлен анизотропный характер восприимчивости магнитострикций $\Delta\lambda_{\parallel p} < 0$ и $\Delta\lambda_{\perp p} > 0$ в сильных полях у образца NiFe_{0.5}Cr_{1.5}O₄, содержащего 3d-ионы, основным состоянием которых является орбитальный триплет в A-подрешетке, не ответственной за суммарный магнитный момент феррита.


Однако если уменьшение степени неколлинеарности в B-подрешетке должно происходить в более слабых полях, так как отрицательное межподрешеточное AB-взаимодействие способствует этому процессу, то увеличению степени неколлинеарности в A-подрешетке отрицательное межподрешеточное AB-взаимодействие будет противоборствовать. Следовательно, можно считать, что в феррите $NiFe_{0.5}Cr_{1.5}O_4$ в слабых полях протекает парапроцесс в B-подрешетке, а в более сильных полях — парапроцесс в A-подрешетке. При этом следует принять во внимание, что если 3d-ион обладает орбитальным моментом, то смещение l под действием поля будет отражаться на расположении анионов O^{2-} в кристаллической решетке вследствие эффекта Штарка ($E \times l$). На основании этого мы предполагаем, что значительная

магнитострикция и анизотропный характер ее восприимчивостей $\Delta \lambda_{\parallel p} < 0$ и $\Delta_{\perp p} > 0$ в сильных полях обусловлен смещением анионов O^{2-} .

Проведенный нами расчет энергии эффективного спин-орбитального взаимодействия λ/S для иона Ni^{2+} в поле кубической симметрии дает величину $\lambda/S=(230\pm15)~\mathrm{cm}^{-1}$, так как $\lambda=-(230\pm15)~\mathrm{cm}^{-1}$, $S=1,\ l=1$ [2]. Поэтому у данного феррита ниже $300~\mathrm{K}$ должен иметь место кристаллографический переход, обусловленный спин-орбитальным взаимодействием тетраэдрических ионов Ni^{2+} . Известно, что ионы Ni^{2+}_A в феррите $\mathrm{NiFe}_{0.5}\mathrm{Cr}_{1.5}\mathrm{O}_4$ вследствие спин-орбитального взаимодействия вызывают искажения кристаллической решетки с $c/a<1~\mathrm{пр}_{1}$ $T\approx200~\mathrm{K}$ [3].

Рис. 4. Температурные зависимости намагниченности $\sigma(T)$ и продольной магнитострикции $\lambda_{\parallel}(T)$ (по модулю), полученные в поле $H=12.7\,\mathrm{kOe}$, а также коэрцитивной силы $H_c(T)$ для феррита NiFe_{0.5}Cr_{1.5}O₄.

Рис. 5. Температурная зависимость теплового линейного расширения $\Delta l/l(T)$ для феррита NiFe_{0.5}Cr_{1.5}O₄.

На рис. 4 приведены температурные зависимости $\sigma(T)$, $\lambda_{\parallel}(T)$ (по модулю), снятые в поле $H=12.7\,\mathrm{kOe}$, и $H_c(T)$ для феррита NiFe_{0.5}Cr_{1.5}O₄. Видно, что рост магнитострикции λ_{\parallel} и коэрцитивной силы H_c начинается при температуре $\leqslant 280\,\mathrm{K}$. На основании этого предполагается, что искажения кристаллической решетки вследствие спин-орбитального взаимодействия тетраэдрических ионов Ni²⁺, также должны наблюдаться при $T \leq 280 \, \mathrm{K}$. Проведенные нами исследования температурной зависимости теплового линейного расширения полностью подтверждают этот факт (рис. 5). Оказалось, что при $T \le 320 \,\mathrm{K}$ коэффициент линейного расширения меняет знак с положительного на отрицательный, а при $T \leq 280 \, \mathrm{K}$ коэффициент α снова становится положительным. Не исключено, что интервал температур 280-320 К является переходной областью. Таким образом, исходя из полученных экспериментальных результатов, можно предположить, что у данного феррита температура перехода составляет $300 \pm 20 \, \mathrm{K}$, что хорошо согласуется с рассчитанной нами для ионов Ni_A^{2+} величиной энергии эффективного спин-орбитального взаимодействия $\lambda 1S = (320 \pm 20) \text{ K}.$

Список литературы

- [1] Hoppe., L.L. Hirst. J. Phys. C: Solid State Phys. 16, 1919 (1983).
- [2] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Т. 2. Мир, М. (1972). 651 с.
- [3] T.R. McGuire, S.W. Greenwald. Solid State Physics in Electronics and Telecommunications. Vol. 3. Magnetics and Optical Properties. Part I. Academic, London–N.Y. (1) (1960). P. 50.